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Abstract

We consider the entailment problem in the fragment of first-order logic
(FOL) composed of existentially closed conjunctions of literals (without func-
tions), denoted FOL(∃,∧,¬a). This problem can be recast as several funda-
mental problems in artificial intelligence and databases, namely query con-
tainment for conjunctive queries with negation, clause entailment for clauses
without functions and query answering with incomplete information for Boolean
conjunctive queries with negation over a fact base. Entailment in FOL(∃,∧,¬a)
is ΠP

2 -complete, whereas it is only NP-complete when the formulas contain
no negation. We investigate the role of specific literals in this complexity
increase. These literals have the property of being “exchangeable”, with this
notion taking the structure of the formulas into account. To focus on the
structure of formulas, we shall see them as labeled graphs. Graph homomor-
phism, which provides a sound and complete proof procedure for positive
formulas, is at the core of this study. Let ENTAILMENTk be the following
family of problems: given two formulas g and h in FOL(∃,∧,¬a), such that
g has at most k pairs of exchangeable literals, is g entailed by h? The main
results are that ENTAILMENTk is NP-complete if k is less or equal to 1, and
PNP
|| -complete for any value of k greater or equal to 3. As a corollary of our
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proofs, we are able to classify exactly ENTAILMENTk for any value of k 6= 2
when g is decomposable into a tree.

Keywords: Complexity, first-order logic, entailment, negation, graph, homomor-
phism, query containment, clause implication, conceptual graph.
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1 Introduction

In this paper, we study the complexity of checking entailment in the fragment of
first-order logic (FOL), composed of existentially closed conjunctions of literals.
Literals may contain constants but no other function symbols. FOL(∃,∧,¬a) de-
notes this fragment (where ¬a stands for atomic negation, i.e., negation whose
scope is an atom), and FOL(∃,∧) is the subfragment with positive literals only.
The ENTAILMENT problem in a given fragment takes two formulas g and h of this
fragment as input, and asks if g is entailed by h.

2



Equivalent problems. FOL(∃,∧,¬a)-ENTAILMENT can be seen as a represen-
tative of several fundamental problems in artificial intelligence and databases. It
can be immediately recast as a query containment checking problem, which is
one of the fundamental problems in databases. This problem takes two queries q1
and q2 as input, and asks if q1 is contained in q2, i.e., if the set of answers to q1
is included in the set of answers to q2 for all databases (e.g. [AHV95]). Algo-
rithms based on query containment can be used to solve various problems, such as
query evaluation and optimization [CM77, ASU79], rewriting queries using views
[Hal01], detecting independence of queries from database updates [LS93], etc. The
so-called (positive) conjunctive queries form a class of natural and frequently used
queries and are considered as the basic database queries [CM77, Ull89]. Their
expressive power is equivalent to the select-join-project queries of relational alge-
bra and to non-recursive Datalog rules. Conjunctive queries with negation extend
this class with negation on atoms. Query containment checking for conjunctive
queries with negation (resp. positive conjunctive queries) is essentially the same
problem as FOL(∃,∧,¬a)-ENTAILMENT (resp. FOL(∃,∧)–ENTAILMENT), in the
sense that there is a natural bijection from the set of conjunctive queries with nega-
tion (resp. positive conjunctive queries) on a given database schema to the set of
FOL(∃,∧,¬a) (resp. FOL(∃,∧)) formulas on the logical language correspond-
ing to this schema, such that query containment coincides with logical entailment.
Another related problem in artificial intelligence is the clause entailment prob-
lem, a basic problem in inductive logic programming [MR94]: given two clauses
C1 and C2, does C1 entail C2? If we consider first-order clauses, i.e., univer-
sally closed disjunctions of literals, without function symbols, by contraposition,
we obtain an instance of FOL(∃,∧,¬a)-ENTAILMENT. Let us now look at this
from a knowledge representation perspective. A key problem is query answer-
ing, which, generally speaking, takes a knowledge base and a query as input and
asks for the set of answers to the query that can be retrieved from the knowledge
base. When the query is a Boolean query, i.e., with a yes/no answer, the prob-
lem can be recast as checking whether the query is entailed by the knowledge
base. In the case where the knowledge base is simply composed of a set of posi-
tive and negative facts, i.e., ground literals or existentially closed conjunctions of
literals1, and the query is a Boolean conjunctive query with negation, we obtain
FOL(∃,∧,¬a)-ENTAILMENT. Let us point out that this definition of the query an-
swering problem is consistent with the so-called open-world assumption (OWA),

1In the literature, a fact is usually assumed to be a ground literal. By extending this notion to
existentially closed conjunctions of literals, we naturally cover languages such as the basic semantic
web language RDF [W3C04], dedicated to the description of web resources, where the so-called
“blank nodes” are logically translated into existential variables, or fragments of conceptual graphs
(see hereafter). This extension has no incidence on the complexity of the problems we consider.
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which assumes incomplete knowledge about the represented world. This assump-
tion is commonly made in knowledge representation and reasoning. The oppo-
site assumption, closed-world assumption (CWA), commonly made in databases,
assumes complete knowledge about the represented world. It follows that only
positive facts (the data) need to be encoded, with negative facts being obtained
by difference with the content of the fact base. Then, negation occurs only in
queries and is interpreted as the absence of a positive fact, i.e., ¬p(a1 . . . al) holds
if p(a1 . . . al) is not entailed by the fact base (while with OWA ¬p(a1 . . . al) holds
if it is entailed by the fact base). Note however that the query containment prob-
lem for conjunctive queries with negation is the same regardless of the assumption
made (e.g. [LM07]).

Finally, even if this aspect is out of the scope of the present paper, let us men-
tion that a partial order on predicates, or more generally a preorder, can be taken
into account without increasing complexity. This allows to represent a terminol-
ogy where concepts and relations are preordered by a subsumption relation. These
concepts and relations are logically translated into a set of predicates used to build
facts. We then obtain FOL(∃,∧,¬a)-ENTAILMENT extended to preordered predi-
cates, which is exactly the entailment problem in a fragment of conceptual graphs,
called polarized conceptual graphs [Ker01][ML07].

Complexity and “exchangeable” literals. Whereas FOL(∃,∧)-ENTAILMENT

is “only” NP-complete, FOL(∃,∧,¬a)-ENTAILMENT is ΠP
2 -complete2 [FNTU07]

[Mug07]. Some specific cases where FOL(∃,∧,¬a)-ENTAILMENT has a lower
complexity are known but they enforce strong restrictions on the problem instances:
briefly said, if g does not contain any pair of opposite and unifiable literals3, then
FOL(∃,∧,¬a)-ENTAILMENT becomes NP-complete (see Section 6). The aim of
this paper is to investigate the complexity gap between entailment checking in
FOL(∃,∧) and FOL(∃,∧,¬a). For that, we study the role of specific pairs of
literals in the complexity increase. These literals have the property of being “ex-
changeable”, with this notion being relative not only to the literals themselves, but
also to the structure of both formulas. We show that these literals are indeed respon-
sible for the complexity increase, in the sense that if the number of exchangeable
literals in g is bounded, then the complexity falls into lower classes of the polyno-
mial hierarchy. The complexity results proven in this paper generalize the results
obtained in the various variants of the problem (for instance the query inclusion
problem or the clause implication problem).

2ΠP
2 is co-(NPNP ).

3i.e., of the form p(u) and ¬p(v), where p(u) and p(v) are unifiable.
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Figure 1: A polarized graph

Graph Tools. We shall see formulas as labeled graphs to focus on their struc-
ture and rely on graph notions like paths, connectivity or cyclicity. These graphs
are called polarized graphs (PGs) (name borrowed from [Ker01] in the context of
conceptual graphs). More specifically, a FOL(∃,∧,¬a) formula is represented as a
bipartite graph with two kinds of nodes: relation nodes and term nodes. Each term
of the formula becomes a term node, labeled ∗ if it is a variable, otherwise by the
constant itself. A positive (resp. negative) literal with predicate symbol r becomes
a relation node labeled +r (resp. −r) and it is linked to the nodes assigned to its
terms. The numbers on edges correspond to the position of each term in the literal.
See Figure 1 for an example. In the sequel of this section, formulas are denoted
by small letters (g and h) and the associated graphs by the corresponding capital
letters (G and H).

Homomorphism is a core notion in this study. Basically, a homomorphism
from an algebraic structure to another maps the elements of the first structure to
elements of the second structure while preserving the relations between elements.
A homomorphism π from a graph G to a graph H is a mapping from nodes of G
to nodes of H , which preserves edges, i.e., if xy is an edge of G then π(x)π(y) is
an edge of H . Since polarized graphs are labeled, there are additional conditions
on labels: a relation node is mapped to a node with the same label; a term node
can be mapped to any term node if it is labeled ∗, otherwise it is mapped to a
node with the same constant. Numbers on edges are preserved. Let us point out
that, given two formulas g and h in FOL(∃,∧,¬a), one can identify the notions
of a substitution σ for variables in g, s.t. the literals of σ(g) are contained in h,
and a PG homomorphism from G to H . FOL(∃,∧)-ENTAILMENT can be solved
by such a substitution check, or equivalently by a homomorphism check on the
PGs assigned to the formulas. This homomorphism check still provides a sound
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procedure for entailment in FOL(∃,∧,¬a), i.e., the existence of a homomorphism
from G to H implies that g is entailed by h, but of course it is no longer complete,
i.e., g may be entailed by h even if there is no homomorphism from G to H .

FOL(∃,∧,¬a)-ENTAILMENT can be recast as a problem on PGs involving a
number of homomorphism checks exponential in the size of H . Indeed, negation
introduces disguised disjunctive information that cannot be taken into account by
homomorphism. This disjunctive information is related to the law of the excluded-
middle which holds in classical logic, i.e., for any formula A, (A ∨ ¬A) is valid.
This leads to reasoning by cases: if nothing is known about p(u), then either p(u)
or ¬p(u) holds. We are thus led to consider all possible ways of “completing” H
with missing relation nodes (while keeping it consistent) and to check if G can be
mapped by homomorphism to all these completions of H . Intuitively, exchange-
able literals are literals fromG that may lead to use the law of the excluded-middle.
More precisely, exchangeable literals are literals of the form p(u) and ¬p(v) re-
spectively, such that u and v can be mapped “at the same place” by homomor-
phisms from G to (necessarily distinct) completions of H .

Finally, let us come back to query answering and the distinction between OWA
and CWA. With CWA, H can be seen as implicitly completed with solely negative
relation nodes; then, G is CWA-entailed by H if and only if there is a homomor-
phism from G to this negative completion of H (which can be checked without
effectively computing this completion). It follows that, with CWA, answering a
conjunctive query with negation is not more complex than answering a positive
conjunctive query.

Contributions of the paper. The results achieved in this paper can be summa-
rized as follows. Please note that we make the assumption that the arity of pred-
icates is bounded by a constant. This assumption is often made in knowledge
representation. We first point out that if g has no pair of exchangeable literals, then
FOL(∃,∧,¬a)-ENTAILMENT has the same complexity as in the positive fragment
(indeed it can be computed by a homomorphism check, thus is NP-complete). It is
then proven that the problem remains NP-complete if g has one pair of exchange-
able literals. A natural question that arises is whether the complexity of entailment
checking decreases when g has a bounded number of exchangeable literals. Let
ENTAILMENTk be the following family of problems: given two formulas g and
h in FOL(∃,∧,¬a), such that g has at most k pairs of exchangeable literals, is g
entailed by h? It is proven that, for any k ≥ 3, ENTAILMENTk is PNP

|| -complete.
When g represents a query and h a base of facts, criteria that decrease the complex-
ity and depend on g rather than h are specially relevant, because the query can be
considered as small with respect to the fact base, and has generally a simple struc-
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Number of exchangeable General Homomorphism check
pairs in g g and h polynomial
unbounded ΠP

2 -complete (*) co-NP-complete
0 NP-complete P
1 (**) NP-complete P
bounded by k ≥ 3 PNP

|| -complete co-NP-complete

(*) already proven ([FNTU07], [Mug07])
(**) the same complexity holds if g has an unbounded number of exchangeable pairs that
all have the same positive (resp. negative) literal

Table 1: Main complexity results

ture (while one cannot expect the fact base to have a special structure). Of course,
these criteria are also relevant when g and h are both queries. In particular, when
g has a structure decomposable into a tree (we will precise this point later), then
checking if there is a homomorphism from g to h can be done in polynomial time.
In this case, we point out that FOL(∃,∧,¬a)-ENTAILMENT is co-NP-complete;
moreover, a corollary of previous proofs is that ENTAILMENTk remains co-NP-
complete for any k ≥ 3 and is in P if k ≤ 1.

Table 1 summarizes the complexity results. The recognition problem associ-
ated with ENTAILMENTk, i.e., whether g possesses at most k pairs of exchangeable
literals, is co-NP-complete for any k ≥ 0. Therefore, for k = 0 and k = 1, we
consider the framework of promise problems, which generalize decision problems
by allowing to “ignore” inputs that do not satisfy the promised property (here,
having at most k pairs of exchangeable literals). Note that all results hold in the
classical decision framework if we apply weaker criteria that bound the number of
potentially exchangeable literals and can be checked in polynomial time.

Finally, these results are extended in two ways. First, we point out that a
FOL(∃,∧,¬a) formula can be partitioned into subsets of literals called pieces (this
notion is actually defined on PGs as it corresponds to a graph decomposition no-
tion), such that the bound on the number of pairs of exchangeable literals can be
made relative to each piece of g instead of the entire g, i.e., in all results, condition
“g has at most k pairs of exchangeable literals” can be relaxed into “each piece of
g has at most k pairs of exchangeable literals”. Second, we refine several notions
related to exchangeable literals, in order to decrease their number.

Paper organization. Section 2 introduces the graph framework and known re-
sults. Section 3 studies properties of exchangeable literals. Section 4 contains our
main complexity results. Section 5 is devoted to refinements. Section 6 synthe-

7



sizes related work and concludes this study.

2 Preliminaries

Since we do not consider function symbols other than constants, a logical language
is a pair (R, I), where R is the set of predicates and I is the set of constants. The
terms on (R, I) are thus constants in I or variables. Equality is not considered but
all results are easily extended to it (see in particular [LM06], which shows how to
include equality and inequality in the framework of polarized conceptual graphs).
An atom on (R, I) is of form p(t1, . . . , tn), n ≥ 1, where p ∈ R and, for all j in
1, . . . , n, tj is a term on (R, I). Note that nullary predicates are not considered be-
cause their processing is trivial; the tools developed here would therefore be unnec-
essarily complicated for dealing with them. A literal on (R, I) is an atom (positive
literal) or the negation of an atom (negative literal) on (R, I). A FOL(∃,∧,¬a) for-
mula on (R, I) is an existentially closed conjunction of literals on (R, I). Without
loss of generality, we consider that it is of the form ∃x1 . . . xq(l1∧ . . .∧ lp), where,
for all i in 1 . . . p, li is a literal whose variables are in {x1, . . . , xq}. A FOL(∃,∧)
formula has only positive literals. The set of atoms occurring in a formula is the
set of atoms occurring positively or negatively in its literals.

As explained in the introduction, it is convenient to see a FOL(∃,∧,¬a) for-
mula as a bipartite labeled graph, that we call a polarized graph (PG). The follow-
ing definitions and results about polarized graphs are mainly based on [LM07] and
[ML07].

Definition 1 (polarized graph) Let V = (R, I) be a vocabulary where R is a
finite set of relation names of any arity and I a set of individual names, or con-
stants. A polarized graph (PG) is a finite undirected bipartite labeled multigraph
G = (R, T, E, λ) where R and T are the (disjoint) sets of nodes, respectively
called set of relation nodes and set of term nodes, E is the family of edges (there
may be several edges with the same extremities, thus strictly speaking, a PG is a
multigraph and not a graph) and λ is a labeling mapping of nodes and edges. For
x ∈ R, λ(x) = +r (x is called a positive relation node) or λ(x) = −r (x is called
a negative relation node) where r ∈ R; the degree of x (i.e., the number of edges
incident to it) must be equal to the arity of r; furthermore, the edges incident to
x are totally ordered, which is represented by labeling edges from 1 to the degree
of x. An edge labeled i between a relation node x and a term node t is denoted
(x, i, t). For t ∈ T , either λ(t) = ∗ (t is called a variable node) or λ(t) ∈ I (t is
called a constant node).

Each PG can be put into a normal form, such that each constant of I appears at
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most once in it. In the following, a PG is assumed to be in this normal form unless
otherwise specified.

A FOL(∃,∧,¬a) formula g on a logical language (R, I), is translated into a
PG G on a vocabulary V = (R, I), with the following natural bijections: from
variables in g to variable nodes in G, from constants in g to constant nodes in G
(s.t. a constant a yields a node with label a), from positive (resp. negative) literals
in g to positive (resp. negative) relation nodes in G (s.t. the predicate and polarity
of a literal yield the label of the relation node). For each argument ti of a literal
l, there is an edge (x, i, t), where x is the relation node assigned to l and t is the
term node assigned to ti. There is thus a bijection from the set of FOL(∃,∧,¬a)
formulas on a logical language (R, I) to the set of normal PGs without isolated
term nodes4 on a vocabulary V = (R, I). This bijection is up to isomorphism
for graphs and up to variable renaming for formulas. In the following, since we
work on the graph representation of formulas, we will consider PGs as the basic
constructs, and see formulas as their logical meaning. The mapping from PGs
without isolated term nodes to formulas is called Φ. Moreover, we will assume
that PGs do not have redundant relation nodes (i.e., with the same label and the
same ith neighbors), thus the associated formulas can be seen as sets of atoms.

Notations. Let +r(t1, . . . , tq) (resp. −r(t1, . . . , tq)) denote the subgraph in-
duced by a positive (resp. negative) relation node with label +r (resp. −r) and
its list of neighbors t1, . . . , tq. By analogy with its logical translation r(t1, . . . , tq)
(resp. ¬r(t1, . . . , tq)), in which ti denotes the term assigned to the term node ti, we
also call it a literal. Let ∼r denote a label with relation name r, where ∼ can be +
or −. Given a literal (resp. a relation label) l, l denotes the complementary literal
(resp. relation label) of l, i.e., it is obtained from l by reversing its sign. Letters
u, v and w are used to denote a tuple (t1, . . . , tq) of terms (or term nodes). Thus
∼r(u) denotes a literal of arbitrary sign and arity. If π is a mapping from a set of
terms (or term nodes) to a set of terms (or term nodes), then for u = (t1, . . . , tq),
π(u) denotes the tuple (π(t1), . . . , π(tq)). A substitution of variables maps every
variable to a term (variable or constant) and every constant to itself. Removing a
literal from a graph means removing its relation node and the edges incident to it,
so some term nodes of the removed literal may become isolated. If L is a set of
literals of G then G \ L is the subgraph of G obtained from G by removing the
literals in L. In a similar way, if G′ is a subgraph of G then G \G′ is the subgraph
of G obtained from G by removing the literals in G′.

Definition 2 (inconsistent PG/set of literals) A PG (or set of literals) is said to be
inconsistent if it contains two complementary literals +r(u) and−r(u). Otherwise

4A PG may have isolated term nodes, which cannot be obtained by the previous translation of a
formula, but may arise for a subgraph of a PG.
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it is said to be consistent.

It can be immediately checked that inconsistent PGs correspond to unsatisfiable
formulas.

Definition 3 (PG homomorphism) A PG homomorphism fromG = (RG, TG, EG, lG)
to H = (RH , TH , EH , lH), over the same vocabulary V = (R, I), is a mapping
π from RG ∪ TG to RH ∪ TH , such that:

1. for all r ∈ RG, π(r) ∈ RH ; for all t ∈ TG, π(t) ∈ TH
(π preserves bipartition)

2. for all edge (r, i, t) in G, (π(r), i, π(t)) is in H
(π preserves edges and their ordering)

3. for all r ∈ RG, lH(π(r)) = lG(r)
(π preserves relation labels)

4. for all t ∈ TG, if lG(t) ∈ I then lH(π(t)) = lG(t), otherwise there is no
condition on lH(π(t))
(π may “instantiate” variables).

If there is a homomorphism π fromG toH , we say thatG (or a subgraph ofG)
is mapped to H by π. We call G the source graph and H the target graph. Given a
literal l composed of a relation node r ∈ RG, with label ∼p, and list of neighbors
u, π(l) denotes the literal composed of the relation node π(r) with list of neighbors
π(u), i.e., since π preserves relation labels, π(l) is the literal ∼p(π(u)) in H .

Proposition 1 (Substitution / PG Homomorphism Equivalence) Let G and H
be two PGs without isolated term nodes (with H being normal). There is a ho-
momorphism from G to H if and only if there is a substitution σ of variables in
Φ(G) into terms in Φ(H) such that for each literal ∼p(u) in Φ(G), ∼p(σ(u)) is a
literal in Φ(H).

Positive PGs are translated into positive formulas; for this positive fragment
it has been proven that PG homomorphism is sound and complete w.r.t. logical
entailment, provided that the target graph is normal (basically [CM92], considering
that positive PGs are a particular case of simple conceptual graphs). For general
PGs, homomorphism is still sound:

Proposition 2 Given two PGs G and H , if there is a homomorphism from G to H
then Φ(G) is entailed by Φ(H).

10
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Figure 3: When the law of the excluded-middle intervenes

However, it is no longer complete, as illustrated by Figure 2. In this figure, the
formulas assigned toG andH by Φ are respectively Φ(G) = ∃x∃y(p(x)∧¬p(y)∧
r(x, y)) and Φ(H) = p(a)∧ r(a, b)∧ r(b, c)∧¬p(c). One can check that Φ(G) is
entailed by Φ(H), using the tautology p(b)∨¬p(b) (indeed, every model of Φ(H)
satisfies either p(b) or ¬p(b); if it satisfies p(b), then x and y are interpreted as b
and c; in the opposite case, x and y are interpreted as a and b; thus every model of
Φ(H) is a model of Φ(G)).

As explained in the introduction, the law of the excluded-middle leads to con-
sider all ways of completing the knowledge asserted by a PG. Let us look again
at the example in Figure 2. H does not say whether p holds for b. We thus have
to consider two cases: either a relation node with label +p or a relation node with
label −p can be attached to b. Let H1 and H2 be the graphs respectively obtained
from H (see Figure 3). There is a homomorphism from G to H1 and there is a
homomorphism from G to H2. We conclude that G is entailed by H .

Definition 4 (Completion) A consistent PG defined on a vocabulary V = (RV , IV)
is complete w.r.t. a set of relation names R ⊆ RV , if for each r ∈ R with arity
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q, for each q-tuple of not necessarily distinct term nodes (t1, . . . , tq), it contains
+r(t1, . . . , tq) or −r(t1, . . . , tq). If such a PG Hc is obtained by adding relation
nodes to a PG H , it is called a completion of H (w.r.t. R).

If a relation node∼r(u) with r ∈ R is added to a complete PG, either this rela-
tion node is redundant or it makes the PG inconsistent. A complete PG is obtained
from a consistent PG G by repeatedly adding positive and negative relation nodes
as long as a relation node bringing new information and not yielding an inconsis-
tency can be added. Since a PG is a finite graph defined over a finite set of relation
names, the number of different complete PGs that can be obtained from it is finite.
We can now define the entailment problem on PGs in terms of completion.

Definition 5 (PG-ENTAILMENT) PG-ENTAILMENT takes two PGs G and H de-
fined on a vocabulary V = (RV , IV) as input, with H being consistent, and asks
whetherG is PG-entailed byH , i.e., whetherG can be mapped via homomorphism
to each completion of H w.r.t. RV .

The following theorem expresses that PG-ENTAILMENT is sound and complete
with respect to FOL entailment.

Theorem 1 [ML07] LetG andH be two PGs without isolated term nodes, withH
being consistent. Then G can be PG-entailed from H if and only if Φ(H) � Φ(G).

In the rest of the paper, we will thus not distinguish between logical entailment
in the FOL(∃,∧,¬a) fragment and PG-entailment, and use the expression “G is
entailed by H”.

Let us outline a brute-force algorithm scheme for PG-ENTAILMENT: all com-
pletions of H w.r.t. relation names occurring in G are generated from H , and for
each of them it is checked whether G can be mapped to it. A complete graph to
which G cannot be mapped can be seen as a counter-example to the assertion that
G is entailed by H . Actually, not all relation names occurring in G need to be
considered for completing H:

Proposition 3 [LM07] The relation names that do not have both positive and neg-
ative occurrences in G and in H , are not needed in the completions of H (i.e., G
is entailed by H if and only if G can be mapped to each completion of H w.r.t. the
set of relation names that have both positive and negative occurrences in G and in
H).

From now on, completions of H are implicitly defined w.r.t. the set of relation
names that have both positive and negative occurrences in G and in H , unless
otherwise specified. This set of relation names will be referred to as the completion
vocabulary w.r.t. (G,H).
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Figure 4: Exchangeable versus unifiable literals

3 Exchangeable Literals and Related Properties

This section defines exchangeable literals and related notions, and provides the
basic theorems underlying the complexity results in Section 4.

Two literals are said to be p-opposite if they have the same predicate and op-
posite polarities (regardless of their arguments). Two p-opposite literals of G are
said to be “exchangeable” if their arguments can have the same images by homo-
morphisms from G to (necessarily distinct) completions of H . More precisely:

Definition 6 (Exchangeable pair/literal w.r.t. (G,H)) A pair {+p(u),−p(v)} of
p-opposite literals in G is exchangeable w.r.t. (G,H) if there are two completions
of H , say H1 and H2, and two homomorphisms π1 and π2, respectively from G to
H1 and from G to H2, such that π1(u) = π2(v). A literal in G is exchangeable
w.r.t. (G,H) if it belongs to an exchangeable pair w.r.t. (G,H).

In the following, exchangeable pairs and exchangeable literals are implicitly
defined “w.r.t. (G,H)” if not otherwise specified5.

See for instance G in Figure 2. The pair {+p(x),−p(y)} of p-opposite literals
inG is exchangeable, as can be seen in Figure 3: there is a homomorphism π1 from
G to a completion H1 of H and there is a homomorphism π2 from G to another
completion H2 of H , such that π1(x) = π2(y) (and is the node in H with label b).

If a pair of literals {l1, l2} is exchangeable then l1 and l2 can be unified (after a
renaming of their common variables), but the reverse is not generally true because

5Note that “w.r.t. H” would not be sufficient. Indeed, a subgraph G′ of G may contain literals
that are exchangeable w.r.t. (G′, H) but not w.r.t. (G,H). In particular, the property “being without
exchangeable pair of literals” is not inherited by the subgraphs.
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the notion of exchangeable pair takes both the structure of G and and the one of H
into account. See for instance Figure 4, where l1 and l2 are unifiable, as well as l1
and l3. {l1, l2} is an exchangeable pair, which can be seen with the following two
completions of H (note that the completion vocabulary is restricted to p): in one
completion, say H1, −p(b) is added (and a homomorphism from G to H1 maps
l2 to −p(b)); in another completion, say H2, +p(b) and −p(d) are added (and a
homomorphism from G to H2 maps l1 to +p(b)). It can be checked that {l1, l3} is
not an exchangeable pair: there are no two completions such that x and z can be
mapped to the same node 6.

We will now consider the subgraphs of G that do not contain any exchange-
able pair w.r.t. (G,H). A subgraph of G without exchangeable pair w.r.t. (G,H)
is a subgraph of G containing at most one literal of each exchangeable pair w.r.t.
(G,H). A particular case is the socle of G (w.r.t. H) which contains no exchange-
able literal w.r.t. (G,H) at all.

Definition 7 (Socle Gs) Given two PGsG andH , the socle ofG w.r.t. H , denoted
GH

s (and simply Gs if not ambiguous), is the subgraph of G obtained from G by
removing all exchangeable literals.

We recall that removing a literal means removing its relation node and its inci-
dent edges. Thus the socle of G contains all term nodes in G. See Figure 2: G has
one exchangeable pair {+p(x),−p(y)}. The subgraphs of G without exchange-
able pair are the subgraphs of G not containing +p(x) or not containing −p(y).
Gs is the subgraph of G obtained by removing both relation nodes.

The following theorem is a key technical result, which underlies the main forth-
coming results:

Theorem 2 Let G and H be two PGs, with H being consistent. If G is entailed
by H , then, for each completion Hc of H , there is a homomorphism from G to Hc

that maps Gs to H .

Proof: Assuming that G is entailed by H , let Hc be a completion of H . Let R
be the set of literals l in Hc \ H such that there is a homomorphism from G to
Hc mapping some literal of Gs to l. R is consistent since it is a set of literals in
Hc. Let Hc′ be the completion of H obtained from Hc by replacing every literal
of R by its complementary literal, and let π be a homomorphism from G to Hc′

(such a homomorphism exists since G is entailed by H). Let us show that π is a
6The restriction to relation names of the completion vocabulary (see Prop. 3) in completions of

H is important; in the previous example, {l1, l3} would be an exchangeable pair if the relation name
r was considered in completions of H .
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homomorphism from G to Hc that maps Gs to H . No literal of G can be mapped
by π to the complementary literal of a literal of R (otherwise this literal would be
exchangeable with a literal of Gs, which contradicts the definition of Gs). Thus π
is a homomorphism from G to Hc. Therefore, by definition of R, every literal of
Gs is mapped by π to either H or R. However, as π is a homomorphism from G
to Hc′ , which contains no literal of R, no literal of Gs can be mapped to R, thus π
maps Gs to H . �

LetHc+ (resp. Hc−) be the positive (resp. negative) completion ofH obtained
by adding only positive (resp. negative) literals. As a corollary of the previous
theorem, we obtain:

Proposition 4 Let G and H be two PGs, with H being consistent. Let G− (resp.
G+) be the subgraph of G defined by adding to Gs all negative (resp. positive) ex-
changeable literals inG. IfG is entailed byH , then there is a homomorphism from
G to Hc+, the positive completion of H (resp. to Hc−, the negative completion of
H), that maps G− (resp. G+) to H .

Proof: Let us prove the proposition for G− and Hc+ (the proof for G+ and Hc−

is symmetric). If G is entailed by H , Th. 2 ensures that there is a homomorphism,
say π, from G to Hc+ that maps Gs to H . Since Hc+ is obtained from H by
adding positive literals, π maps all negative literals of G to H . Thus π maps G− to
H . �

If we consider any subgraph of G without exchangeable pair (w.r.t. (G,H)),
we have a weaker relationship between this subgraph and completions of H:

Theorem 3 Let G and H be two PGs, with H being consistent. Let G′ be a sub-
graph of G without exchangeable pair w.r.t. (G,H). If G is entailed by H , then
there is a completion Hc of H and a homomorphism from G to Hc that maps G′

to H .

Proof: We suppose that G is entailed by H . Let R be the set of literals l such
that there is a completion Hc of H such that l is a literal in Hc \ H and there is
a homomorphism from G to Hc mapping some literal of G′ to l. R is consistent
since G′ contains no exchangeable pair w.r.t. (G,H). Let Hc be a completion
of H containing the complementary literals of all literals of R (such a completion
exists since R is consistent), and let π be a homomorphism from G to Hc (such a
homomorphism exists sinceG is entailed byH). Let us show that π mapsG′ toH .
By definition of R, every literal of G′ is mapped by π to either H or R. However,
as π is a homomorphism from G to Hc, which contains no literal of R, no literal
of G′ can be mapped to R, so π maps G′ to H . �
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Th. 3 can be rephrased as follows: if G is entailed by H , then each subgraph
G′ of G without exchangeable pair can be mapped to H by a homomorphism that
can be extended to a homomorphism from G to a completion of H . We will now
define this notion of “extensible homomorphism” from a subgraph ofG toH (Def.
9). We first restrict the subgraphs of interest to “completion subgraphs”:

Definition 8 (Completion subgraph of G) A completion subgraph of G (w.r.t.
H) is a graph obtained from G by removing some literals whose relation names
belong to the completion vocabulary (w.r.t. (G,H)).

In the following, we will consider completion subgraphs of G without ex-
changeable pairs. Note thatGs is such a subgraph; it is not necessarily the smallest
with this property as it may still contain literals with relation names from the com-
pletion vocabulary.

Definition 9 (Extensible homomorphism) A homomorphism π from a comple-
tion subgraph G′ of G to H is extensible (w.r.t. (G,H)) if it satisfies

1. for any literal ∼r(u) in G \G′, ∼r(π(u)) is not in H;

2. for any p-opposite literals +r(u) and −r(v) in G \G′, π(u) 6= π(v).

Note that, asG′ is a completion subgraph ofG,G′ contains all term nodes ofG,
so π(u) is defined for any literal∼r(u) inG\G′. Conditions 1 and 2 are obviously
necessary for π to be extendable to a homomorphism from G to a completion of
H . The next proposition shows that they are also sufficient.

Proposition 5 A homomorphism π from a completion subgraph G′ of G to H is
extensible (w.r.t. (G,H)) if and only if it can be extended to a homomorphism from
G to a completion of H .

Proof: Let π be a homomorphism from G′ to H . ⇐: Obvious. ⇒: We suppose
that π satisfies conditions 1 and 2. Let H ′ be the graph obtained from H by adding
the literal ∼r(π(u)) for every literal ∼r(u) in G \ G′ such that ∼r(π(u)) is not
already present in H . For each added literal l, the literal l is not in H by condition
1, and is not another added literal by condition 2. ThusH ′ is consistent. Moreover,
as G′ is a completion subgraph of G, the relation name of each literal in G \ G′
belongs to the completion vocabulary. It follows that H ′ can be completed into a
completion Hc of H and that π can be extended to a homomorphism from G to
Hc. �

We obtain the following corollary of Th. 3 and Prop. 5.
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Corollary 1 Let G and H be two PGs, with H being consistent. Let G′ be a
completion subgraph of G possessing no exchangeable pair w.r.t. (G,H). If G is
entailed by H , then there is an extensible homomorphism from G′ to H .

The previous properties provide necessary entailment conditions, and therefore
sufficient non-entailment conditions. For instance, by Corollary 1, if we find a
completion subgraph of G without exchangeable pair w.r.t. (G,H) such that there
is no extensible homomorphism from G′ to H then we know that G is not entailed
by H .

The problem of checking whether there is an extensible homomorphism from
G′ toH (given PGsG andH and a completion subgraphG′ ofG) is NP-complete.
It is in NP since an extensible homomorphism fromG′ toH provides a polynomial
certificate, and it is complete for NP since in the case whereG′ = G, it is equivalent
to the NP-complete problem of checking homomorphism7 from G to H .

4 Main Complexity Results

We now focus on the role of exchangeable literals in the problem complexity. It
follows immediately from previous properties that the problem complexity falls
into NP if G has no exchangeable pair (see also Section 4.2). A natural question
that arises then is whether a bounded number of exchangeable pairs affects the
complexity. The answer is yes, as we will show it.

To study this question, let us define the following family of problems, where k
is the maximal number of exchangeable pairs in G, and is fixed for each problem.

ENTAILMENTk

Input: two PGs G and H , with H being consistent and G possessing at most k
exchangeable pairs w.r.t.(G,H).
Question: Is G entailed by H?

For any integers k and k′ such that k < k′, ENTAILMENTk′ is at least as diffi-
cult as ENTAILMENTk, since any graphG possessing at most k exchangeable pairs
also possesses at most k′ exchangeable pairs. For the following results, we recall
that we assume that the arity of predicates is bounded by a constant.

7The NP-hardness of this problem can be easily checked, for instance with a straightforward
reduction from the Clique problem [GJ79]; indeed, a classical undirected graph (which can be turned
into a special PG) contains a k-clique if and only if there is a homomorphism from the k-clique to it.
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4.1 Complexity of the Recognition Problem

A desirable property is that recognizing exchangeable literals is not difficult com-
pared to PG-ENTAILMENT complexity, which is indeed the case:

Proposition 6 Let EXCHANGEABLE be the problem that takes two PGs G and
H as input and asks if G possesses some exchangeable pair w.r.t. (G,H). EX-
CHANGEABLE is NP-complete.

Proof: EXCHANGEABLE is in NP: a polynomial certificate is given by a pair
{+p(u),−p(v)} of literals in G, and the proof that it is exchangeable, i.e., two
completions H1 and H2 of H with homomorphisms π1 from G to H1 and π2 from
G to H2 such that π1(u) = π2(v). For NP-completeness, a reduction is built from
positive PG-HOMOMORPHISM (given two positive PGs G1 and G2, is there a ho-
momorphism from G1 to G2 ?). Let G1 and G2 be two positive PGs. “Gadgets”
are added to G1 and G2, yielding G′1 and G′2 respectively, such that there is a ho-
momorphism fromG1 toG2 if and only ifG′1 possesses an exchangeable pair w.r.t.
(G′1, G

′
2). Consider, for instance, the graphsG andH in Figure 2, and choose rela-

tion names r and p, as well as the constants a, b and c, such that they do not occur
in G1 and G2. G′1 (resp. G′2) is obtained by making the disjoint sum8 of G1 and G
(resp. of G2 and H). The only candidate exchangeable pair in G′1 is
{+p(x),−p(y)}. �
The polynomial certificate used in the previous proof can be extended in a

straightforward way to a polynomial certificate for the problem of deciding whether
a graph possesses “at least k exchangeable pairs” (where k is fixed). It follows that
this problem is NP-complete too. Thus, the problem of deciding whether a graph
possesses at most k exchangeable pairs, i.e., the recognition problem associated
with ENTAILMENTk, is co-NP-complete.

Proposition 7 The problem that takes two PGs G and H as input and asks if G
possesses at most k exchangeable pairs w.r.t. (G,H) is co-NP-complete for any
k ≥ 0.

The complexity of the recognition problem associated with ENTAILMENTk

may be seen as restricting practical use of the results in this paper. However, most
of these results can be used in a weaker form by replacing exchangeable pairs by
pairs of p-opposite (or p-opposite and unifiable) literals, which can be recognized
in linear time. For instance, Th. 2 still holds if Gs is replaced by the subgraph of
G obtained from G by removing all pairs of p-opposite and unifiable literals, since
this graph is a subgraph of Gs.

8The disjoint sum of two graphs A and B is the graph obtained by making the union of two
disjoint copies of A and of B.
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4.2 ENTAILMENT0 and ENTAILMENT1

In this section, we will consider ENTAILMENT0 and ENTAILMENT1 as promise
problems. A promise problem is a generalization of a decision problem where the
input is promised to fulfill a given property [ESY84, Gol05]. We have to consider
that framework since deciding whether an input is a correct instance is a co-NP-
hard problem. We show that ENTAILMENT0 and ENTAILMENT1 are NP-complete
when considered as promise problems.

Proposition 8 Let G and H be two PGs, with G having no exchangeable pair
w.r.t. (G,H), and H being consistent. G is entailed by H if and only if there is a
homomorphism from G to H .

Proof: If there is a homomorphism fromG toH thenG is entailed byH by Prop. 2.
The converse follows from Th. 2 since Gs = G (or from Th. 3 with G′ = G). �

Proposition 9 The promise problem ENTAILMENT0 is NP-complete.

It follows that ENTAILMENT1 is NP-hard. We will now prove that ENTAILMENT1

is in NP. Let us first explain the ideas of the proof on Figure 5. G possesses one ex-
changeable pair {+p(x),−p(y)}. There is no homomorphism fromG toH . ButG
can be mapped to every completion of H that contains −p(b) (with x and y being
respectively mapped to a and b). If a completion does not contain −p(b), then it
contains +p(b), thus it remains to check that G is entailed by H1 = H + {+p(b)}.
The same reasoning is applied on H1: there is no homomorphism from G to H1,
but G can be mapped to every completion of H1 that contains −p(c) (with x and
y being respectively mapped to b and c); it remains to check that G is entailed by
H2 = H1 + {+p(c)}, which is the case since there is a homomorphism from G to
H2. G can thus be seen as “sliding” on a growing H , from a place allowing to map
G\{−p(y)} to a place allowing to map G\{+p(x)}. We are sure that this sliding
process will either succeed or stop by lack of homomorphism after a finite number
of steps since H cannot grow infinitely.

These ideas directly lead to Algorithm 1. Note thatG\{∼p(u)} is a completion
subgraph without exchangeable pair. Thus, if there is no extensible homomorphism
from G \ {∼p(u)} to H , then G is not entailed by H; otherwise, let π be such a
homomorphism: either ∼p(π(u)) is in H and there is a homomorphism from G to
H , or, noticing that G is entailed by H + {∼p(π(u))}, it remains to check that G
is entailed by H + {∼p(π(u))}, hence the recursive call.

Proposition 10 The algorithm ENTAILMENT1 is correct.
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Figure 5: Illustration of Algorithm 1

Algorithm 1: ENTAILMENT1

Data: G and H two PGs; H is consistent; G possesses at most one
exchangeable pair; if it has one, ∼p(u) is an exchangeable literal in G
otherwise ∼p(u) is any literal in G such that relation name p belongs
to the completion vocabulary w.r.t. (G,H).

Result: true if G is entailed by H , false otherwise
begin

if there is no extensible homomorphism from G \ {∼p(u)} to H then
return false

else
let π be such a homomorphism
if ∼p(π(u)) is in H then

return true
else

return ENTAILMENT1(G,H + {∼p(π(u))},∼p(u))

Proof: We first check that the recursive call satisfies the precondition, i.e., that
if there is at most one exchangeable pair w.r.t. (G,H) then there is at most one
exchangeable pair w.r.t. (G,H + {∼p(π(u))}) and the precondition on ∼p(u)
still holds. It is indeed the case, since any exchangeable pair w.r.t. (G,H +
{∼p(π(u))}) is also an exchangeable pair w.r.t. (G,H), as any completion of
H + {∼p(π(u))} is also a completion of H (note that the completions of H and
of H + {∼p(π(u))} are defined w.r.t. the same set of relation names since relation
name p belongs to the completion vocabulary w.r.t. (G,H)).
We also check that the number of recursive calls is finite, as the number of nodes of
H is incremented at each recursive call (the added literal ∼p(π(u)) is not already
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present in H since π is extensible9), and is bounded by the number of literals in a
completion of H .
Let us show by induction on the number k of recursive calls that ENTAILMENT1(G,H,∼
p(u)) returns true if G is entailed by H , and false otherwise. If k = 0, i.e.,
if there is no recursive call, then either there is no extensible homomorphism
from G \ {∼p(u)} to H (and then by Corollary 1 G is not entailed by H) and
ENTAILMENT1(G,H,∼ p(u)) returns false, or ∼ p(π(u)) is in H (and then π
can be extended to a homomorphism from G to H , so G is entailed by H) and
ENTAILMENT1(G,H,∼p(u)) returns true. Thus the property is true for k = 0.
We suppose that it is true for k recursive calls. Let us show that it is true for k + 1
recursive calls. As there is at least one recursive call, ENTAILMENT1(G,H,∼p(u))
returns true iff ENTAILMENT1(G,H + {∼p(π(u))},∼p(u)) returns true, i.e., by
induction hypothesis, iffG is entailed byH+{∼p(π(u))}. It remains to show that
G is entailed byH iffG is entailed byH+{∼p(π(u))}. IfG is entailed byH then
G is entailed by H + {∼p(π(u))} since every completion of H + {∼p(π(u))} is a
completion of H . Conversely, we suppose that G is entailed by H + {∼p(π(u))}.
As π is an extensible homomorphism from G \ {∼p(u)} to H , it can be extended
to a homomorphism from G to H + {∼p(π(u))}. Thus G can be mapped to ev-
ery completion of H + {+p(π(u))} and to every completion of H + {−p(π(u))},
and therefore to every completion of H (since any completion of H contains either
H + {+p(π(u))} or H + {−p(π(u))}. Hence G is entailed by H . �

The following proposition immediately follows from Algorithm 1.

Proposition 11 Let G and H be two PGs such that G has (at most) one exchange-
able pair, containing literal ∼p(u) and H is consistent. G is entailed by H if and
only if there is a sequence (πi)i∈1,...,m such that:

1. π1 is an extensible homomorphism from G \ {∼p(u)} to H1 = H

2. ∀i ∈ 2, . . . ,m− 1,
πi is an extensible homomorphism from G \ {∼ p(u)} to Hi = Hi−1 +
{∼p(πi−1(u))}

3. πm is a homomorphism from G to Hm = Hm−1 + {∼p(πm−1(u))}.

We are now able to prove the NP-completeness of ENTAILMENT1.

Theorem 4 The promise problem ENTAILMENT1 is NP-complete.
9Here, as G \ G′ is restricted to literal ∼p(u), conditions 1 and 2 of extensibility are restricted

to: ∼p(π(u)) is not in H .
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Proof: The polynomial certificate follows directly from Prop. 11. Indeed, the
length m of the sequence is bounded by (nH)w, where nH is the number of term
nodes in H and w is the arity of r (which is considered as bounded by a constant).

�
Note that Algorithm 1 still holds if G has an unbounded number of exchange-

able pairs but only one positive (resp. negative) literal. It follows that the en-
tailment problem remains NP-complete in that case. In contrast, the technique
used in this algorithm does not seem to be generalizable to k ≥ 2. Take for in-
stance the case where k = 2 and try to generalize Algorithm 1, replacing the
literal ∼p(u) by two literals ∼p(u) and ∼q(v). Then the recursive call with in-
put H + {∼p(π(u))} would be replaced by the conjunction of three recursive
calls with inputs H + {∼p(π(u)),∼q(π(v))}, H + {∼p(π(u)),∼q(π(v))} and
H + {∼p(π(u)),∼q(π(v))} respectively, each of these recursive calls potentially
generating three new recursive calls etc, so that generalized Prop. 11 would contain
an exponential number of PGs Hi and homomorphisms πi.

4.3 ENTAILMENTk

We now show that, for any value of parameter k, ENTAILMENTk falls into the class
PNP , and even PNP

|| , i.e., the class of decision problems solvable in polynomial
time with one round of parallel queries to an NP oracle. Note that the condition
on parallel queries can be relaxed by considering a constant number of rounds of
parallel queries instead of a single round [BH91].

For that, we rely on Th. 2. We first deduce from this theorem a necessary
and sufficient entailment condition (Prop. 12), which will be used in subsequent
complexity proofs, and is also interesting for itself. Let us provide an idea of this
condition on examples of Figures 2 and 5. For the graphs in Figure 2, if p(b) is
known to be true (i.e., if literal +p(b) is added to H) then G is entailed (i.e., G can
be mapped to H + {+p(b)}), and if p(b) is known to be false then G is entailed
too (i.e., G can also be mapped to H + {−p(b)}). Thus there are two extensible
homomorphisms from Gs to H , which can be extended to homomorphisms from
G to H + {+p(b)} and H + {−p(b)} respectively, with the formula p(b) ∨ ¬p(b)
being a tautology. We see p(b) ∨ ¬p(b) as a propositional formula on a proposi-
tional language containing the atom p(b); if b was a variable node associated with
variable z, the propositional language would contain the atom p(z) and the propo-
sitional tautology would be p(z) ∨ ¬p(z). Similarly, for the graphs in Figure 5,
there are three extensible homomorphisms π1, π2 and π3 from Gs to H , which
map Gs to +r(a, b), +r(b, c) and +r(c, d) respectively, and can be extended to
homomorphisms from G to H+{−p(b)}, H+{+p(b),−p(c)} and H+{+p(c)}
respectively, with the proposition ¬p(b)∨ (p(b)∧¬p(c))∨ p(c) being a tautology.
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We will build from the set of extensible homomorphisms from any completion sub-
graph G′ of G contained in Gs to H a propositional formula that is a tautology if
and only if G is entailed by H .

We define for each completion subgraph G′ of G and each extensible homo-
morphism π from G′ to H the set L(π) of literals that are “missing” in H for π
to be extendable to a homomorphism from G to H . Therefore, the literals from
L(π) have to be in any completion Hc of H such that π can be extended to a ho-
momorphism from G to Hc. From L(π), we define propositional formulas C(π)
and DG′(G,H) on a propositional language denoted PH .

Notations 1 Let G and H be two PGs, with H being consistent, and let G′ be a
completion subgraph of G.
PH denotes the set of atoms occurring in Φ(Hc \ H), where Hc is an arbitrary
completion of H .
For any extensible homomorphism π from G′ to H , L(π) denotes the set of literals
l such that l =∼p(π(u)) for some literal ∼p(u) in G and l is not in H , and C(π)
denotes the conjunction of the literals in L(π) which is a proposition on PH .
DG′(G,H) denotes the disjunction of the propositions C(π) for all extensible ho-
momorphisms π from G′ to H .
Omission of subscript G′ means that G′ is equal to Gs.

For instance, in the previous example of Figure 5, with PH = {p(b), p(c)}
and G′ = Gs: let π1, π2 and π3 be the extensible homomorphisms from Gs to H;
L(π1) = {−p(b)}, L(π2) = {+p(b),−p(c)}, L(π3) = {+p(c)}, C(π1) = ¬p(b),
C(π2) = p(b) ∧ ¬p(c) and C(π3) = p(c); finally, D(G,H) = ¬p(b) ∨ (p(b) ∧
¬p(c)) ∨ p(c).

Next Lemma 1 follows immediately from the definition of L(π).

Lemma 1 Let G and H be two PGs, let Hc be a completion of H , let G′ be a
completion subgraph of G, and let π be an extensible homomorphism from G′ to
H . Then π can be extended to a homomorphism from G to Hc if and only if L(π)
is a set of literals in Hc.

Lemma 2 expresses the straightforward correspondence between the comple-
tions of H and the truth assignments on PH .

Lemma 2 There is a bijection f from the set of completions of H to the set of
truth assignments on PH such that for any completion Hc of H , any completion
subgraph G′ of G and any extensible homomorphism π from G′ to H , L(π) is a
set of literals in Hc if and only if f(Hc) satisfies C(π).
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Proof: Let f be the mapping from the set of completions of H to the set of truth
assignments on PH defined as follows: for every completion Hc of H , f(Hc)
assigns the value true to an atom p(u) in PH if +p(u) is a literal in Hc, and false
otherwise (i.e., if−p(u) is a literal inHc). f clearly satisfies the desired conditions.
�

Proposition 12 Let G and H be two PGs, with H being consistent, and let G′ be
any completion subgraph of G contained in Gs. Then G is entailed by H if and
only if DG′(G,H) is a tautology.

Proof: By Th. 2 (sinceG′ is contained inGs) and Prop. 5 (sinceG′ is a completion
subgraph of G), G is entailed by H iff for each completion Hc of H , there is an
extensible homomorphism from G′ to H that can be extended to a homomorphism
from G to Hc. Let us show that the latter proposition holds iff DG′(G,H) is
a tautology, using the bijection f of Lemma 2. ⇒: We suppose that for each
completion Hc of H , there is an extensible homomorphism from G′ to H that
can be extended to a homomorphism from G to Hc. Let us show that DG′(G,H)
is a tautology. Let v be a truth assignment on PH , let us show that v satisfies
DG′(G,H). LetHc = f−1(v), and let π be an extensible homomorphism fromG′

toH that can be extended to a homomorphism fromG toHc. By Lemma 1, L(π) is
a set of literals in Hc, so by Lemma 2, v satisfies C(π), and therefore DG′(G,H).
⇐: We suppose thatDG′(G,H) is a tautology. LetHc be a completion ofH , let us
show that there is an extensible homomorphism from G′ to H that can be extended
to a homomorphism from G to Hc. Let v = f(Hc). As DG′(G,H) is a tautology,
there is an extensible homomorphism π from G′ to H such that v satisfies C(π).
By Lemmas 1 and 2, π can be extended to a homomorphism from G to Hc. �

In order to prove that ENTAILMENTk is in PNP , we show how to compute
D(G,H) without explicitly computing all extensible homomorphisms from Gs

to H , whose number may be exponential in the size of G. Let E be the set of
exchangeable literals, and TE be the set of term nodes occurring in E . The main
idea is that, for any extensible homomorphism from Gs to H , the set L(π), and
therefore propositionC(π), only depend on the restriction of π to TE . Thus, we can
defineL(ϕ) andC(ϕ) for any mappingϕ from TE to the set TH of term nodes inH ,
andD(G,H) is the disjunction of the propositionsC(ϕ) for every mapping ϕ from
TE to TH that can be extended to an extensible homomorphism fromGs toH . Note
that a mapping ϕ from TE to TH can be extended to an extensible homomorphism
from Gs to H iff it satisfies both following independent conditions: 1) ϕ can be
extended to a homomorphism π from Gs to H and 2) ϕ satisfies conditions 1 and
2 of extensibility, which only depend on the restriction of π to TE , i.e., on ϕ itself.
According to Prop. 12, Algorithm 2 computes D(G,H) to determine whether G is
entailed by H .
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Algorithm 2: ENTAILMENT(G,H)

Data: G and H two PGs, such that H is consistent
Result: true if G is entailed by H , false otherwise
begin

Let E be the set of exchangeable literals w.r.t. (G,H)
Let TE be the set of term nodes occurring in E
Let Gs = G \ E
Φ← false
for every mapping ϕ from TE to the set of term nodes in H do

if ϕ can be extended to an extensible homomorphism from Gs to H
then

Φ← Φ ∨ C(ϕ)

return Tautology(Φ)

If the number of exchangeable pairs is bounded by a constant k, then the num-
ber of mappings from TE to the set of term nodes inH becomes polynomial, which
makes ENTAILMENTk fall into PNP .

Theorem 5 For any integer k ≥ 0, the decision problem ENTAILMENTk is in
PNP
|| .

Proof: It is sufficient to give an algorithm that can be executed in polynomial time
with a fixed number of rounds of parallel calls to an NP-oracle. We first check with
a single round whether the input is a correct instance of ENTAILMENTk, which
can be done by checking each pair of literals in G. If the input is correct, we call
Algorithm 2. This algorithm performs three rounds of parallel calls:
- to compute E , it is sufficient to determine for each pair of p-opposite literals in G
(whose number is polynomial) if it is exchangeable, which is in NP (first round),
- |TE | ≤ 2kw, where w is the maximal arity of a relation name, so the number
of mappings from TE to the set of term nodes in H is bounded by (nH)2kw, and
therefore is polynomial,
- determining if such a mapping ϕ can be extended to an extensible homomorphism
fromGs toH is in NP, since an extension provides a polynomial certificate (second
round),
- determining if a proposition is not a tautology is in NP (third round). �

It follows from Algorithm 2 that in any case where it can be decided in poly-
nomial time whether the formula Φ computed by this algorithm is a tautology, the
entailment problem is in NP. A polynomial certificate is given by a set of extensi-
ble homomorphisms π from G to H extending the mappings ϕ considered in this
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algorithm (one for each extendable mapping ϕ, so that the number of homomor-
phisms π is polynomial), since computing the disjunction of the formulas C(π)
and checking that it is a tautology can be done in polynomial time (we do not need
to compute the set E of exchangeable literals nor Gs nor the mappings ϕ them-
selves). In particular, it can be decided in polynomial time whether a disjunction
of conjunctions of literals in which each conjunction contains at most one positive
literal (or each conjunction contains at most one negative literal) is a tautology. It
follows that ENTAILMENT1 is in NP, which provides a new proof of Th. 4 and of
the fact that the entailment problem remains NP-complete if G has an unbounded
number of exchangeable pairs but only one positive (resp. negative) literal.

4.4 ENTAILMENT3

We first prove that ENTAILMENT3 is co-NP-hard with a reduction from “3-DNF
Tautology”. This reduction will be reused to prove thePNP

|| -hardness of ENTAILMENT3.

Theorem 6 The problem ENTAILMENT3 is co-NP-hard.

Proof: To prove that ENTAILMENT3 is co-NP-hard, we define a reduction from the
co-NP-complete problem 3-DNF Tautology to ENTAILMENT3.
3-DNF Tautology
Input: a 3-DNF propositional formula Φ, i.e., a proposition Φ in disjunctive normal
form (disjunction of conjunctions of literals) such that each conjunction in Φ has
at most 3 literals.
Question: Is Φ a tautology?

The reduction uses Prop. 12. Let Φ be a 3-DNF proposition. By Prop. 12, it is
sufficient to build two PGs G and H in polynomial time, with H being consistent
and containing at most 3 exchangeable pairs, such that for some completion sub-
graph G′ of G contained in Gs, DG′(G,H) is a tautology iff Φ also is.
It is rather easy to build such PGs G and H with at most 9 exchangeable pairs.
To ensure that they have at most 3 exchangeable pairs, we have to refine the con-
struction. For this, we introduce the notion of exchange-reducing mapping w.r.t.
Φ (standing for “mapping allowing to reduce the number of exchangeable pairs
in the graph G built by the reduction”). We will build a graph G with 3 positive
literals and 3 negative literals with relation name p. Using an exchange-reducing
mapping in the construction of graph H will make each positive literal +p(u) in
G be potentially exchangeable with only one negative literal, which reduces the
number of potential exchangeable pairs from 9 to 3. This will be explained in the
last paragraph of this proof.
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Let P be the set of atoms occurring in Φ. A mapping α from P to {1, 2, 3} is said
to be exchange-reducing (w.r.t. Φ) if for any conjunction C in Φ and any positive
literals p and p′ (resp. negative literals ¬p and ¬p′) in C, α(p) 6= α(p′).
For instance, if Φ = (¬p ∧ ¬s) ∨ (s ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ r) then the mapping
α = {(p, 1), (q, 2), (r, 3), (s, 2)} is exchange-reducing. Note that there may be no
exchange-reducing mapping w.r.t. a given Φ. For instance, if Φ = (p∧q∧r)∨(p∧
q ∧ s)∨ (r ∧ s) then an exchange-reducing mapping α should satisfy α(r) = α(s)
from the two first conjunctions, and α(r) 6= α(s) from the third conjunction.
In the first step of the proof, we will describe how to build in polynomial time from
a 3-DNF proposition Φ both a 3-DNF proposition Φ′, such that Φ′ is a tautology iff
Φ is, and an exchange-reducing mapping α w.r.t. Φ′ (which will necessarily exist).
In the second step, we will describe how to build PGs G and H with at most 3
exchangeable pairs from a 3-DNF Φ and an exchange-reducing mapping w.r.t. Φ,
such that for some completion subgraph G′ of G contained in Gs, DG′(G,H) is a
tautology iff Φ is.

1. Construction of Φ′ and α
For each atom p in P , let h be the number of occurrences of p in Φ. These h
occurrences are replaced by h new atoms p1, p2, . . . , ph, and the 3-DNF formula
NEQ(p1, . . . , ph) = (p1 ∧¬p2)∨ (p2 ∧¬p3)∨ . . .∨ (ph−1 ∧¬ph)∨ (ph ∧¬p1)
is added to the disjunction. Φ′ is the obtained formula. For instance, if Φ =
(¬p∧¬s)∨ (s∧¬q∧¬r)∨ (p∧q∧r) then Φ′ = (¬p1∧¬s1)∨ (s2∧¬q1∧¬r1)∨
(p2∧q2∧r2)∨NEQ(p1, p2)∨NEQ(q1, q2)∨NEQ(r1, r2)∨NEQ(s1, s2). Note
that a truth assignment satisfies NEQ(p1, . . . , ph) iff it does not assign the same
truth value to all p1, . . . , ph. It follows that Φ′ is a tautology iff it is satisfied by
each truth assignment assigning the same truth value to p1, . . . , ph for each atom p
in PH . Thus Φ′ is a tautology iff Φ is.
An exchange-reducing mapping α w.r.t. Φ′ is built as follows: for each con-
junction in Φ′ coming from a conjunction in Φ (considered independently of the
others), atoms of positive (resp. negative) literals are mapped to consecutive in-
tegers starting from 1; α is the union of the mappings obtained for these con-
junctions. For instance, if Φ′ = (¬p1 ∧ ¬s1) ∨ (s2 ∧ ¬q1 ∧ ¬r1) ∨ (p2 ∧ q2 ∧
r2) ∨ NEQ(p1, p2) ∨ NEQ(q1, q2) ∨ NEQ(r1, r2) ∨ NEQ(s1, s2) then we in-
dependently define α1 = {(p1, 1), (s1, 2)}, α2 = {(s2, 1), (q1, 1), (r1, 2)} and
α3 = {(p2, 1), (q2, 2), (r2, 3)}, and α = α1 ∪ α2 ∪ α3. It is easy to check that Φ′

and α can be computed in polynomial time and that α is exchange-reducing w.r.t.
Φ′.

27



2. Construction of G and H
Let Φ be a 3-DNF formula and α be an exchange-reducing mapping w.r.t. Φ. PGs
G and H are defined as follows (see Figure 6 for an illustration).
G is independent of Φ and α. It has 6 variable nodes x1, x2, x3, y1, y2 and y3, and
7 literals: +r(x1, x2, x3, y1, y2, y3) and, for all i in 1, . . . , 3, +p(xi) and −p(yi).
H depends from Φ and α. Let p1, . . . , ph be the atoms in Φ, and let C1, . . . , Cq be
the conjunctions in Φ. H has h + 2 constant nodes labeled with a1, . . . , ah, c and
d, and it has q + 2 literals: +p(c), −p(d) and, for all i in 1, . . . , q, +r(ui), with
ui = (si,1, si,2, si,3, ti,1, ti,2, ti,3) being defined as follows. For all i in 1, . . . , q and
all j in 1, . . . , 3:
- if j = α(pk) for some positive literal pk in Ci (there is at most one such literal pk
since α is exchange-reducing) then si,j = ak else si,j = c,
- if j = α(pk) for some negative literal ¬pk in Ci (there is at most one such literal
¬pk since α is exchange-reducing) then ti,j = ak else ti,j = d.
For instance, consider the formula of the previous example: (¬p∧¬s)∨ (s∧¬q∧
¬r) ∨ (p ∧ q ∧ r). Let us rename p, q, r and s into p1, p2, p3 and p4 respec-
tively. We obtain Φ = (¬p1 ∧ ¬p4) ∨ (p4 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3). Let
α = {(p1, 1), (p2, 2), (p3, 3), (p4, 2)}. Then the literals of H labeled with +r are
+r(c, c, c, a1, a4, d), +r(c, a4, c, d, a2, a3) and +r(a1, a2, a3, d, d, d), as pictured
in Figure 6.
G andH can be constructed in polynomial time. The completion vocabulary is re-

stricted to {p}. LetG′ be the subgraph ofG restricted to its literal +r(x1, x2, x3, y1, y2, y3).
G′ is a completion subgraph of G contained in Gs. Let us show that DG′(G,H)
is a tautology iff Φ is. There are exactly q extensible homomorphisms π1, . . . , πq
from G′ to H such that for all i in 1, . . . , q, πi maps G′ to the literal +r(ui) and
C(πi) is the formula obtained from Ci by replacing each atom pj by p(aj). It fol-
lows that DG′(G,H) is obtained from Φ by replacing each atom pj by p(aj). For
instance, in the example of Figure 6, there are 3 extensible homomorphisms from
G′ to H , and DG′(G,H) = (¬p(a1) ∧ ¬p(a4)) ∨ (p(a4) ∧ ¬p(a2) ∧ ¬p(a3)) ∨
(p(a1) ∧ p(a2) ∧ p(a3)). Hence DG′(G,H) is a tautology iff Φ is.
It remains to show that there are at most 3 exchangeable pairs w.r.t. (G,H). There
are 9 pairs of p-opposite literals inG, namely the pairs {+p(xi),−p(yj)} for i, j in
1, . . . , 3. However, if xi and yj are mapped to the same node z in H by two homo-
morphisms from G to completions of H , then there is an integer k in 1, . . . , h such
that z is labeled ak, with i = j = α(pk). Thus, each exchangeable pair must be
of the form {+p(xi),−p(yi)}, with i in 1, . . . , 3. As announced at the beginning
of this proof, using an exchange-reducing mapping w.r.t. Φ to define H allows to
bound the number of exchangeable pairs to 3 instead of 9. �

Theorem 7 The problem ENTAILMENT3 is PNP
|| -complete.
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Figure 6: Reduction from 3-DNF Tautology to ENTAILMENT3
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Th. 5 shows PNP
|| -membership. We thus prove PNP

|| -hardness. We will rely
on the following lemmas.

Lemma 3 For any problem A in NP , there is a translation f mapping every in-
stance I of A to an instance f(I) = (fG(I), fH(I)) of ENTAILMENT such that:

• fG(I) is entailed by fH(I) if and only if I is a positive instance of A,

• fG(I) and fH(I) do not contain any negative literal,

• fG(I) and fH(I) do not contain any constant node.

Proof: As ENTAILMENT on PGs that do not contain any negative literal is NP-
complete, there is a translation f satisfying the two first conditions on f(I). In
order to satisfy the third condition, we modify G = fG(I) and H = fH(I) as
follows: for each constant a appearing in G or in H , replace the constant node
labeled a in G (respectively H) by a variable node x and add the literal +pa(x)
to G (respectively H), where pa is a new unary relation name, i.e., that does not
occur in G nor in H . �

Lemma 4 There is a PG G and a set Q of 3 pairs of p-opposite literals in G such
that for any problem B in co-NP , there is a translation g mapping every instance
J of B to an instance g(J) = (gG(J), gH(J)) of ENTAILMENT3 such that:

• gG(J) is entailed by gH(J) if and only if J is a positive instance of B,

• gG(J) = G, each exchangeable pair w.r.t. (G, gH(J)) is in Q, and the set
of relation node labels in gH(J) is the same as in G,

• G and gH(J) do not contain any constant node.

Proof: As 3-DNF Tautology is co-NP-complete, it is sufficient to prove the exis-
tence of the translation g in the case where B is 3-DNF Tautology. In that case
it is sufficient to define the translation g as in the proof of Th. 6, except that the
term nodes of H are defined as variable nodes instead of constant nodes, with
Q = {(+p(xi),−p(yi)), 1 ≤ i ≤ 3}, the set of relation node labels being equal to
{+p,−p,+r} in gH(J) and in G. �

Proof: [of Theorem 7] We build a reduction from the following problem, known to
be PNP

|| -complete [SV00]:
Min-card-vertex cover compare
Input: two undirected graphs F1 = (V1, E1) and F2 = (V2, E2).
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Question: Does min-vc(F1) ≤ min-vc(F2), where min-vc(Fi) denotes the min-
imum cardinality of a vertex cover10 of Fi?

Let (F1, F2) be an instance of Min-card-vertex cover compare. We have to build
two PGsG′ andH ′ such that (1)G′ has at most 3 exchangeable pairs w.r.t. (G′, H ′)
and (2) min-vc(F1) ≤ min-vc(F2) if and only if G′ is entailed by H ′.
Let i be an integer. Since deciding whether the minimum size of a vertex cover
of F1 is less than i is in NP, from Lemma 3, there is an instance of ENTAIL-
MENT f(F1, i) = (fG(F1, i), fH(F1, i)) such that min-vc(F1) ≤ i iff fG(F1, i)
is entailed by fH(F1, i), and fG(F1, i) and fH(F1, i) do not contain any negative
literal or constant node. Similarly, since deciding whether the minimum size of a
vertex cover of F2 is more than i is in co-NP, from Lemma 4, there is a PG G,
a set Q of 3 pairs of p-opposite literals in G and an instance of ENTAILMENT3

g(F2, i) = (gG(F2, i), gH(F2, i)) such that i ≤ min-vc(F2) iff gG(F2, i) is en-
tailed by gH(F2, i), gG(F2, i) = G, each exchangeable pair w.r.t. (G, gH(F2, i))
is in Q, the set of relation node labels in gH(F2, i) is the same as in G, and G
and gH(F2, i) do not contain any constant node, with G and Q being independent
of i. Let Gi = fG(F1, i), Hi = fH(F1, i) and H ′i = gH(F2, i). Comparing the
sizes of the minimum vertex covers for F1 and F2 can be done by asking q + 1
questions, where q = |V2|: is there some i, 0 ≤ i ≤ q, such that min-vc(F1) ≤ i
and i ≤ min-vc(F2), i.e., such that Gi is entailed by Hi and G is entailed by H ′i?
Thus we have to build G′ and H ′ from the PGs Gi, Hi, G and H ′i such that (1) G′

has at most 3 exchangeable pairs w.r.t. (G′, H ′) and (2) G′ is entailed by H ′ if and
only if there is some i, 0 ≤ i ≤ q, such that Gi is entailed by Hi and G is entailed
by H ′i. This construction is illustrated by Figures 7 and 8. Let p0, . . . , pq be q + 1
new binary relation names, i.e., that do not appear in any Gi, Hi, G and H ′i. G

′ is
the PG obtained from the disjoint union of the Gj and of G by adding:

• q + 1 variables nodes v0, . . . , vq (vi allows to link G to Gi),

• q + 1 literals +p0(v0), . . . ,+pq(vq),

• for each j in [0, q] and each term node x in G, the literal +out(x, vj),

• for each j in [0, q] and each term node x in Gi, the literal +in(vj , x).

H ′ is the disjoint union of the Ai, 0 ≤ i ≤ q, where Ai is built as G′, except that
G is replaced by H ′i, Gi is replaced by Hi and variable nodes vj are renamed vij .
Note that since no Gi, Hi and H ′i contains any constant node, H ′ is normal.

10A vertex cover of F is a set S of vertices such that each edge is adjacent to at least a vertex of S.
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In the following, exchangeable pairs of Gi (respectively G, G′) and comple-
tions ofHi (respectivelyH ′i,H

′) are implicitly defined w.r.t. (Gi, Hi) (respectively
(G,H ′i), (G′, H ′)). For any subgraph K and any completion H ′c of H ′, the part
K of H ′c denotes the subgraph of H ′c obtained from K by adding the literals of
H ′c \H ′ whose terms are in K. We first prove the following lemma.

Lemma 5 For any completion H ′c of H ′ and any homomorphism π from G′ to
H ′c, there exist an integer i in [0, q], a completion Hc

i of Hi and a completion H ′i
c

of H ′i such that Hc
i is a subgraph of the part Hi of H ′c, H ′i

c is a subgraph of the
part H ′i of H ′c, and π maps Gi to Hc

i and G to H ′i
c.

Proof: Let H ′c be a completion of H ′ and let π be a homomorphism from G′ to
H ′c. As G′ is connected, there is an integer i in [0, q] such that π maps G′ to the
part Ai of H ′c. Because of the relation name pi, the literal +pi(vi) is mapped to
+pi(v

i
i), so because of the relation nodes labeled +in and +out adjacent to vi in

G′ and to vii in H ′c, π maps G to the part H ′i of H ′c and Gi to the part Hi of H ′c.
As the sets of relation names appearing in the different pairs (Gj , Hj) and in G
are pairwise disjoint and the set of relation node labels in H ′j is the same as in G
for each j, the completion vocabulary w.r.t. (G′, H ′) is the disjoint union of the
completion vocabularies w.r.t. the different pairs (Gj , Hj) and of the pair (G,H ′i).
Let Hc

i be the subgraph of the part Hi of H ′c obtained by removing all relation
nodes whose relation name does not appear in (Gi, Hi). Hc

i is a completion of Hi,
and π maps Gi to Hc

i . Similarly, let H ′i
c be the subgraph of the part H ′i of H ′c

obtained by removing all relation nodes whose relation name does not appear inG.
H ′i

c is a completion of H ′i, and π maps G to H ′i
c. �

We first check thatG′ has at most 3 exchangeable pairs w.r.t. (G′, H ′). For this
it is sufficient to show that each exchangeable pair ofG′ is inQ. Let {+p(u),−p(v)}
be an exchangeable pair of G′. As no Gi has any negative literal and the sets of re-
lation names in the pairs (Gi, Hi) and in G are pairwise disjoint, {+p(u),−p(v)}
is in G. Let π1 be a homomorphism from G′ to a completion H ′c1 of H ′ and π2 be
a homomorphism from G′ to a completion H ′c2 of H ′ such that π1(u) = π2(v).
Let w = π1(u) = π2(v). By Lemma 5, there exist an integer i in [0, q] and two
completions H ′i

c1 and H ′i
c2 of H ′i such that w is in the part H ′i of H ′c1 (and H ′c2),

H ′i
c1 is a subgraph of the part H ′i of H ′c1, H ′i

c2 is a subgraph of the part H ′i of
H ′c2, π1 maps G to H ′i

c1 and π2 maps G to H ′i
c2. Hence {+p(u),−p(v)} is an

exchangeable pair of G′ w.r.t. (G,H ′i), and therefore is in Q by hypothesis on
(G,H ′i), which completes the proof that G′ has at most 3 exchangeable pairs w.r.t.
(G′, H ′).

It remains to prove that G′ is entailed by H ′ if and only if there is some i,
0 ≤ i ≤ q, such that Gi is entailed by Hi and G is entailed by H ′i.
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⇒: By contradiction: we assume thatG′ is entailed byH ′ but that there is no i such
thatGi is entailed byHi andG is entailed byH ′i. Then for each i in [0, q] there is a
completionHc

i ofHi such thatGi cannot be mapped toHc
i or there is a completion

H ′i
c of H ′i such that G cannot be mapped to H ′i

c. Let H ′c be a completion of H ′

such that for each i in [0, q], if Hc
i exists then Hc

i is a subgraph of the part Hi of
H ′c, otherwise H ′i

c is a subgraph of the part H ′i of H ′c. As G′ is entailed by H ′,
there is a homomorphism π from G′ to H ′c. By Lemma 5, there exist an integer
i in [0, q], a completion Hd

i of Hi and a completion H ′i
d of H ′i such that Hd

i is a
subgraph of the partHi ofH ′c, H ′i

d is a subgraph of the partH ′i ofH ′c and π maps
Gi to Hd

i and G to H ′i
d. If some Hc

i as described above exists then Hc
i and Hd

i are
completions of Hi that are both subsets of the part Hi of H ′c, hence Hi

c = Hi
d

and π maps Gi to Hc
i , a contradiction. Otherwise H ′i

c exists, similarly H ′i
c = H ′i

d

and π maps G to H ′i
c, a contradiction.

⇐: We assume that there is some i such that Gi is entailed by Hi and G is entailed
byH ′i. Let us show thatG′ is entailed byH ′. LetH ′c be a completion ofH ′. Let us
show that G′ can be mapped to H ′c. Let Hc

i be the completion of Hi such that Hc
i

is a subgraph of the part Hi of H ′c, and let π1 be a homomorphism from Gi to Hc
i .

Let H ′i
c be the completion of H ′i such that H ′i

c is a subgraph of the part H ′i of H ′c,
and let π2 be a homomorphism from G to H ′i

c. Then there is a homomorphism π
from G′ to H ′ extending π1 and π2: π maps each vj to vij and each Gj , with j 6= i,
to the part Gj inside Ai of H ′c.

We have thus built a polynomial reduction from Min-card-vertex cover com-
pare to ENTAILMENT3, which proves the theorem. �

4.5 When Homomorphism Checking is Polynomial

Checking the existence of a homomorphism becomes polynomial when G has a
tree-like structure. More precisely, if G is seen as a graph, it is said to have a
tree-like structure if it a treewidth less than a fixed integer k (and in this case it cor-
responds to a formula of the k-variables fragment of FOL [KV00]); if G is seen as
a hypergraph, with relation nodes becoming hyperedges, it has a tree-like structure
if it has hypertreewidth at most a fixed integer k (and in this case it corresponds to
a formula of the k-guarded fragment of FOL) [GLS01]. These particular cases are
specially relevant in a query answering context, where G represents a query and H
represents another query or a knowledge base composed of a set of facts. Indeed,
a query generally has a simple structure.

Interestingly, our previous proofs also allow us to classify the complexity of
ENTAILMENT and ENTAILMENTk in the above special cases (except for k = 2 for
which the complexity in the general case is unknown):
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Theorem 8 WhenG has bounded treewidth or hypertreewidth, the following com-
plexity results hold:

• ENTAILMENT is co-NP-complete;

• ENTAILMENT0 and ENTAILMENT1 (seen as promise problems) are in P;

• ENTAILMENTk is co-NP-complete for any k ≥ 3.

Proof: ENTAILMENT is in co-NP since a completion Hc of H to which G can-
not be mapped is a polynomial certificate of the complementary problem, NON-
ENTAILMENT (the size ofHc is polynomial in the size ofH and checking that there
is no homomorphism from G to Hc can be done in polynomial time since G has
bounded treewidth or hypertreewidth). Its completeness for this complexity class
follows from the proof of Th. 6, which shows that ENTAILMENT3 remains co-NP-
hard when G has bounded treewidth (in the reduction, the graph G built is a tree).
Hence, ENTAILMENTk is also co-NP-complete for any k ≥ 3. That ENTAILMENT0

is in P follows immediately from Prop. 8. To show that ENTAILMENT1 is also in
P , let us consider Algorithm 1. Checking if there is an extensible homomorphism
from G \ {∼p(u)} to H can be done in polynomial time as follows.

We recall that there is an extensible homomorphism from G \ {∼p(u)} to H if
and only if there is a homomorphism π fromG\{∼p(u)} toH such that∼p(π(u))
is not in H . Let s be the arity of p, let r be a new relation name, i.e., that does not
occur in G and H , with arity s, let G′ = (G \ {∼p(u)}) + {+r(u)}, and let H ′ be
the PG obtained fromH by adding the literal +r(v) for each tuple v of s term nodes
of H such that ∼p(v) is not in H (these tuples are in polynomial number since the
arity of relation names is bounded by a constant). There is a homomorphism π
from G \ {∼p(u)} to H such that ∼p(π(u)) is not in H if and only if there is a
homomorphism from G′ to H ′. As G′ is obtained from G by replacing relation
name p by r, G′ has also bounded treewidth or hypertreewidth, hence the existence
of a homomorphism from G′ to H ′ can be checked in polynomial time. It follows
that ENTAILMENT1 is in P . �

The previous theorem can be generalized to all cases where the existence of a
homomorphism from G to H can be checked in polynomial time, provided, in the
case of ENTAILMENT1, that this property is preserved on the PGs G′ and H ′ built
from G and H in the previous proof.

4.6 Pieces

We will now take advantage of some simple graph properties to extend the previous
results. First note that G is entailed by H if and only if each connected component
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Figure 9: Pieces

of G is entailed by H . Second, by splitting constant nodes in G into several nodes
(in this case G is no longer normal), we do not change the logical semantics of G
and we preserve the existence of a homomorphism from G to any normal graph.
Splitting a term node x into n nodes, according to a partition {E1, . . . , En} of the
edges incident to x, consists of deleting x, creating n term nodes x1, . . . , xn with
the same label as x, and attaching to each xi the edges in Ei, i.e., for each edge
(x, j, r) in Ei, an edge (xi, j, r) is created.

Let us define particular subgraphs that we call the pieces ofGw.r.t. its constant
nodes. Let∼= be the following equivalence relation: given two relation nodes r and
s in G, r ∼= s if there is a path in G between r and s that does not go through a
constant node, i.e., a path x0(= r) . . . xn(= s) such that, for 0 < i < n, xi is not a
constant node. The pieces of G are the subgraphs composed of the literals whose
relation nodes are in the same equivalence class for ∼=. This definition is extended
to isolated term nodes by considering that each isolated node forms its own piece.
See Figure 9, which shows a PG on the left and its pieces on the right. The pieces
of G can be computed in linear time by a traversal of G.

Proposition 13 Let G and H be two PGs, with H being consistent. G is entailed
by H if and only if each piece of G is entailed by H .

Thus, in all previous complexity results, k can be seen as representing the
maximum number of exchangeable pairs in a piece of G instead of in G.

36



The constant nodes in pieces of G can themselves be further split without any
impact on the existence of a homomorphism from G to H . Some cycles in pieces
can thus be broken, which may produce a graph decomposable into a tree (cf.
Section 4.5).

See for instance Figure 9: G has 9 pairs of p-opposite literals, which may yield
9 pairs of exchangeable literals (depending on H and on edge labels in G, which
are omitted in this figure); each piece of G has no p-opposite literals, a fortiori no
exchangeable literals, thus to check whether G is entailed by H , one just has to
check if each piece of G can be mapped to H . Furthermore, in this example, each
piece of G can be transformed into a logically equivalent tree by splitting constant
nodes, thus this instance of ENTAILMENT belongs to the polynomial cases.

5 Refining Completions and Exchangeability

In this section, we see how to reduce the set of literals added to H to obtain a
completion of H , which in turn reduces the number of exchangeable pairs. We
already restricted the set of literals added by defining the completion vocabulary
w.r.t. (G,H). The idea is that the obtained completions of H must satisfy the
following fundamental property, denoted by Completion Property: G is entailed
by H if and only if G can be mapped to each completion of H . By Th. 2, it is
sufficient to add to H literals l such that at least one exchangeable literal in G can
potentially be mapped to l. It follows that any literal l in a completion of H that
is not in H and such that no exchangeable literal in G can be mapped to l can
be removed from this completion. This restriction on completions of H induces a
reduction of the set of homomorphisms fromG to completions of H , and therefore
of the set of exchangeable pairs, so that new literals in completions of H become
useless and can be removed. This operation can be repeated, reducing both the
set of literals added in completions of H and the set of exchangeable pairs, until
stability is obtained. We first refine the notion of completion vocabulary, then we
introduce exchangeable triples.

5.1 Completion Vocabulary

We defined the completion vocabulary w.r.t. (G,H) as the set of relation names
with positive and negative occurrences in G and in H . We will give a simple
process leading to an inclusion-smaller completion vocabulary (and therefore an
inclusion-smaller set of exchangeable pairs). The idea is that if a relation name in
the completion vocabulary does not appear in any exchangeable literal then it can
be removed from the completion vocabularyR, which in turn will reduce the set of
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exchangeable literals w.r.t. (G,H,R), i.e., defined with completions ofH w.r.t. R.
Thus, we can successively restrict the completion vocabulary until it only contains
relation names of exchangeable literals w.r.t. (G,H,R). The refined completion
vocabulary obtained by this process is denoted byR(G,H). We give a declarative
definition of R(G,H) and prove that it can be computed by the process explained
above, which is formalized in Algorithm 3.

Definition 10 (Refined completion vocabularyR(G,H)) Let G and H be two
PGs, with H being consistent, and let R0 be the completion vocabulary w.r.t.
(G,H). The refined completion vocabulary w.r.t. (G,H), denoted byR(G,H), is
the inclusion-maximum subsetR ofR0 such that each relation name inR appears
in some exchangeable literal w.r.t. (G,H,R).

Algorithm 3:R(G,H)

Data: G and H two PGs, with H being consistent.
Result: the refined completion vocabularyR(G,H).
begin

LetR be the set of relation names that have both positive and negative
occurrences in G and in H
repeat
R1 ← R
LetR be the set of relation names in exchangeable literals w.r.t.
(G,H,R)

untilR = R1;
returnR

Proposition 14 Algorithm 3 is correct.

Proof: Let R∗ be the set computed by Algorithm 3. Let us show that R∗ =
R(G,H), i.e.,
a) each relation name inR∗ appears in some exchangeable literal w.r.t. (G,H,R∗),
b) each subset R′ of R0 such that each relation name in R′ appears in some ex-
changeable literal w.r.t. (G,H,R′) is a subset ofR∗.
Item a) follows from the exit condition of the repeat loop. Let us prove item b).
Let R′ be a subset of R0 such that each relation name in R′ appears in some ex-
changeable literal w.r.t. (G,H,R′). Let us show that R′ ⊆ R∗. It is sufficient to
show that the inclusion R′ ⊆ R is an invariant of the repeat loop. It holds at the
initialization step since the initial value ofR isR0 andR′ is a subset ofR0.
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We suppose thatR′ ⊆ Ri. Let us show thatR′ ⊆ Ri+1, whereRi+1 is the set
obtained from Ri after one iteration of the repeat loop. Let r ∈ R′. Let us show
that r ∈ Ri+1. By hypothesis on R′, as r ∈ R′, r appears in some exchangeable
literal w.r.t. (G,H,R′), which is also an exchangeable literal w.r.t. (G,H,Ri)
sinceR′ ⊆ Ri, and therefore r ∈ Ri+1. �

For instance, if G and H are the PGs shown in Figure 4, R is initialized with
{p} and is unchanged after one iteration of the repeat loop, thus {p} is the returned
value; in that caseR(G,H) is equal to the completion vocabulary as previously de-
fined (the refinement will be effective at the second step described in Section 5.2).
In the general case, R is initialized with the completion vocabulary w.r.t. (G,H)
and strictly decreases at each iteration of the repeat loop, except for the last one
whereR is unchanged.

Note that the number of iterations of the repeat loop is unbounded. Indeed,
given any positive integer n, we can build two PGs G′ and H ′ such that the exe-
cution of Algorithm 3 on G′ and H ′ needs n + 2 iterations. We define G′ and H ′

from the PGs G and H shown in Figure 4 as follows. For each i in 1, . . . , 2n− 1,
let Gi be the PG obtained from G by adding the literals +ri(x, y) and−ri+1(y, z).

For instance, if n = 2, we need 4 relation names r1, r2, r3 and r4, and G1

(resp. G2, G3) is obtained from G by adding literals +r1(x, y) and −r2(y, z)
(resp. +r2(x, y) and −r3(y, z), +r3(x, y) and −r4(y, z)). Note that none of
these PGs Gi contains a relation node labeled with −r1 or with +r2n. Let G′

be the PG obtained from the disjoint union of copies of the PGs Gi for all i in
1, . . . , 2n − 1 by adding the literals −r1(e, e) and +r2n(e, e). Let H∗ be the
PG obtained from G \ {+p(x),−p(y),−p(z)} by adding the literals +ri(x, y)
and −ri(y, z) for all i in 1, . . . , 2n. For instance, if n = 4, the literals of H∗
are +r(x, y), +r(y, z), +r1(x, y), +r2(x, y), +r3(x, y), +r4(x, y), −r1(y, z),
−r2(y, z), −r3(y, z) and −r4(y, z). Let H ′ be the PG obtained from the disjoint
union of H and H∗ by adding the literals −r1(e, e) and +r2n(e, e). The set R is
initialized with {p, r1, . . . , r2n}. Relation names r1 and r2n are eliminated from
R at the first iteration of the repeat loop. As r1 and r2n are no longer in R, r2
and r2n−1 are eliminated from R at the second iteration, and so on. The set R is
reduced to {p} after iteration n, and becomes empty at iteration n+ 1. As there is
no homomorphism from G′ to H ′, we conclude that G′ is not entailed by H ′.

Let us show that all results of this paper still hold with this new definition of
the completion vocabulary. It is sufficient to show that Th. 2 and Th. 3 and Prop. 12
still hold. For this, it is sufficient to show that completions w.r.t. R(G,H) satisfy
the Completion Property.

Definition 11 (Completion Property forR) Let G and H be two PGs, with H
being consistent, and let R be a set of relation names. R satisfies the Completion
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Property w.r.t. (G,H) if the following equivalence holds: G is entailed by H if
and only if G can be mapped to each completion of H w.r.t. R.

Proposition 15 Let G and H be two PGs, with H being consistent. R(G,H)
satisfies the Completion Property w.r.t. (G,H).

Proof: Let P (R) be the property defined for any setR of relation names by:
P (R): R satisfies the Completion Property w.r.t. (G,H).
Let us show that P (R) is an invariant of the repeat loop in Algorithm 3. By Prop-
erty 3, P (R) holds at the initialization of the loop. We suppose that P (R) holds.
Let R′ be the set of relation names in exchangeable literals w.r.t. (G,H,R). Let
us show that P (R′) holds. As P (R) holds and any completion of H w.r.t. R′ is
a subgraph of a completion of H w.r.t. R, it is sufficient to show that if G can be
mapped to each completion of H w.r.t. R then it can be mapped to each comple-
tion of H w.r.t. R′. We suppose that G can be mapped to each completion of H
w.r.t. R, and let Hc be a completion of H w.r.t. R′. Let us show that G can be
mapped to Hc. Let H ′ be a completion of H w.r.t. R containing Hc. As P (R)
holds, Th. 2 (with completions and Gs being defined w.r.t. R) holds too. Let π be
a homomorphism from G to H ′ mapping Gs to H . Each literal of G that is not
mapped to a literal in H is exchangeable w.r.t. (G,H,R), and therefore is mapped
to a literal in Hc (since its relation name is inR′). Hence π maps G to Hc. �

It follows that all results of this paper still hold with R(G,H) as completion
vocabulary.

Note that any superset of R(G,H) also satisfies the Completion Property. In
practice, computingR(G,H) may be too costly (remember that deciding whether
G has an exchangeable pair is NP-complete), but it may be possible to identify
some relation names that cannot be in any exchangeable literal. For instance, if the
literal −r(e, e) is added to G and to H in the example of Figure 4, r becomes an
element of the initial set R in Algorithm 3, but it is easy to see that it is not the
relation name of an exchangeable literal and can be removed from R. Thus the
repeat loop can be replaced by a while loop of the form:
while a relation name r that is in no exchangeable literal w.r.t. (G,H,R) can be
“found” do

remove r fromR
The while loop stops when no such relation name r can be detected, which does
not mean that there is none. Hence, the obtained completion vocabulary may be
only partially refined, but is in any case at least as good as the initial completion
vocabulary.
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5.2 Exchangeable Triples

So far we have restricted the relation names of literals added in completions of H ,
but not their arguments. We will now take these arguments into account in order to
further reduce the set of added literals.

Definition 12 (Triple w.r.t. (G,H)) A triple w.r.t. (G,H) is a set {+p(u),−p(v), w}
where +p(u) and −p(v) are p-opposite literals in G and w is an arity(p)-tuple of
term nodes in H such that neither +p(w) nor −p(w) is a literal in H .

Definition 13 (Completion w.r.t. T ) LetG andH be two PGs, withH being con-
sistent, and let T be a set of triples w.r.t. (G,H). A completion of H w.r.t. T is
a consistent PG obtained from H by adding, for each triple {+p(u),−p(v), w} in
T , either the literal +p(w) or −p(w).

Definition 14 (Exchangeable triple/pair w.r.t. (G,H, T )) Let G and H be two
PGs, with H being consistent, and let T be a set of triples w.r.t. (G,H). An ex-
changeable triple w.r.t. (G,H, T ) is a triple {+p(u),−p(v), w} w.r.t. (G,H)
such that there are two completions of H w.r.t. T , say H1 and H2, and two
homomorphisms π1 and π2, respectively from G to H1 and from G to H2 such
that π1(u) = π2(v) = w. An exchangeable pair w.r.t. (G,H, T ) is a pair
{+p(u),−p(v)} such that for some w, {+p(u),−p(v), w} is an exchangeable
triple w.r.t. (G,H, T ).

The set T (G,H) is defined similarly toR(G,H) and computed by Algorithm
4.

Definition 15 (T (G,H)) Let G and H be two PGs, with H being consistent, and
let T0 be the set of triples {+p(u),−p(v), w}w.r.t. (G,H) such that {+p(u),−p(v)}
is an exchangeable pair w.r.t. (G,H,R(G,H)). T (G,H) is the inclusion-maximum
subset T of T0 such that each triple in T is an exchangeable triple w.r.t. (G,H, T ).

Proposition 16 Algorithm 4 is correct.

Proof: It is similar to that of Prop. 14. �
Let us illustrate Algorithm 4 on the PGsG andH pictured in Figure 4. T is ini-

tialized with {{+p(x),−p(y), b}, {+p(x),−p(y), d}}. It becomes {{+p(x),−p(y), b}}
after the first iteration of the repeat loop, which reduces the set of completions of
H w.r.t. T to {H + {+p(b)}, H + {−p(b)}}. It becomes empty after the sec-
ond iteration, since +p(x) can no longer be mapped to +p(b) by a homomorphism
from G to a completion of H w.r.t. T . Indeed, since d does not appear in any tuple
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Algorithm 4: T (G,H)

Data: G and H two PGs, with H being consistent.
Result: the set T (G,H).
begin

Let T be the set of triples {+p(u),−p(v), w} w.r.t. (G,H) such that
{+p(u),−p(v)} is an exchangeable pair w.r.t. (G,H,R(G,H))
repeat
T1 ← T
Let T be the set of exchangeable triples w.r.t. (G,H, T )

until T = T1;
return T

of T , no completion of H w.r.t. T contains the literal −p(d). Hence, there is no
exchangeable pair w.r.t. (G,H, T (G,H)), and since there is no homomorphism
from G to H , it follows that G is not entailed by H (provided that Prop. 8 still
holds, which is checked below).

We prove that all results of this paper still hold, similarly to the proofs for
R(G,H) by replacingR(G,H) with T (G,H).

Definition 16 (Completion Property for T ) Let G and H be two PGs, with H
being consistent, and let T be a set of triples w.r.t. (G,H). T satisfies the Com-
pletion Property w.r.t. (G,H) if the following equivalence holds: G is entailed by
H if and only if G can be mapped to each completion of H w.r.t. T .

Proposition 17 Let G and H be two PGs, with H being consistent. T (G,H)
satisfies the Completion Property w.r.t. (G,H).

Proof: Let P (T ) be the property defined for any set T of triples w.r.t. (G,H) by:
P (T ): T satisfies the Completion Property w.r.t. (G,H).
Let us show that P (T ) is an invariant of the repeat loop in Algorithm 4. P (T )
holds at the initialization of the loop since the completions of H w.r.t. T are the
completions of H w.r.t. R(G,H). We suppose that P (T ) holds. Let T ′ be the
set of exchangeable triples w.r.t. (G,H, T ). Let us show that P (T ′) holds. It is
sufficient to show that if G can be mapped to each completion of H w.r.t. T then
it can be mapped to each completion of H w.r.t. T ′. We suppose that G can be
mapped to each completion of H w.r.t. T , and let Hc be a completion of H w.r.t.
T ′. Let us show that G can be mapped to Hc. Let H ′ be a completion of H w.r.t.
T containing Hc. It is no longer sufficient to apply Th. 2 on H ′, as we did for
R(G,H), but we can use an argument similar to that used in the proof of Th. 2.
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Let R be the set of literals l in H ′ \Hc such that there is a homomorphism from G
to H ′ mapping some literal of G to l. R is consistent since it is a set of literals in
H ′. Let H ′′ be the completion of H w.r.t. T obtained from H ′ by replacing every
literal of R by its complementary literal, and let π be a homomorphism from G to
H ′′ (such a homomorphism exists by hypothesis on T ). Let us show that π maps
G to Hc. No literal of G can be mapped by π to the complementary literal of a
literal l of R (otherwise this literal of G would be in an exchangeable triple w.r.t.
(G,H, T ), so l would be a literal in Hc). Thus π is a homomorphism from G to
H ′. Therefore, by definition of R, every literal of G is mapped by π to either Hc

or R. However, as π is a homomorphism from G to H ′′, which contains no literal
of R, no literal of G can be mapped to R, thus π maps G to Hc. �

Note that any superset of T (G,H) also satisfies the Completion Property. In
practice, we obtain a partially refined set of exchangeable triples by initializing
T with the set of triples {+p(u),−p(v), w} w.r.t. (G,H) such that p belongs to
a partially refined completion vocabulary previously computed, and successively
removing triples that can be recognized as non exchangeable. For instance, in the
example of Figure 4 with (partially refined) completion vocabulary {p}, T initially
contains the triples {+p(x),−p(y), b}, {+p(x),−p(y), d}, {+p(x),−p(z), b} and
{+p(x),−p(z), d}. The three last triples are clearly non exchangeable, and remov-
ing them makes {+p(x),−p(y), b} clearly non exchangeable.

6 Related Work and Conclusion

Let us now relate the present complexity results to previous results obtained on the
various forms of FOL(∃,∧,¬a)-ENTAILMENT.

Clause entailment. When the logical language includes function symbols, clause
entailment is undecidable [SS88], even if both clauses are Horn-clauses (i.e., with
at most one positive literal) [MP92]. In [Got87], a sufficient condition under which
a “subsumption test” (which can be identified with a homomorphism check) is
complete is exhibited. Translated into ENTAILMENT, it says that if (1) h does not
contain p-opposite literals, or (2) h is consistent and g does not contain p-opposite
unifiable literals, then g is entailed by h if and only if g can be mapped to h. On
the one hand, functions are allowed in this result, on the other hand if we exclude
functions, we obtain particular cases of ENTAILMENT0. To the best of our knowl-
edge, the ΠP

2 -completeness of clause entailment for clauses without functions had
not been pointed out.
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Query containment. In database query languages, function symbols are natu-
rally excluded. The undecidability of query containment for several kinds of Data-
log programs/queries has long been shown (see [Shm87] for the first results). Con-
cerning the specific case of conjunctive queries with negation, the ΠP

2 -completeness
of the containment problem is claimed in several papers and proven in [FNTU07]11,
with a reduction from the validity problem of quantified Boolean formulas of the
form ∀∗∃∗conj, where conj is a conjunction of 3-clauses. It was also proven in
the framework of polarized graphs by Bagan (2004), with a reduction from a graph
problem called Generalized Ramsey Number [SU02] and this proof is reported in
[Mug07] [CM08]. In [LM07], it is proven that a homomorphism check is sufficient
when g has no dependent literals, i.e., p-opposite literals l1 and l2 s.t. l1 and l2 can
be unified after a renaming of their common variables. We obtain again a particular
case of ENTAILMENT0. Notions close to our extensible homomorphism were used
in algorithms for query containment checking in [WL03] and defined in [LM07].

As far as we know, the notion of exchangeable literals generalize all particular
cases exhibited so far. As already mentioned, weaker criteria that yield an upper
bound for the number of exchangeable pairs and can be checked in polynomial
time can be used instead of exchangeability. In previous results, if the notion of
an “exchangeable pair” is replaced by a “pair of p-opposite and unifiable literals”,
these results are weaker but on the other hand any pair of term nodes can be checked
in constant time. With this weaker condition, all complexity results are still new,
except for ENTAILMENT0.

Conclusion. In this paper, we have solved the main issues concerning the role
of exchangeable literals in the complexity of FOL(∃,∧,¬a)-ENTAILMENT. We
have shown that, as soon as the number k of exchangeable pairs is bounded, the
complexity falls into PNP

|| , and becomes even NP-complete if k ≤ 1. We have
also shown that the problem is PNP

|| -complete for any k greater of equal to 3. To
complete the picture, it would be interesting to determine its complexity for k = 2.

Let us mention that exchangeable literals can be exploited in algorithms solv-
ing ENTAILMENT for general FOL(∃,∧,¬a) formulas. In [LM07] an algorithm
is proposed for deciding inclusion of conjunctive queries with negation. Since
queries are seen as PGs, this algorithm can be used without change for deciding on
entailment in FOL(∃,∧,¬a). It explores a space of graphs leading from H to its

11Bibliographical note: several database papers wrongly mention that [LS93] proves the ΠP
2 -

completeness of the query inclusion problem for conjunctive queries with negation. More precisely,
the ΠP

2 -completeness result reported in [LS93] is for “conjunctive queries with order constraints”
(and this result is due to van der Meyden). However, there is no straightforward proof that would
translate this result into one for conjunctive queries with negation.
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completions. This space is ordered as follows: given two graphs H1 and H2 in this
space, H2 ≤ H1 if H1 is a subgraph of H2. The question “is there a homomor-
phism from G to each completion Hc” is reformulated as “is there a covering set
of completions, i.e., a subset of incomparable graphs of this space {H1, . . . ,Hk}
such that (1) there is a homomorphism from G to each Hi ; (2) for each Hc there
is a Hi with Hc ≤ Hi”. This algorithm is then refined and experimentally eval-
uated on random instances in [BLM10]. Some special subgraphs of G, that are
necessarily mapped to H if G is entailed by H , are used both in a filtering step (if
one of these subgraphs cannot be mapped to H , then it can be concluded that G is
not entailed by H) and to guide the space exploration. These subgraphs are with-
out p-opposite literals. They can be replaced by subgraphs without exchangeable
pairs (see Th. 3). Moreover, the set of relation names considered in completions
is restricted to relation names occurring both positively and negatively in G and
H (see Prop. 3): this set can be further restricted to relation names occurring in
exchangeable literals of G (Prop. 15), and the notion of completion can be further
refined, using exchangeable triples (Prop. 17).

This paper is devoted to theoretical issues. As for further work, it would be
interesting to study experimentally the practical interest of the obtained results. An
issue is to study to what extent they can be used to improve the above mentioned
algorithm, either on difficult problem instances (as in [BLM10]) or on real data. On
real conjunctive queries with negation namely, the number of exchangeable literal
pairs is expected to be null in many cases. A question is whether this number is
upper bounded by a fixed value in practical query sets.

Acknowledgements. We thank the anonymous reviewers for their very construc-
tive comments, in particular for the hint to the classPNP

|| , which allowed us to close
the gap between NP/co-NP-hardness and PNP , and for the clarification about
promise problems.
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