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Abstract

We propose two asynchronous algorithms for solving Distributed Constraint Sat-
isfaction Problems (DisCSPs). The first algorithm, AFC-ng, is a nogood-based ver-
sion of Asynchronous Forward Checking (AFC). Besides its use of nogoods as justifi-
cation of value removals, AFC-ng allows simultaneous backtracks going from differ-
ent agents to different destinations. The second algorithm, Asynchronous Forward-
Checking Tree (AFC-tree), is based on the AFC-ng algorithm and is performed on
a pseudo-tree ordering of the constraint graph. AFC-tree runs simultaneous search
processes in disjoint problem subtrees and exploits the parallelism inherent in the
problem. We prove that AFC-ng and AFC-tree only need polynomial space. We
compare the performance of these algorithms with other DisCSP algorithms on ran-
dom DisCSPs and instances from real benchmarks: sensor networks and distributed
meeting scheduling. Our experiments show that AFC-ng improves on AFC and that
AFC-tree outperforms all compared algorithms, particularly on sparse problems.

1 Introduction

Constraint programming is an area in computer science that has gained increasing inter-
est in recent years. Constraint programming is based on its powerful framework named
constraint satisfaction problem (CSP). CSP is a general framework that can formalize
many real world combinatorial problems such as resource allocation, car sequencing,
natural language understanding, machine vision, etc. A constraint satisfaction problem
consists in looking for solutions to a constraint network, that is, a set of assignments
of values to variables that satisfy the constraints of the problem. These constraints
represent restrictions on values combinations allowed for constrained variables.

There exist applications that are of a distributed nature. In this kind of applica-
tions the knowledge about the problem, that is, variables and constraints, is distributed
among physical distributed agents. This distribution is mainly due to privacy and/or
security requirements: constraints or possible values may be strategic information that
should not be revealed to other agents that can be seen as competitors. Several applica-
tions in multi-agent coordination are of such kind. Examples of applications are sensor
networks [15, 2], military unmanned aerial vehicles teams [15], distributed scheduling
problems [27, 18], distributed resource allocation problems [23], log-based reconciliation
[9], Distributed Vehicle Routing Problems [16], etc. Therefore, the distributed frame-
work distributed constraint satisfaction problems (DisCSP) is used to model and solve
this kind of problems.

A DisCSP is composed of a group of autonomous agents, where each agent has con-
trol of some elements of information about the whole problem, that is, variables and
constraints. Each agent owns its local constraint network. Variables in different agents
are connected by constraints. Agents must assign values to their variables so that all
constraints are satisfied. Hence, agents assign values to their variables, attempting to
generate a locally consistent assignment that is also consistent with constraints between
agents [30, 28]. To achieve this goal, agents check the value assignments to their vari-
ables for local consistency and exchange messages to check consistency of their proposed
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assignments against constraints that contain variables that belong to other agents.
Several distributed algorithms for solving DisCSPs have been developed in the last

two decades. The first complete asynchronous search algorithm for solving DisCSPs is
Asynchronous Backtracking (ABT) [29, 28, 4]. ABT is an asynchronous algorithm exe-
cuted autonomously by each agent in the distributed problem. Synchronous Backtrack
(SBT) is the simplest DisCSP search algorithm. SBT performs assignments sequentially
and synchronously. In SBT, only the agent holding a current partial assignment (CPA)
performs an assignment or backtrack [31].

Extending SBT, Meisels and Zivan (2007) proposed the Asynchronous Forward-
Checking (AFC). Besides assigning variables sequentially as is done in SBT, agents
in AFC perform forward checking (FC [13]) asynchronously. The key here is that each
time an agent succeeds to extend the current partial assignment (by assigning its vari-
able), it sends the CPA to its successor and copies of this CPA to all agents whose
assignments are not yet on the CPA. When an agent receives a copy of the CPA, it per-
forms the forward checking phase. In the forward checking phase all inconsistent values
with assignments on the received CPA are removed. The forward checking operation
is performed asynchronously where comes the name of the algorithm. When an agent
generates an empty domain as a result of a forward checking, it informs all agents with
unassigned variables on the (inconsistent) CPA. Afterwards, one of these agents will
receive the CPA and will backtrack. Thereby, only one backtrack can be generated for
a given CPA. Meisels and Zivan have shown in [21] that AFC is computationally more
efficient than ABT. However, due to the manner in which the backtrack operation is
performed, AFC does not draw all the benefit it could from the asynchronism of the FC
phase.

In this work, we present two asynchronous algorithms for solving DisCSPs. The first
one is based on Asynchronous Forward Checking (AFC) and uses nogood as justifications
of value removals. We call it Nogood-Based Asynchronous Forward Checking (AFC-ng).
Unlike AFC, AFC-ng allows concurrent backtracks to be performed at the same time
coming from different agents having an empty domain to different destinations. As
a result, several CPAs could be generated simultaneously by the destination agents.
Thanks to the timestamps integrated in the CPAs, the strongest CPA coming from the
highest level in the agent ordering will eventually dominate all others. Interestingly, the
search process with the strongest CPA will benefit from the computational effort done
by the (killed) lower level processes. This is done by taking advantage from nogoods
recorded when processing these lower level processes.

The second algorithm we propose is based on AFC-ng and is named Asynchronous
Forward-Checking Tree (AFC-tree). The main feature of the AFC-tree algorithm is
using different agents to search non-intersecting parts of the search space concurrently. In
AFC-tree, agents are prioritized according to a pseudo-tree arrangement of the constraint
graph. The pseudo-tree ordering is build in a preprocessing step. Using this priority
ordering, AFC-tree performs multiple AFC-ng processes on the paths from the root to
the leaves of the pseudo-tree. The agents that are brothers are committed to concurrently
find the partial solutions of their variables. Therefore, AFC-tree exploits the potential
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speed-up of a parallel exploration in the processing of distributed problems [11]. A
solution is found when all leaf agents succeed in extending the CPA they received.
Furthermore, in AFC-tree privacy may be enhanced because communication is restricted
to agents in the same branch of the pseudo-tree.

This paper is organized as follows. Section 2 gives the necessary background on
DisCSPs and on the AFC algorithm. Sections 3 and 4 describe the algorithms AFC-
ng and AFC-tree. Correctness proofs are given in Section 5. Section 6 presents an
experimental evaluation of our proposed algorithms against other well-known distributed
algorithms. Section 7 summarizes several related works and we conclude the paper in
Section 8.

2 Background

2.1 Basic definitions and notations

The distributed constraint satisfaction problem (DisCSP) has been formalized in [30]
as a tuple (A,X ,D, C), where A is a set of a agents {A1, . . . , Aa}, X is a set of n
variables {x1, . . . , xn}, where each variable xi is controlled by one agent in A. D0 =
{D0(x1), . . . ,D

0(xn)} is a set of n domains, where D0(xi) is the initial set of possible
values to which variable xi may be assigned. During search, values may be pruned from
the domain. At any node, the set of possible values for variable xi is denoted by D(xi)
and is called the current domain of xi. Only the agent who is assigned a variable has
control on its value and knowledge of its domain. C is a set of constraints that specify the
combinations of values allowed for the variables they involve. In this paper, we assume a
binary distributed constraint network where all constraints are binary constraints (they
involve two variables). A constraint cij ∈ C between two variables xi and xj is a subset
of the Cartesian product of their domains (cij ⊆ D0(xi) × D0(xj)). The connectivity
between the variables can be represented with a constraint graph G, where vertices
represent the variables and edges represent the constraints [10].

For simplicity purposes, we consider a restricted version of DisCSP where each agent
controls exactly one variable (a = n). Thus, we use the terms agent and variable
interchangeably and we identify the agent ID with its variable index. Furthermore,
all agents store a unique total order ≺ on agents. Thus, agents appearing before an
agent Ai ∈ A in the total order are the higher agents (predecessors) and conversely the
lower agents (successors) are agents appearing after Ai. For sake of clarity, we assume
that the total order is the lexicographic ordering [A1, A2, . . . , An]. Each agent maintains
a counter, and increments it whenever it changes its value. The current value of the
counter tags each generated assignment.

Definition 1 An assignment for an agent Ai ∈ A is a tuple (xi, vi, ti), where vi is a
value from the domain of xi and ti is the tag value. When comparing two assignments,
the most up to date is the one with the greatest tag ti.
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Definition 2 A current partial assignment CPA is an ordered set of assignments
{[(x1, v1, t1), . . . , (xi, vi, ti)] | x1 ≺ · · · ≺ xi}. Two CPAs are consistent if they do not
disagree on any variable value.

Definition 3 A timestamp associated with a CPA is an ordered list of counters [t1, t2,
. . . , ti] where tj is the tag of the variable xj . When comparing two CPAs, the strongest

one is that associated with the lexicographically greater timestamp. That is, the CPA
with greatest value on the first counter on which they differ, if any, otherwise the longest
one.

Definition 4 The AgentView of an agent Ai ∈ A stores the most up to date assign-
ments received from higher priority agents in the agent ordering. It has a form similar
to a CPA and is initialized to the set of empty assignments {(xj , empty, 0) | xj ≺ xi}.

During search agents can infer inconsistent sets of assignments called nogoods.

Definition 5 A nogood ruling out value vk from the initial domain of variable xk is
a clause of the form xi = vi ∧ xj = vj ∧ . . . → xk 6= vk, meaning that the assignment
xk = vk is inconsistent with the assignments xi = vi, xj = vj , . . .. The left hand side
(lhs) and the right hand side (rhs) are defined from the position of →.

The current domain D(xi) of a variable xi contains all values from the initial domain
D0(xi) that are not ruled out by a nogood. When all values of a variable xk are ruled
out by some nogoods (D(xi) = ∅), these nogoods are resolved, producing a new nogood
(ng). Let xj be the lowest variable in the left-hand side of all these nogoods and xj = vj.
The lhs(ng) is the conjunction of the left-hand sides of all nogoods except xj = vj and
rhs(ng) is xj 6= vj .

2.2 Asynchronous Forward-Checking

Asynchronous Forward-Checking (AFC) incorporates the idea of the forward-checking
(FC) algorithm for centralized CSP [13]. However, agents perform the forward checking
phase asynchronously [20, 21]. As in synchronous backtracking, agents assign their
variables only when they hold the current partial assignment (cpa). The cpa is a
unique message (token) that is passed from one agent to the next one in the ordering.
The cpa message carries the partial assignment (CPA) that agents attempt to extend
into a complete solution by assigning their variables on it. When an agent succeeds
in assigning its variable on the CPA, it sends this CPA to its successor. Furthermore,
copies of the CPA are sent to all agents whose assignments are not yet on the CPA.
These agents perform the forward checking asynchronously in order to detect as early as
possible inconsistent partial assignments. The forward-checking process is performed as
follows. When an agent receives a CPA, it updates the domain of its variable, removing
all values that are in conflict with assignments on the received CPA. Furthermore, the
shortest CPA producing the inconsistency is stored as justification of the value deletion.
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When an agent generates an empty domain as a result of a forward-checking, it
initiates a backtrack process by sending not ok messages. not ok messages carry the
shortest inconsistent partial assignment which caused the empty domain. not ok mes-
sages are sent to all agents with unassigned variables on the (inconsistent) CPA. When
an agent receives the not ok message, it checks if the CPA carried in the received mes-
sage is consistent with its AgentView. If it is the case, the receiver stores the not ok,
otherwise, the not ok is discarded. When an agent holding a not ok receives a CPA
on a cpa message from its predecessor, it sends this CPA back in a backcpa message.
When multiple agents reject a given assignment by sending not ok messages, only the
first agent that will receive a cpa message from its predecessor and is holding a rele-
vant not ok message will eventually backtrack. After receiving a new cpa message, the
not ok message becomes obsolete when the CPA it carries is no longer a subset of the
received CPA.

The manner in which the backtrack operation is performed is a major drawback of
the AFC algorithm. The backtrack operation requires a lot of work from the agents. An
improved backtrack method for AFC was described in Section 6 of [21]. Instead of just
sending not ok messages to all agents unassigned in the CPA, the agent who detects the
empty domain can itself initiate a backtrack operation. It sends a backtrack message to
the last agent assigned in the inconsistent CPA in addition to the not ok messages to
all agents not instantiated in the inconsistent CPA. The agent who receives a backtrack
message generates (if it is possible) a new CPA that will dominate older ones thanks to
the timestamp mechanism (see Definition 3).

3 Nogood-based Asynchronous Forward Checking

The nogood-based Asynchronous Forward-Checking (AFC-ng) is based on AFC. AFC-
ng tries to enhance the asynchronism of the forward checking phase. The two main
features of AFC-ng are the following. First, it uses the nogoods as justification of value
deletions. Each time an agent performs a forward-check, it revises its initial domain,
(including values already removed by a stored nogood) in order to store the best nogoods
for removed values (one nogood per value). When comparing two nogoods eliminating
the same value, the nogood with the highest possible lowest variable involved is selected
(HPLV heuristic) [14]. As a result, when an empty domain is found, the resolvent nogood
contains variables as high as possible in the ordering, so that the backtrack message is
sent as high as possible, thus saving unnecessary search effort [4].

Second, each time an agent Ai generates an empty domain it no longer sends not ok

messages. It resolves the nogoods ruling out values from its domain, producing a new
nogood ng. ng is the conjunction of lhs of all nogoods stored by Ai. Then, Ai sends
the resolved nogood ng in a ngd (backtrack) message to the lowest agent in ng. Hence,
multiple backtracks may be performed at the same time coming from different agents
having an empty domain. These backtracks are sent concurrently by these different
agents to different destinations. The reassignment of the destination agents then happen
simultaneously and generate several CPAs. However, the strongest CPA coming from
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the highest level in the agent ordering will eventually dominate all others. Agents use
the timestamp (see Definition 3) to detect the strongest CPA. Interestingly, the search
process of higher levels with stronger CPAs can use nogoods reported by the (killed)
lower level processes, so that it benefits from their computational effort.

3.1 Description of the algorithm

AFC-ng agents execute the pseudo-code shown in Figs. 1 and 2. Each agent Ai stores
a nogood per removed value in the NogoodStore. The other values not ruled out by a
nogood form D(xi), the current domain of xi. Agent Ai calls procedure AFC-ng in which
it initializes its AgentView (line 1) by setting counters to zero (line 10). The AgentView
contains a consistency flag that represents whether the partial assignment it holds is
consistent. If Ai is the initializing agent IA (the first agent in the agent ordering), it
initiates the search by calling procedure Assign() (line 3). Then, a loop considers the
reception and the processing of the possible message types.

When calling Assign() Ai tries to find an assignment, which is consistent with its
AgentView. If Ai fails to find a consistent assignment, it calls procedure Backtrack()

(line 15). If Ai succeeds, it increments its counter ti and generates a CPA from its
AgentView augmented by its assignment (line 13). Afterwards, Ai calls procedure
SendCPA(CPA) (line 14). If the CPA includes all agents assignments (Ai is the low-
est agent in the order, line 16), Ai reports the CPA as a solution of the problem and
marks the end flag true to stop the main loop (lines 17-18). Otherwise, Ai sends forward
the CPA to every agent whose assignments are not yet on the CPA (line 19). So, the
next agent on the ordering (successor) will try to extend this CPA by assigning its vari-
able on it while other agents will perform the forward-checking phase asynchronously to
check its consistency.

Whenever Ai receives a cpa message, procedure ProcessCPA is called (line 7). Ai

checks its AgentView status. If it is not consistent and the AgentView is a subset of
the received CPA, this means that Ai has already backtracked, then Ai does nothing
(line 20). Otherwise, if the received CPA is stronger than its AgentView, Ai updates its
AgentView and marks it consistent (lines 22-23). Procedure UpdateAgentView (lines 45-
47) sets the AgentView and the NogoodStore to be consistent with the received CPA.
Each nogood in the NogoodStore containing a value for a variable different from that on
the received CPA will be deleted (line 47). Next, Ai calls procedure Revise (line 24) to
store nogoods for values inconsistent with the new AgentView or to try to find a better
nogood for values already having one in the NogoodStore (line 50). A nogood is better
according to the HPLV heuristic if the lowest variable in the body (lhs) of the nogood is
higher. If Ai generates an empty domain as a result of calling Revise, it calls procedure
Backtrack (line 25), otherwise, Ai calls procedure CheckAssign to check if it has to
assign its variable (line 26). In CheckAssign(sender), Ai calls procedure Assign to
try to assign its variable only if sender is the predecessor of Ai (i.e., CPA was received
from the predecessor, line 27).

When every value of Ai’s variable is ruled out by a nogood (line 25), the proce-
dure Backtrack is called. These nogoods are resolved by computing a new nogood ng
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procedure AFC-ng()

1. InitAgentView();

2. end← false; AgentV iew.Consistent← true;

3. if (Ai = IA) then Assign();

4. while (¬end) do
5. msg ← getMsg();

6. switch (msg.type) do
7. cpa : ProcessCPA(msg);

8. ngd : ProcessNogood(msg);

9. terminate : ProcessTerminate(msg);

procedure InitAgentView()

10. foreach ( xj ≺ xi ) do AgentV iew[j]← {(xj , empty, 0)} ;

procedure Assign()

11. if (D(xi) 6= ∅) then
12. vi ← ChooseValue() ; ti ← ti+1;

13. CPA ← {AgentV iew ∪ (xi, vi, ti)} ;

14. SendCPA(CPA);

15. else Backtrack();

procedure SendCPA(CPA)

16. if (size(CPA) = n) then /* Ai is the last agent in the total ordering */
17. broadcastMsg : terminate(CPA);

18. end← true ;

19. else foreach (xk ≻ xi) do sendMsg : cpa(CPA) to xk;

Figure 1: Nogood-based AFC algorithm running by agent Ai (Part 1).

(line 28). ng is the conjunction of the left hand sides of all nogoods stored by Ai in its
NogoodStore. If the new nogood ng is empty, Ai terminates execution after sending a
terminate message to all agents in the system meaning that the problem is unsolvable
(lines 29-31). Otherwise, Ai updates its AgentView by removing assignments of every
agent that is placed after the agent Aj owner of rhs(ng) in the total order (lines 33-
34). Ai also updates its NogoodStore by removing obsolete nogoods (line 37). Obsolete
nogoods are nogoods inconsistent with the AgentView or containing the assignment of
xj (the right hand side of ng) (line 36). Finally, Ai marks its AgentView as inconsistent,
removes its last assignment (line 38) and it backtracks by sending one ngd message to
agent Aj (the right hand side of ng) (line 39). The ngd message carries the generated
nogood (ng). Ai remains in an inconsistent state until receiving a stronger CPA holding

7



procedure ProcessCPA(msg)

20. if (¬AgentV iew.Consistent ∧AgentV iew ⊂ msg.CPA) then return ;

21. if (msg.CPA is stronger than AgentV iew) then
22. UpdateAgentView(msg.CPA) ;

23. AgentV iew.Consistent← true ;

24. Revise() ;

25. if ( D(xi) = ∅ ) then Backtrack();

26. else CheckAssign(msg.Sender);

procedure CheckAssign(sender)

27. if (predecessor(Ai)= sender) then Assign() ;

procedure Backtrack()

28. ng ← solve(NogoodStore) ;

29. if (ng = empty) then
30. broadcastMsg : terminate(∅);

31. end← true ;

32. else
33. foreach ( xk ≻ xj ) do /* Let xj denote the variable on rhs(ng) */
34. AgentV iew[k].value ← empty ;

35. foreach (nogood ∈ NogoodStore) do
36. if (¬Consistent(nogood,AgentView) ∨ xj ∈ nogood) then
37. remove(nogood,NogoodStore) ;

38. AgentV iew.Consistent← false; vi ← empty;

39. sendMsg : ngd(ng) to Aj ;

procedure ProcessNogood(msg)

40. if (Consistent(msg.nogood,AgentView)) then
41. add(msg.nogood, NogoodStore) ; /* according to the HPLV [14] */

42. if (rhs(msg.nogood).value = vi) then vi ← empty; Assign() ;

procedure ProcessTerminate(msg)

43. end← true; vi ← empty ;

44. if (msg.CPA 6= ∅) then solution← msg.CPA ;

procedure UpdateAgentView(CPA)

45. AgentV iew ← CPA ; /* update values and tags */

46. foreach (ng ∈ NogoodStore ) do
47. if (¬Consistent(ng,AgentView)) then remove(ng,NogoodStore);

procedure Revise()

48. foreach (v ∈ D0(xi) ) do
49. if (v is ruled out by AgentView ) then
50. store the best nogood for v; /* according to the HPLV [14] */

Figure 2: Nogood-based AFC algorithm running by agent Ai (Part 2).
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at least one agent assignment with counter higher than that in the AgentView of Ai.
When a ngd message is received by an agent Ai, it checks the validity of the received

nogood (line 40). If the received nogood is consistent with the AgentView, this nogood
is a valid justification for removing the value on its rhs. Then if the value on the rhs of
the received nogood is already removed, Ai adds the received nogood to its NogoodStore
if it is better (according to the HPLV heuristic) than the current stored nogood. If the
value on the rhs of the received nogood belongs to the current domain of xi, Ai simply
adds it to its NogoodStore. If the value on the rhs of the received nogood equals vi,
the current value of Ai, Ai dis-instantiates its variable and calls the procedure Assign

(line 42).
ProcessTerminate procedure is called when an agent receives a terminate message.

It marks end flag true to stop the main loop (line 43). If the attached CPA is empty
then there is no solution. Otherwise, the solution of the problem is retrieved from the
CPA (line 44).

4 Asynchronous Forward-Checking Tree

In this section, we show how to extend our AFC-ng algorithm to the Asynchronous
Forward-Checking Tree (AFC-tree) algorithm using a pseudo-tree arrangement of the
constraint graph. To achieve this goal, agents are ordered a priori in a pseudo-tree such
that agents in different branches of the tree do not share any constraint. AFC-tree does
not address the process of ordering the agents in a pseudo-tree arrangement. Therefore,
the construction of the pseudo-tree is done in a preprocessing step. Now, it is known
from centralized CSPs that the performance of the search procedures tightly depends on
the variable ordering. Thus, the task of constructing the pseudo-tree is important for a
search algorithm like AFC-tree.

4.1 Pseudo-tree ordering

Any binary DisCSP can be represented by a constraint graph G = (XG, EG), whose
vertices represent the variables and edges represent the constraints. Therefore, XG = X
and for each constraint cij ∈ C connecting two variables xi and xj there exists an edge
{xi, xj} ∈ EG linking vertices xi and xj .

The concept of pseudo-tree arrangement of a constraint graph has been introduced
first by Freuder and Quinn in [11]. The purpose of this arrangement is to perform
search in parallel on independent branches of the pseudo-tree in order to improve search
in centralized constraint satisfaction problems.

Definition 6 A pseudo-tree arrangement T = (XT , ET ) of a graph G = (XG, EG) is
a rooted tree with the same set of vertices as G (XG = XT ) such that vertices in different
branches of T do not share any edge in G.

Fig. 3(a) shows an example of a constraint graph G of a problem involving 9
variables X = XG = {x1, . . . , x9} and 10 constraints C = {c12, c14, c17, c18, c19, c25,
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(a) a constraint graph G.

Level 1

Level 2

Level 3

x1

x2 x3 x4

x5 x6 x7 x8 x9

(b) a pseudo-tree arrangement T .

Figure 3: Example of a pseudo-tree arrangement of a constraint graph.

c26, c37, c38, c49}. An example of a pseudo-tree arrangement T of this constraint graph
is illustrated in Fig. 3(b). Notice that G and T have the same vertices (XG = XT ). How-
ever, a new (dotted) edge ({x1, x3}) linking x1 to x3 is added to T where {x1, x3} /∈ EG.
Moreover, edges {x1, x7}, {x1, x8} and {x1, x8} belonging to the constraint graph G are
not part of T . They are represented in T by dashed edges to show that constrained
variables must be located in the same branch of T even if there is not an edge linking
them.

From a pseudo-tree arrangement of the constraint graph we can define:

• A branch of the pseudo-tree is a path from the root to some leaf (e.g., {x1, x4, x9}).

• A leaf is a vertex that has no child (e.g., x9).

• The children of a vertex are its descendants connected to it through tree edges
(e.g., children(x1) = {x2, x3, x4}).

• The descendants of a vertex xi are vertices belonging to the subtree rooted at xi
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(e.g., descendants(x2) ={x5, x6} and descendants(x1)={X \ x1}).

• The linked descendants of a vertex are its descendants constrained with it together
with its children, (e.g., linkedDescendants(x1) = {x2, x3, x4, x7, x8, x9}).

• The parent of a vertex is the ancestor connected to it through a tree edge (e.g.,
parent(x9) = {x4}, parent(x3) = {x1}).

• A vertex xi is an ancestor of a vertex xj if xi is the parent of xj or an ancestor of
the parent of xj .

• The ancestors of a vertex xi is the set of agents forming the path from the root to
xi’s parent (e.g., ancestors(x8) = {x1, x3}).

The construction of the pseudo-tree can be processed by a centralized procedure.
First, a system agent must be elected to gather information about the constraint graph.
Such system agent can be chosen using a leader election algorithm like that presented
in [1]. Once, all information about the constraint graph is gathered by the system
agent, it can perform a centralized algorithm to build the pseudo-tree ordering. A
decentralized modification of the procedure for building the pseudo-tree was introduced
by Chechetka and Sycara in [7]. This algorithm allows the distributed construction of
pseudo-trees without needing to deliver any global information about the whole problem
to a single process.

Whatever the method (centralized or distributed) for building the pseudo-tree, the
obtained pseudo-tree may require the addition of some edges not belonging to the original
constraint graph. In the example presented in Fig. 3(b), a new edge linking x1 to x3
is added to the resulting pseudo-tree T . The structure of the pseudo-tree will be used
for communication between agents. Thus, the added link between x1 and x3 will be
used to exchange messages between them. However, in some distributed applications,
the communication might be restricted to the neighboring agents (i.e., a message can
be passed only locally between agents that share a constraint). The solution in such
applications is to use a depth-first search tree (DFS-tree). DFS-trees are special cases of
pseudo-trees where all edges belong to the original graph.

We present in Fig. 4 a simple distributed algorithm for the distributed construction of
the DFS-tree named DistributedDFS algorithm. The DistributedDFS is similar to the
algorithm proposed by Cheung in [8]. The DistributedDFS algorithm is a distribution
of a DFS traversal of the constraint graph. Each agent maintains a set V isited where
it stores its neighbours which are already visited (line 2). The first step is to design
the root agent using a leader election algorithm (line 1). An example of leader election
algorithm was presented by Abu-Amara in [1]. Once the root is designed, it can start the
distributed construction of the DFS-tree (procedure CheckNeighbourhood call, line 3).
The designed root initiates the propagation of a token, which is a unique message that
will be circulated on the network until “visiting” all the agents of the problem.

When an agent xi receives the token, it marks all its neighbours included in the
received message as visited (line 6). Next, xi checks if the token is sent back by a child.
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procedure distributedDFS()

1. Select the root via a leader election algorithm ;

2. V isited← ∅; end← false ;

3. if (xi is the elected root) then CheckNeighbourhood() ;

4. while (¬end) do
5. msg ← getMsg();

6. V isited← V isited ∪ (neighbours(xi) ∩ msg.DFS) ;

7. if (msg.Sender ∈ children(xi)) then
8. descendants(xi)← descendants(xi)∪msg.DFS ;

9. else
10. parent(xi)← msg.Sender ;

11. ancestors(xi)← msg.DFS ;

12. CheckNeighbourhood();

procedure CheckNeighbourhood()

13. if (neighbours(xi) = V isited) then
14. sendMsg : token(descendants(xi)∪{xi}) to parent(xi) ;

15. end← true ;

16. else
17. select xj in neighbours(xi)\V isited ;

18. children(xi) ← children(xi) ∪ xj ;

19. sendMsg : token(ancestors(xi) ∪ {xi}) to xj ;

Figure 4: The distributed depth-first search construction algorithm.

If it is the case, xi sets all agents belonging to the subtree rooted at message sender
(i.e., its child) as its descendants (lines 7-8). Otherwise, the token is received for the
first time from the parent of xi. Thus, xi marks the sender as its parent (line 10) and
all agents contained in the token (i.e., the sender and its ancestors) as its ancestors
(line 11). Afterwards, xi calls the procedure CheckNeighbourhood to check if it has to
pass on the token to an unvisited neighbour or to return back the token to its parent
if all its neighbours are already visited.

The procedure CheckNeighbourhood checks if all neighbours are already visited
(line 13). If it is the case, the agent xi sends back the token to its parent (line 14).
The token contains the set DFS composed by xi and its descendants. Until this point
the agent xi knows all its ancestors, its children and its descendants. Thus, the agent
xi terminates the execution of DistributedDFS (line 15). Otherwise, agent xi chooses
one of its neighbours (xj) not yet visited and designs it as a child (lines 17-18). After-
wards, xi passes on to xj the token where it puts the ancestors of the child xj (i.e.,
ancestors(xi) ∪ {xi}) (line 19).
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Figure 5: A DFS-tree arrangement of the constraint graph in Fig. 3(a).

Consider for example the constraint graph G presented in Fig. 3(a). Fig. 5 shows an
example of a DFS-tree arrangement of the constraint graph G obtained by performing
distributively the DistributedDFS algorithm. The DistributedDFS algorithm can be
performed as follows. First, let x1 be the elected root of the DFS-tree (i.e., the leader
election algorithm elects the most connected agent). The root x1 initiates the DFS-
tree construction by calling procedure CheckNeighbourhood (line 3). Then, x1 selects
from its unvisited neighbours x2 to be its child (lines 17-18). Next, x1 passes on the
token to x2 where it put itself to be the ancestor of the receiver (x2) (line 19). After
receiving the token, x2 updates the set of its visited neighbours (line 6) by marking
x1 (the only neighbour included in the token) visited. Afterwards, x2 sets x1 to be its
parent and puts {x1} to be its set of ancestors (lines 10-11). Next, x2 calls procedure
CheckNeighbourhood (line 12). Until this point, x2 has one visited neighbour (x1) and
two unvisited neighbours (x5 and x6). For instance, let x2 chooses x5 to be its child.
Thus, x2 sends the token to x5 where it sets the DFS set to {x1, x2}. After receiving
the token, x5 marks its single neighbour x2 as visited (line 6), sets x2 to be its parent
(line 10), sets {x1, x2} to be its ancestors ans sends the token back to x2 where it puts
itself. After receiving back the token from x5, x2 adds x5 to its descendants and selects
the last unvisited neighbour (x6) to be its child and passes the token to x6. In a similar
way, x6 returns back the token to x2. Then, x2 sends back the token to its parent
x1 since all its neighbours have been visited. The token contains the descendants of
x1 ({x2, x5, x6}) on the subtree rooted at x2. After receiving the token back from x2,
x1 will select an agent from its unvisited neighbours {x4, x7, x8, x9}. Hence, the subtree
rooted at x2 where each agent knows its ancestors and its descendants is build without
delivering any global information. The other subtrees respectively rooted at x7 and x4
are build in a similar manner. Thus, we obtain the DFS-tree shown in Fig. 5.
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4.2 The AFC-tree algorithm

The AFC-tree algorithm is based on AFC-ng performed on a pseudo-tree ordering of the
constraint graph (built in a preprocessing step). Agents are prioritized according to the
pseudo-tree ordering in which each agent has a single parent and various children. Using
this priority ordering, AFC-tree performs multiple AFC-ng processes on the paths from
the root to the leaves. The root initiates the search by generating a CPA, assigning its
value on it, and sending CPA messages to its linked descendants. Among all agents that
receive the CPA, children perform AFC-ng on the sub-problem restricted to its ancestors
(agents that are assigned in the CPA) and the set of its descendants. Therefore, instead
of giving the privilege of assigning to only one agent, agents who are in disjoint subtrees
may assign their variables simultaneously. AFC-tree thus exploits the potential speed-
up of a parallel exploration in the processing of distributed problems. The degree of
asynchronism is enhanced.

Level 1
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Level 3
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x2 x3 x4

x5 x6 x7 x8 x9
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x6 x8x7 x9

CPA Message

backcpa message

assigned agent

inconsistent agent

not assigned agenta
sy
n
ch
ro
n
o
u
s
ex
ec
u
ti
o
n

Figure 6: An example of the AFC-tree execution.

An execution of AFC-tree on a sample DisCSP problem is shown in Fig. 6. At time t1,
the root x1 sends copies of the CPA on cpa messages to its linked descendants. Children
x2, x3 and x4 assign their values simultaneously in the received CPAs and then perform
concurrently the AFC-tree algorithm. Agents x7, x8 and x9 only perform a forward-
checking. At time t2, x9 finds an empty domain and sends a ngd message to x1. At the
same time, other CPAs propagate down through the other paths. For instance, a CPA
has propagated down from x3 to x7 and x8. x7 detects an empty domain and sends a
nogood to x3 attached on a ngd message. For the CPA that propagates on the path
(x1, x2, x6), x6 successfully assigned its value and initiated a solution detection. The
same thing is going to happen on the path (x1, x2, x5) when x5 (not yet instantiated)
will receive the CPA from its parent x2. When x1 receives the ngd message from x9, it
initiates a new search process by sending a new copy of the CPA which will dominate
all other CPAs where x1 is assigned its old value. This new CPA generated by x1 can
then take advantage from efforts done by the obsolete CPAs. Consider for instance the
subtree rooted at x2. If the value of x2 is consistent with the value of x1 on the new
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CPA, all nogoods stored on the subtree rooted at x2 are still valid and a solution is
reached on the subtree without any nogood generation.

In AFC-ng, a solution is reached when the last agent in the agent ordering receives
the CPA and succeeds in assigning its variable. In AFC-tree, the situation is different
because a CPA can reach a leaf agent without being complete. When all agents are
assigned and no constraint is violated, this state is a global solution and the network
has reached quiescence, meaning that no message is traveling through it. Such a state
can be detected using specialized snapshot algorithms [6], but AFC-tree uses a different
mechanism that allows to detect solutions before quiescence. AFC-tree uses an additional
type of messages called accept that informs parents of the acceptance of their CPA.
Termination can be inferred earlier and the number of messages required for termination
detection can be reduced. A similar technique of solution detection was used in the AAS
algorithm [25].

The mechanism of solution detection is as follows: whenever a leaf node succeeds in
assigning its value, it sends an accept message to its parent. This message contains the
CPA that was received from the parent incremented by the value-assignment of the leaf
node. When a non-leaf agent Ai receives accept messages from all its children that are
all consistent with each other, all consistent with Ai’s AgentView and with Ai’s value,
Ai builds an accept message being the conjunction of all received accept messages
plus Ai’s value-assignment. If Ai is the root a solution is found, and Ai broadcasts this
solution to all agents. Otherwise, Ai sends the built accept message to its parent.

4.3 Description of the algorithm

We present in Fig. 7 only the procedures that are new or different from those of AFC-
ng in Figs. 1 and 2. In InitAgentView, the AgentView of Ai is initialized to the set
ancestors(Ai) and tj is set to 0 for each agent (xj) in ancestors(Ai) (line 11). The
new data structure storing the received accept messages is initialized to the empty
set (line 12). In SendCPA(CPA), instead of sending copies of the CPA to all agents
not yet instantiated on it, Ai sends copies of the CPA only to its linked descen-
dants (linkedDescendants(Ai), lines 13-14). When the set linkedDescendants(Ai)

is empty (i.e., Ai is a leaf), Ai calls the procedure SolutionDetection to build and
send an accept message. In CheckAssign(sender), Ai assigns its value if the CPA was
received from its parent (line 16) (i.e., if sender is the parent of Ai).

In ProcessAccept(msg), when Ai receives an accept message from its child for
the first time, or the CPA contained in the received accept message is stronger than
that received before, Ai stores the content of this message (lines 17-18) and calls the
SolutionDetection procedure (line 19).

In SolutionDetection, if Ai is a leaf (i.e., children(Ai) is empty, line 20), it
sends an accept message to its parent. The accept message sent by Ai contains its
AgentView incremented by its assignment (lines 20-21). If Ai is not a leaf, it calls
function BuildAccept to build an accept partial solution PA (line 23). If the returned
partial solution PA is not empty and Ai is the root, PA is a solution of the problem.
Then, Ai broadcasts it to other agents including the system agent and sets the end flag
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procedure AFC-tree()

1. InitAgentView();

2. end← false; AgentV iew.Consistent← true;

3. if (Ai = IA) then Assign();

4. while (¬end) do
5. msg ← getMsg();

6. switch (msg.type) do
7. cpa : ProcessCPA(msg);

8. ngd : ProcessNogood(msg);

9. terminate : ProcessTerminate(msg);

10. accept : ProcessAccept(msg);

procedure InitAgentView()

11. foreach ( Aj ∈ ancestors(Ai) ) do AgentV iew[j] ← {(xj , empty, 0)} ;

12. foreach (child ∈ children(Ai)) do Accept[child] ← ∅ ;

procedure SendCPA(CPA)

13. if ( children(Ai) 6= ∅) then
14. foreach (desc ∈ linkedDescendants(Ai)) do sendMsg : cpa(CPA) to desc

15. else SolutionDetection() ;

procedure CheckAssign(sender)

16. if ( parent(Ai)=sender ) then Assign() ;

procedure ProcessAccept(msg)

17. if (msg.CPA is stronger than Accept[msg.Sender]) then
18. Accept[msg.Sender] ← msg.CPA ;

19. SolutionDetection() ;

procedure SolutionDetection()

20. if (children(Ai) = ∅) then
21. sendMsg : accept(AgentV iew ∪ {(xi, vi, ti)}) to parent(Ai) ;

22. else
23. PA← BuildAccept() ;

24. if (PA 6= ∅) then
25. if (Ai = root) then broadcastMsg : terminate(PA); end←true ;

26. else sendMsg : accept(PA) to parent(Ai) ;

function BuildAccept()

27. PA← AgentV iew ∪ {(xi, vi, ti)} ;

28. foreach (child ∈ children(xi) ) do
29. if (Accept[child] = ∅ ∨ ¬ Consistent(PA,Accept[child])) then return ∅ ;

30. else PA← PA ∪ Accept[child] ;

31. return PA;

Figure 7: New lines/procedures of AFC-tree with respect to AFC-ng.
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to true (line 25). Otherwise, Ai sends an accept message containing PA to its parent
(line 26).

In BuildAccept, if an accept partial solution is reached. Ai generates a partial
solution PA incrementing its AgentView with its assignment (line 27). Next, Ai loops
over the set of accept messages received from its children. If at least one child has never
sent an accept message or the accept message is inconsistent with PA, then the partial
solution has not yet been reached and the function returns empty (line 29). Otherwise,
the partial solution PA is incremented by the accept message of child (line 30). Finally,
the accept partial solution is returned (line 31).

5 Correctness Proofs

Theorem 1 The spatial complexity of AFC-ng (resp. AFC-tree) is polynomially
bounded by O(nd) per agent.

Proof. 1 In AFC-ng, the size of nogoods is bounded by n, the total number of variables.
In AFC-tree, the size of nogoods is bounded by h (h ≤ n), the height of the pseudo-tree.
Now, on each agent, AFC-ng (resp. AFC-tree) only stores one nogood per removed
value. Thus, the space complexity of AFC-ng is in O(nd) on each agent. AFC-tree
also stores its set of descendants and ancestors, which is bounded by n on each agent.
Therefore, AFC-tree has a space complexity in O(hd + n). �

Lemma 1 AFC-ng is guaranteed to terminate.

Proof. 2 We prove by induction on the agent ordering that there will be a finite number
of new generated CPAs (at most dn, where d is the size of the initial domain and n the
number of variables.), and that agents can never fall into an infinite loop for a given
CPA. The base case for induction (i=1) is obvious. The only messages that x1 can
receive are ngd messages. All nogoods contained in these ngd messages have an empty
lhs. Hence, values on their rhs are removed once and for all from the domain of x1.
Now, x1 only generates a new CPA when it receives a nogood ruling out its current
value. Thus, the maximal number of CPAs that x1 can generate equals the size of its
initial domain (d). Suppose now that the number of CPAs that agents x1, . . . , xi−1

can generate is finite (and bounded by di−1). Given such a CPA on [x1, . . . , xi−1], xi
generates new CPAs (line 13, Fig. 1) only when it changes its assignment after receiving
a nogood ruling out its current value vi. Given the fact that any received nogood can
include, in its lhs, only the assignments of higher priority agents ([x1, . . . , xi−1]), this
nogood will remain valid as long as the CPA on [x1, . . . , xi−1] does not change. Thus,
xi cannot regenerate a new CPA containing vi without changing assignments on higher
priority agents ([x1, . . . , xi−1]). Since there are a finite number of values on the domain
of variable xi, there will be a finite number of new CPAs generated by xi (d

i). Therefore,
by induction we have that there will be a finite number of new CPAs (dn) generated by
AFC-ng.
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Let cpa be the strongest CPA generated in the network and Ai be the agent that
generated cpa. After a finite amount of time, all unassigned agents on cpa ([xi+1, . . . , xn])
will receive cpa and thus will discard all other CPAs. Two cases occur. First case, at
least one agent detects a dead-end and thus backtracks to an agent Aj included in cpa
(i.e., j ≤ i) forcing it to change its current value on cpa and to generate a new stronger
CPA. Second case (no agent detects dead-end), if i < n, Ai+1 generates a new stronger
CPA by adding its assignment to cpa, else (i = n), a solution is reported. As a result,
agents can never fall into an infinite loop for a given CPA and AFC-ng is thus guaranteed
to terminate. �

Lemma 2 AFC-ng cannot infer inconsistency if a solution exists.

Proof. 3 Whenever a stronger CPA or a ngd message is received, AFC-ng agents up-
date their NogoodStore. Hence, for every CPA that may potentially lead to a solution,
agents only store valid nogoods. In addition, every nogood resulting from a CPA is
redundant with regard to the DisCSP to solve. Since all additional nogoods are gen-
erated by logical inference when a domain wipe-out occurs, the empty nogood cannot
be inferred if the network is satisfiable. This mean that AFC-ng is able to produce all
solutions. �

Theorem 2 AFC-ng is correct.

Proof. 4 The argument for soundness is close to the one given in [21, 22]. The fact that
agents only forward consistent partial solution on the CPA messages at only one place
in procedure Assign (line 14, Fig. 1), implies that the agents receive only consistent
assignments. A solution is reported by the last agent only in procedure SendCPA(CPA)
at line 17. At this point, all agents have assigned their variables, and their assignments
are consistent. Thus the AFC-ng algorithm is sound. Completeness comes from the fact
that AFC-ng is able to terminate and does not report inconsistency if a solution exists
(Lemmas 1 and 2). �

Theorem 3 AFC-tree algorithm is correct.

Proof. 5 AFC-tree agents only forward consistent partial assignments (CPAs). Hence,
leaf agents receive only consistent CPAs. Thus, leaf agents only send accept message
holding consistent assignments to their parent. Since a parent builds an accept message
only when the accept messages received from all its children are consistent with each
other and all consistent with its own value, the accept message it sends contains a
consistent partial solution. The root broadcasts a solution only when it can build itself
such an accept message. Therefore, the solution is correct and AFC-tree is sound.

From Lemma 1 we deduce that the AFC-tree agent of highest priority cannot fall
into an infinite loop. By induction on the level of the pseudo-tree no agent can fall in
such a loop, which ensures the termination of AFC-tree. AFC-tree performs multiple
AFC-ng processes on the paths of the pseudo-tree from the root to the leaves. Thus,
from Lemma 2, AFC-tree inherits the property that an empty nogood cannot be inferred
if the network is satisfiable. As AFC-tree terminates, this ensures its completeness. �
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6 Experimental Evaluation

In this section we experimentally compare AFC-ng and AFC-tree to two other algo-
rithms: AFC and ABT. Algorithms are evaluated on three benchmarks: uniform binary
random DisCSPs, distributed sensor-mobile networks and distributed meeting schedul-
ing problems. All experiments were performed on the DisChoco 2.0 platform1 [26], in
which agents are simulated by Java threads that communicate only through message
passing. All algorithms are tested on the same static agents ordering using the dom/deg
heuristic [3] and the same nogood selection heuristic (HPLV) [14]. For ABT we imple-
mented an improved version of Silaghi’s solution detection [24] and counters for tagging
assignments.

We evaluate the performance of the algorithms by communication load [17] and
computation effort. Communication load is measured by the total number of exchanged
messages among agents during algorithm execution (#msg), including those of termi-
nation detection (system messages). Computation effort is measured by the number of
non-concurrent constraint checks (#ncccs) [32]. #ncccs is the metric used in distributed
constraint solving to simulate the computation time.

6.1 Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are characterized
by 〈n, d, p1, p2〉, where n is the number of agents/variables, d is the number of values in
each of the domains, p1 the network connectivity defined as the ratio of existing binary
constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.
We solved instances of two classes of constraints graphs: sparse graphs 〈20, 10, 0.2, p2〉
and dense ones 〈20, 10, 0.7, p2〉. We vary the tightness from 0.1 to 0.9 by steps of 0.05.
For each pair of fixed density and tightness (p1, p2) we generated 25 instances, solved 4
times each. We report average over the 100 runs.

Fig. 8 presents performance of AFC-tree, AFC-ng, AFC, and ABT running on the
sparse instances (p1 = 0.2). In terms of computational effort (Fig. 8(a)), we observe
that at the complexity peak, AFC is the less efficient algorithm. It is better than
ABT (the second worst) only on instances to the right of the complexity peak (over-
constrained). On the most difficult instances, AFC-ng improves AFC the performance
of standard AFC by a factor of 3.5 and outperforms ABT by a factor of 2. AFC-tree
takes advantage of the pseudo-tree arrangement to improve the speed-up of AFC-ng.
Concerning communication load (Fig. 8(b)), AFC dramatically deteriorates compared
to all other algorithms. AFC-ng improves AFC by a factor of 7. AFC-ng exchanges
slightly fewer messages than ABT in the over-constrained area whereas AFC-tree has
the smallest communication load on all problems.

Fig. 9 presents the results on the dense instances (p1 = 0.7). When comparing the
computational effort (Fig. 9(a)), the results obtained show that ABT dramatically dete-
riorates compared to synchronous algorithms. AFC-ng and AFC-tree show a small im-

1http://www.lirmm.fr/coconut/dischoco/
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Figure 8: Total number of messages sent and #ncccs performed on sparse problems
(p1 = 0.2)

provement compared to AFC. Regarding the number of exchanged messages (Fig. 9(b)),
ABT is again significantly the worst. AFC-ng and AFC-tree outperform AFC by a factor
3. On these dense graphs, AFC-tree behaves like AFC-ng because it does not benefit
from the pseudo-tree arrangement, which is like a chain-tree in such graphs.

6.2 Distributed sensor-mobile problems

The distributed sensor-mobile problem (SensorDisCSP) [2] is a benchmark based on a
real distributed problem. It consists of n sensors that track m mobiles. Each mobile
must be tracked by 3 sensors. Each sensor can track at most one mobile. A solution
must satisfy visibility and compatibility constraints. The visibility constraint defines
the set of sensors to which a mobile is visible. The compatibility constraint defines the
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Figure 9: Total number of messages sent and #ncccs performed on dense problems
(p1 = 0.7)

compatibility among sensors.
We encode SensorDisCSP in DisCSP as follows. Each agent represents one mobile.

There are three variables per agent, one for each sensor that we need to allocate to
the corresponding mobile. The domain of each variable is the set of sensors that can
detect the corresponding mobile. The intra-agent constraints between the variables
of one agent (mobile) specify that the three sensors assigned to the mobile must be
distinct and pairwise compatible. The inter-agent constraints between the variables of
different agents specify that a given sensor can be selected by at most one agent. In our
implementation of the DisCSP algorithms, this encoding is translated to an equivalent
formulation where we have three virtual agents for every real agent, each virtual agent
handling a single variable.
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Problems are characterized by 〈n, m, pc, pv〉, where n is the number of sensors,
m is the number of mobiles, each sensor can communicate with a fraction pc of the
sensors that are in its sensing range, and each mobile can be tracked by a fraction pv
of the sensors having the mobile in their sensing range. We present results for the class
〈25, 5, 0.4, pv〉, where we vary pv from 0.1 to 0.9 by steps of 0.05. Again, for each pair
(pc, pv) we generated 25 instances, solved 4 times each, and averaged over the 100 runs.

Fig. 10 presents the performance of AFC-tree, AFC-ng, AFC, and ABT obtained
on these SensorDisCSP with 〈n = 25, m = 5, pc = 0.4〉. When comparing the com-
putational effort, (Fig. 10(a)), ABT outperforms AFC whereas AFC-ng outperforms
both. AFC-tree outperforms all the compared algorithms. Concerning communication
load (Fig. 10(b)), the ranking of algorithms is similar to that on computational effort,
though differences tend to be smaller between ABT, AFC-ng and AFC-tree. AFC-tree
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Figure 10: Total number of messages sent and #ncccs performed on instances where
pc = 0.4
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remains the best on all problems except for a single point (pv = 1.5), where it is slightly
dominated by the other algorithms.

6.3 Distributed meeting scheduling problems

The Distributed Meeting Scheduling Problem (DMSP) is a truly distributed benchmark
where agents may not desire to deliver their personal information to a centralized agent
to solve the whole problem [27, 19]. The DMSP consists of a set of n agents having
a personal private calendar and a set of m meetings each taking place in a specified
location. Each agent knows the set of the k among m meetings he/she must attend.
It is assumed that each agent knows the travelling time between the locations where
his/her meetings will be held. The travelling time between two meetings mi and mj

is denoted by TravellingT ime(mi,mj). Solving the problem consists in satisfying the
following constraints: (i) all agents attending a meeting must agree on when it will occur,
(ii) an agent cannot attend two meetings at same time, (iii) an agent must have enough
time to travel from the location where he/she is to the location where the next meeting
will be held.

We encode the DMSP in DisCSP as follows. Each DisCSP agent represents a real
agent and contains k variables representing the k meetings to which the agent partici-
pates. These k meetings are selected randomly among the m meetings. The domain of
each variable contains the d × h slots where a meeting can be scheduled. A slot is one
hour long, and there are h slots per day and d days. There is an equality constraint for
each pair of variables corresponding to the same meeting in different agents. This equal-
ity constraint means that all agents attending a meeting must schedule it at the same
slot (constraint (i)). There is an arrival-time constraint between all variables/meetings
belonging to the same agent. The arrival-time constraint between two variables mi and
mj is |mi −mj| − duration > TravellingT ime(mi,mj), where duration is the duration
of every meeting. This arrival-time constraint allows us to express both constraints (ii)
and (iii). We place meetings randomly on the nodes of a uniform grid of size g × g
and the travelling time between two adjacent nodes is 1 hour. Thus, the travelling time
between two meetings equals the Euclidean distance between nodes representing the lo-
cations where they will be held. For varying the tightness of the arrival-time constraint
we vary the size of the grid on which meetings are placed. Problems are characterized by
〈n, m, k, d, h, g〉, where n is the number of agents, m is the number meetings, k is the
number of meetings/variables per agent, d is the number of days and h is the number of
hours per day, and g is the grid size. The duration of each meeting is one hour. In our
implementation of the DisCSP algorithms, this encoding is translated to an equivalent
formulation where we have k (number of meetings per agent) virtual agents for every
real agent, each virtual agent handling a single variable. We present results for the class
〈20, 9, 3, 2, 10, g〉 where we vary g from 2 to 22 by steps of 2. Again, for each g we
generated 25 instances, solved 4 times each, and averaged over the 100 runs.

On this class of meeting scheduling benchmarks AFC-tree and AFC-ng continue to
perform well. They are close to each other, with a slight gain for AFC-tree. They are
both significantly better that ABT and AFC, both for computational effort (Fig. 11(a))
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and communication load (Fig. 11(b)). Concerning the computational effort, ABT is the
slowest algorithm to solve such problems. AFC outperforms ABT by a factor of 2 at the
peak. However, ABT requires less messages than AFC.

6.4 Discussion

A first observation on these experiments is that AFC-ng is always better than AFC,
both in terms of exchanged messages and computational effort (#ncccs). A closer look
at the type of exchanged messages shows that the backtrack operation in AFC requires
exchanging a lot of not ok messages (approximately 50% of the total number of messages
sent by agents). This confirms the significance of using nogoods as justification of value
removals and allowing several concurrent backtracks in AFC-ng. A second observation
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Figure 11: Total number of messages sent and #ncccs performed on meeting scheduling
benchmarks where the number of meeting per agent is 3 (k = 3).
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on these experiments is that AFC-tree is almost always better than or equivalent to AFC-
ng both in terms of communication load and computational effort. When the graph is
sparse, AFC-tree benefits from running separate search processes in disjoint problem
subtrees. When agents are highly connected (dense graphs), AFC-tree runs on a chain-
tree pseudo-tree and thus mimics AFC-ng. A final observation on these experiments is
that ABT performs bad in dense graphs compared to synchronous algorithms.

7 Other Related Work

In [5, 31] the performance of asynchronous (ABT), synchronous (Synchronous Conflict
BackJumping, SCBJ), and hybrid approaches (ABT-Hyb) was studied. It is shown
that ABT-Hyb improves over ABT and that SCBJ requires less communication effort
than ABT-Hyb. In Interleaved Asynchronous Backtracking (IDIBT) [12], agents partic-
ipate in multiple processes of asynchronous backtracking. Each agent keeps a separate
AgentView for each search process in IDIBT. The number of search processes is fixed
by the first agent in the ordering. The performance of concurrent asynchronous back-
tracking [12] was tested and found to be ineffective for more than two concurrent search
processes [12]. Dynamic Distributed BackJumping (DDBJ) was presented in [22].
It is an improved version of the basic AFC. It combines the concurrency of an asyn-
chronous dynamic backjumping algorithm, and the computational efficiency of the AFC
algorithm, coupled with the possible conflict heuristics of dynamic value and variable
ordering. As in DDBJ, AFC-ng performs several backtracks simultaneously. However,
AFC-ng should not be confused with DDBJ. DDBJ is based on dynamic ordering and
requires additional messages to compute ordering heuristics. In AFC-ng, all agents that
received a ngd message continue search concurrently. Once a stronger CPA is received
by an agent, all nogoods already stored can be kept if consistent with that CPA.

8 Conclusion

Two new complete, asynchronous algorithms are presented. The first algorithm, Nogood-
Based Asynchronous Forward Checking (AFC-ng), is an improvement on AFC. Besides
its use of nogoods as justification of value removal, AFC-ng allows simultaneous back-
tracks going from different agents to different destinations. Thus, it enhances the asyn-
chronism of the forward-checking phase. The second algorithm, Asynchronous Forward-
Checking Tree (AFC-tree), is based on AFC-ng and is performed on a pseudo-tree ar-
rangement of the constraint graph. AFC-tree runs simultaneous AFC-ng processes on
each branch of the pseudo-tree to exploit the parallelism inherent in the problem. Our
experiments show that AFC-ng improves the AFC algorithm in terms of computational
effort and number of exchanged messages. Experiments also show that AFC-tree is the
most robust algorithm. It is particularly good when the problems are sparse because it
takes advantage of the pseudo-tree ordering.
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