Mohamed Wahbi

Redouane Ezzahir

Christian Bessiere

El Houssine Bouyakhf

Nogood-Based Asynchronous Forward-Checking Algorithms

We propose two asynchronous algorithms for solving Distributed Constraint Satisfaction Problems (DisCSPs). The first algorithm, AFC-ng, is a nogood-based version of Asynchronous Forward Checking (AFC). Besides its use of nogoods as justification of value removals, AFC-ng allows simultaneous backtracks going from different agents to different destinations. The second algorithm, Asynchronous Forward-Checking Tree (AFC-tree), is based on the AFC-ng algorithm and is performed on a pseudo-tree ordering of the constraint graph. AFC-tree runs simultaneous search processes in disjoint problem subtrees and exploits the parallelism inherent in the problem. We prove that AFC-ng and AFC-tree only need polynomial space. We compare the performance of these algorithms with other DisCSP algorithms on random DisCSPs and instances from real benchmarks: sensor networks and distributed meeting scheduling. Our experiments show that AFC-ng improves on AFC and that AFC-tree outperforms all compared algorithms, particularly on sparse problems.

Introduction

Constraint programming is an area in computer science that has gained increasing interest in recent years. Constraint programming is based on its powerful framework named constraint satisfaction problem (CSP). CSP is a general framework that can formalize many real world combinatorial problems such as resource allocation, car sequencing, natural language understanding, machine vision, etc. A constraint satisfaction problem consists in looking for solutions to a constraint network, that is, a set of assignments of values to variables that satisfy the constraints of the problem. These constraints represent restrictions on values combinations allowed for constrained variables.

There exist applications that are of a distributed nature. In this kind of applications the knowledge about the problem, that is, variables and constraints, is distributed among physical distributed agents. This distribution is mainly due to privacy and/or security requirements: constraints or possible values may be strategic information that should not be revealed to other agents that can be seen as competitors. Several applications in multi-agent coordination are of such kind. Examples of applications are sensor networks [START_REF] Jung | Argumentation as distributed constraint satisfaction: applications and results[END_REF][START_REF] Béjar | Sensor networks and distributed csp: communication, computation and complexity[END_REF], military unmanned aerial vehicles teams [START_REF] Jung | Argumentation as distributed constraint satisfaction: applications and results[END_REF], distributed scheduling problems [START_REF] Wallace | Constraint-based multi-agent meeting scheduling: effects of agent heterogeneity on performance and privacy loss[END_REF][START_REF] Rajiv | Taking dcop to the real world: Efficient complete solutions for distributed multi-event scheduling[END_REF], distributed resource allocation problems [START_REF] Petcu | A value ordering heuristic for distributed resource allocation[END_REF], log-based reconciliation [START_REF] Loong | Distributed log-based reconciliation[END_REF], Distributed Vehicle Routing Problems [START_REF] Léauté | Coordinating logistics operations with privacy guarantees[END_REF], etc. Therefore, the distributed framework distributed constraint satisfaction problems (DisCSP) is used to model and solve this kind of problems.

A DisCSP is composed of a group of autonomous agents, where each agent has control of some elements of information about the whole problem, that is, variables and constraints. Each agent owns its local constraint network. Variables in different agents are connected by constraints. Agents must assign values to their variables so that all constraints are satisfied. Hence, agents assign values to their variables, attempting to generate a locally consistent assignment that is also consistent with constraints between agents [START_REF] Yokoo | The distributed constraint satisfaction problem: Formalization and algorithms[END_REF][START_REF] Yokoo | Algorithms for distributed constraint satisfaction problems: A review[END_REF]. To achieve this goal, agents check the value assignments to their variables for local consistency and exchange messages to check consistency of their proposed 1 assignments against constraints that contain variables that belong to other agents.

Several distributed algorithms for solving DisCSPs have been developed in the last two decades. The first complete asynchronous search algorithm for solving DisCSPs is Asynchronous Backtracking (ABT) [START_REF] Yokoo | Distributed constraint satisfaction for formalizing distributed problem solving[END_REF][START_REF] Yokoo | Algorithms for distributed constraint satisfaction problems: A review[END_REF][START_REF] Bessiere | Asynchronous backtracking without adding links: a new member in the ABT family[END_REF]. ABT is an asynchronous algorithm executed autonomously by each agent in the distributed problem. Synchronous Backtrack (SBT) is the simplest DisCSP search algorithm. SBT performs assignments sequentially and synchronously. In SBT, only the agent holding a current partial assignment (CPA) performs an assignment or backtrack [START_REF] Zivan | Synchronous vs asynchronous search on DisCSPs[END_REF].

Extending SBT, [START_REF] Meisels | Asynchronous forward-checking for DisCSPs[END_REF] proposed the Asynchronous Forward-Checking (AFC). Besides assigning variables sequentially as is done in SBT, agents in AFC perform forward checking (FC [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF]) asynchronously. The key here is that each time an agent succeeds to extend the current partial assignment (by assigning its variable), it sends the CPA to its successor and copies of this CPA to all agents whose assignments are not yet on the CPA. When an agent receives a copy of the CPA, it performs the forward checking phase. In the forward checking phase all inconsistent values with assignments on the received CPA are removed. The forward checking operation is performed asynchronously where comes the name of the algorithm. When an agent generates an empty domain as a result of a forward checking, it informs all agents with unassigned variables on the (inconsistent) CPA. Afterwards, one of these agents will receive the CPA and will backtrack. Thereby, only one backtrack can be generated for a given CPA. Meisels and Zivan have shown in [START_REF] Meisels | Asynchronous forward-checking for DisCSPs[END_REF] that AFC is computationally more efficient than ABT. However, due to the manner in which the backtrack operation is performed, AFC does not draw all the benefit it could from the asynchronism of the FC phase.

In this work, we present two asynchronous algorithms for solving DisCSPs. The first one is based on Asynchronous Forward Checking (AFC) and uses nogood as justifications of value removals. We call it Nogood-Based Asynchronous Forward Checking (AFC-ng). Unlike AFC, AFC-ng allows concurrent backtracks to be performed at the same time coming from different agents having an empty domain to different destinations. As a result, several CPAs could be generated simultaneously by the destination agents. Thanks to the timestamps integrated in the CPAs, the strongest CPA coming from the highest level in the agent ordering will eventually dominate all others. Interestingly, the search process with the strongest CPA will benefit from the computational effort done by the (killed) lower level processes. This is done by taking advantage from nogoods recorded when processing these lower level processes.

The second algorithm we propose is based on AFC-ng and is named Asynchronous Forward-Checking Tree (AFC-tree). The main feature of the AFC-tree algorithm is using different agents to search non-intersecting parts of the search space concurrently. In AFC-tree, agents are prioritized according to a pseudo-tree arrangement of the constraint graph. The pseudo-tree ordering is build in a preprocessing step. Using this priority ordering, AFC-tree performs multiple AFC-ng processes on the paths from the root to the leaves of the pseudo-tree. The agents that are brothers are committed to concurrently find the partial solutions of their variables. Therefore, AFC-tree exploits the potential speed-up of a parallel exploration in the processing of distributed problems [START_REF] Freuder | Taking advantage of stable sets of variables in constraint satisfaction problems[END_REF]. A solution is found when all leaf agents succeed in extending the CPA they received. Furthermore, in AFC-tree privacy may be enhanced because communication is restricted to agents in the same branch of the pseudo-tree.

This paper is organized as follows. Section 2 gives the necessary background on DisCSPs and on the AFC algorithm. Sections 3 and 4 describe the algorithms AFCng and AFC-tree. Correctness proofs are given in Section 5. Section 6 presents an experimental evaluation of our proposed algorithms against other well-known distributed algorithms. Section 7 summarizes several related works and we conclude the paper in Section 8.

Background

Basic definitions and notations

The distributed constraint satisfaction problem (DisCSP) has been formalized in [START_REF] Yokoo | The distributed constraint satisfaction problem: Formalization and algorithms[END_REF] as a tuple (A, X , D, C), where A is a set of a agents {A 1 , . . . , A a }, X is a set of n variables {x 1 , . . . , x n }, where each variable x i is controlled by one agent in A. D 0 = {D 0 (x 1), . . . , D 0 (x n)} is a set of n domains, where D 0 (x i) is the initial set of possible values to which variable x i may be assigned. During search, values may be pruned from the domain. At any node, the set of possible values for variable x i is denoted by D(x i) and is called the current domain of x i . Only the agent who is assigned a variable has control on its value and knowledge of its domain. C is a set of constraints that specify the combinations of values allowed for the variables they involve. In this paper, we assume a binary distributed constraint network where all constraints are binary constraints (they involve two variables). A constraint c ij ∈ C between two variables x i and x j is a subset of the Cartesian product of their domains (c ij ⊆ D 0 (x i) × D 0 (x j)). The connectivity between the variables can be represented with a constraint graph G, where vertices represent the variables and edges represent the constraints [START_REF] Dechter | Constraint networks (survey)[END_REF].

For simplicity purposes, we consider a restricted version of DisCSP where each agent controls exactly one variable (a = n). Thus, we use the terms agent and variable interchangeably and we identify the agent ID with its variable index. Furthermore, all agents store a unique total order ≺ on agents. Thus, agents appearing before an agent A i ∈ A in the total order are the higher agents (predecessors) and conversely the lower agents (successors) are agents appearing after A i . For sake of clarity, we assume that the total order is the lexicographic ordering [A 1 , A 2 , . . . , A n]. Each agent maintains a counter, and increments it whenever it changes its value. The current value of the counter tags each generated assignment.

Definition 1 An assignment for an agent

A i ∈ A is a tuple (x i , v i , t i)
, where v i is a value from the domain of x i and t i is the tag value. When comparing two assignments, the most up to date is the one with the greatest tag t i .

Definition 2 A current partial assignment CPA is an ordered set of assignments {[(x 1 , v 1 , t 1), . . . , (x i , v i , t i)] | x 1 ≺ • • • ≺ x i }.
Two CPAs are consistent if they do not disagree on any variable value.

Definition 3 A timestamp associated with a CPA is an ordered list of counters [t 1 , t 2 , . . . , t i] where t j is the tag of the variable x j . When comparing two CPAs, the strongest one is that associated with the lexicographically greater timestamp. That is, the CPA with greatest value on the first counter on which they differ, if any, otherwise the longest one.

Definition 4

The AgentView of an agent A i ∈ A stores the most up to date assignments received from higher priority agents in the agent ordering. It has a form similar to a CPA and is initialized to the set of empty assignments {(x j , empty, 0) | x j ≺ x i }.

During search agents can infer inconsistent sets of assignments called nogoods.

Definition 5 A nogood ruling out value v k from the initial domain of variable x k is a clause of the form x i = v i ∧ x j = v j ∧ . . . → x k = v k , meaning that the assignment x k = v k is inconsistent with the assignments x i = v i , x j = v j , .
. .. The left hand side (lhs) and the right hand side (rhs) are defined from the position of →.

The current domain D(x i) of a variable x i contains all values from the initial domain D 0 (x i) that are not ruled out by a nogood. When all values of a variable x k are ruled out by some nogoods (D(x i) = ∅), these nogoods are resolved, producing a new nogood (ng). Let x j be the lowest variable in the left-hand side of all these nogoods and x j = v j . The lhs(ng) is the conjunction of the left-hand sides of all nogoods except x j = v j and rhs(ng) is x j = v j .

Asynchronous Forward-Checking

Asynchronous Forward-Checking (AFC) incorporates the idea of the forward-checking (FC) algorithm for centralized CSP [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF]. However, agents perform the forward checking phase asynchronously [START_REF] Meisels | Asynchronous forward-checking for distributed CSPs[END_REF][START_REF] Meisels | Asynchronous forward-checking for DisCSPs[END_REF]. As in synchronous backtracking, agents assign their variables only when they hold the current partial assignment (cpa). The cpa is a unique message (token) that is passed from one agent to the next one in the ordering. The cpa message carries the partial assignment (CPA) that agents attempt to extend into a complete solution by assigning their variables on it. When an agent succeeds in assigning its variable on the CPA, it sends this CPA to its successor. Furthermore, copies of the CPA are sent to all agents whose assignments are not yet on the CPA. These agents perform the forward checking asynchronously in order to detect as early as possible inconsistent partial assignments. The forward-checking process is performed as follows. When an agent receives a CPA, it updates the domain of its variable, removing all values that are in conflict with assignments on the received CPA. Furthermore, the shortest CPA producing the inconsistency is stored as justification of the value deletion.

When an agent generates an empty domain as a result of a forward-checking, it initiates a backtrack process by sending not ok messages. not ok messages carry the shortest inconsistent partial assignment which caused the empty domain. not ok messages are sent to all agents with unassigned variables on the (inconsistent) CPA. When an agent receives the not ok message, it checks if the CPA carried in the received message is consistent with its AgentView. If it is the case, the receiver stores the not ok, otherwise, the not ok is discarded. When an agent holding a not ok receives a CPA on a cpa message from its predecessor, it sends this CPA back in a backcpa message. When multiple agents reject a given assignment by sending not ok messages, only the first agent that will receive a cpa message from its predecessor and is holding a relevant not ok message will eventually backtrack. After receiving a new cpa message, the not ok message becomes obsolete when the CPA it carries is no longer a subset of the received CPA.

The manner in which the backtrack operation is performed is a major drawback of the AFC algorithm. The backtrack operation requires a lot of work from the agents. An improved backtrack method for AFC was described in Section 6 of [START_REF] Meisels | Asynchronous forward-checking for DisCSPs[END_REF]. Instead of just sending not ok messages to all agents unassigned in the CPA, the agent who detects the empty domain can itself initiate a backtrack operation. It sends a backtrack message to the last agent assigned in the inconsistent CPA in addition to the not ok messages to all agents not instantiated in the inconsistent CPA. The agent who receives a backtrack message generates (if it is possible) a new CPA that will dominate older ones thanks to the timestamp mechanism (see Definition 3).

Nogood-based Asynchronous Forward Checking

The nogood-based Asynchronous Forward-Checking (AFC-ng) is based on AFC. AFCng tries to enhance the asynchronism of the forward checking phase. The two main features of AFC-ng are the following. First, it uses the nogoods as justification of value deletions. Each time an agent performs a forward-check, it revises its initial domain, (including values already removed by a stored nogood) in order to store the best nogoods for removed values (one nogood per value). When comparing two nogoods eliminating the same value, the nogood with the highest possible lowest variable involved is selected (HPLV heuristic) [START_REF] Hirayama | The effect of nogood learning in distributed constraint satisfaction[END_REF]. As a result, when an empty domain is found, the resolvent nogood contains variables as high as possible in the ordering, so that the backtrack message is sent as high as possible, thus saving unnecessary search effort [START_REF] Bessiere | Asynchronous backtracking without adding links: a new member in the ABT family[END_REF].

Second, each time an agent A i generates an empty domain it no longer sends not ok messages. It resolves the nogoods ruling out values from its domain, producing a new nogood ng. ng is the conjunction of lhs of all nogoods stored by A i . Then, A i sends the resolved nogood ng in a ngd (backtrack) message to the lowest agent in ng. Hence, multiple backtracks may be performed at the same time coming from different agents having an empty domain. These backtracks are sent concurrently by these different agents to different destinations. The reassignment of the destination agents then happen simultaneously and generate several CPAs. However, the strongest CPA coming from the highest level in the agent ordering will eventually dominate all others. Agents use the timestamp (see Definition 3) to detect the strongest CPA. Interestingly, the search process of higher levels with stronger CPAs can use nogoods reported by the (killed) lower level processes, so that it benefits from their computational effort.

Description of the algorithm

AFC-ng agents execute the pseudo-code shown in Figs. 1 and2. Each agent A i stores a nogood per removed value in the NogoodStore. The other values not ruled out by a nogood form D(x i), the current domain of x i . Agent A i calls procedure AFC-ng in which it initializes its AgentView (line 1) by setting counters to zero (line 10). The AgentView contains a consistency flag that represents whether the partial assignment it holds is consistent. If A i is the initializing agent IA (the first agent in the agent ordering), it initiates the search by calling procedure Assign() (line 3). Then, a loop considers the reception and the processing of the possible message types.

When calling Assign() A i tries to find an assignment, which is consistent with its AgentView. If A i fails to find a consistent assignment, it calls procedure Backtrack() (line 15). If A i succeeds, it increments its counter t i and generates a CPA from its AgentView augmented by its assignment (line 13). Afterwards, A i calls procedure SendCPA(CPA) (line 14). If the CPA includes all agents assignments (A i is the lowest agent in the order, line 16), A i reports the CPA as a solution of the problem and marks the end flag true to stop the main loop (lines 17-18). Otherwise, A i sends forward the CPA to every agent whose assignments are not yet on the CPA (line 19). So, the next agent on the ordering (successor) will try to extend this CPA by assigning its variable on it while other agents will perform the forward-checking phase asynchronously to check its consistency.

Whenever A i receives a cpa message, procedure ProcessCPA is called (line 7). A i checks its AgentView status. If it is not consistent and the AgentView is a subset of the received CPA, this means that A i has already backtracked, then A i does nothing (line 20). Otherwise, if the received CPA is stronger than its AgentView, A i updates its AgentView and marks it consistent (lines [START_REF] Nguyen | Dynamic distributed backjumping[END_REF][START_REF] Petcu | A value ordering heuristic for distributed resource allocation[END_REF]. Procedure UpdateAgentView (lines 45-47) sets the AgentView and the NogoodStore to be consistent with the received CPA. Each nogood in the NogoodStore containing a value for a variable different from that on the received CPA will be deleted (line 47). Next, A i calls procedure Revise (line 24) to store nogoods for values inconsistent with the new AgentView or to try to find a better nogood for values already having one in the NogoodStore (line 50). A nogood is better according to the HPLV heuristic if the lowest variable in the body (lhs) of the nogood is higher. If A i generates an empty domain as a result of calling Revise, it calls procedure Backtrack (line 25), otherwise, A i calls procedure CheckAssign to check if it has to assign its variable (line 26). In CheckAssign(sender), A i calls procedure Assign to try to assign its variable only if sender is the predecessor of A i (i.e., CPA was received from the predecessor, line 27).

When every value of A i 's variable is ruled out by a nogood (line 25), the procedure Backtrack is called. These nogoods are resolved by computing a new nogood ng procedure AFC-ng() terminate : ProcessTerminate(msg);

procedure InitAgentView()

10. foreach (x j ≺ x i) do AgentV iew[j] ← {(x j , empty, 0)} ;
procedure Assign()

11. if (D(x i) = ∅) then 12. v i ← ChooseValue() ; t i ← t i +1; 13. CPA ← {AgentV iew ∪ (x i , v i , t i)} ; 14.
SendCPA(CPA); end ← true ; (line 28). ng is the conjunction of the left hand sides of all nogoods stored by A i in its NogoodStore. If the new nogood ng is empty, A i terminates execution after sending a terminate message to all agents in the system meaning that the problem is unsolvable (lines 29-31). Otherwise, A i updates its AgentView by removing assignments of every agent that is placed after the agent A j owner of rhs(ng) in the total order (lines 33-34). A i also updates its NogoodStore by removing obsolete nogoods (line 37). Obsolete nogoods are nogoods inconsistent with the AgentView or containing the assignment of x j (the right hand side of ng) (line 36). Finally, A i marks its AgentView as inconsistent, removes its last assignment (line 38) and it backtracks by sending one ngd message to agent A j (the right hand side of ng) (line 39). The ngd message carries the generated nogood (ng). A i remains in an inconsistent state until receiving a stronger CPA holding procedure ProcessCPA(msg) UpdateAgentView(msg.CPA) ;

23.

AgentV iew.Consistent ← true ;

24.

Revise() ;

25. if (D(x i) = ∅) then Backtrack(); 26.
else CheckAssign(msg.Sender);

procedure CheckAssign(sender) if (¬Consistent(ng,AgentView)) then remove(ng,NogoodStore);

procedure Revise()

48. foreach (v ∈ D 0 (x i)) do 49.
if (v is ruled out by AgentView) then at least one agent assignment with counter higher than that in the AgentView of A i . When a ngd message is received by an agent A i , it checks the validity of the received nogood (line 40). If the received nogood is consistent with the AgentView, this nogood is a valid justification for removing the value on its rhs. Then if the value on the rhs of the received nogood is already removed, A i adds the received nogood to its NogoodStore if it is better (according to the HPLV heuristic) than the current stored nogood. If the value on the rhs of the received nogood belongs to the current domain of x i , A i simply adds it to its NogoodStore. If the value on the rhs of the received nogood equals v i , the current value of A i , A i dis-instantiates its variable and calls the procedure Assign (line 42).

ProcessTerminate procedure is called when an agent receives a terminate message. It marks end flag true to stop the main loop (line 43). If the attached CPA is empty then there is no solution. Otherwise, the solution of the problem is retrieved from the CPA (line 44).

Asynchronous Forward-Checking Tree

In this section, we show how to extend our AFC-ng algorithm to the Asynchronous Forward-Checking Tree (AFC-tree) algorithm using a pseudo-tree arrangement of the constraint graph. To achieve this goal, agents are ordered a priori in a pseudo-tree such that agents in different branches of the tree do not share any constraint. AFC-tree does not address the process of ordering the agents in a pseudo-tree arrangement. Therefore, the construction of the pseudo-tree is done in a preprocessing step. Now, it is known from centralized CSPs that the performance of the search procedures tightly depends on the variable ordering. Thus, the task of constructing the pseudo-tree is important for a search algorithm like AFC-tree.

Pseudo-tree ordering

Any binary DisCSP can be represented by a constraint graph G = (X G , E G), whose vertices represent the variables and edges represent the constraints. Therefore, X G = X and for each constraint c ij ∈ C connecting two variables x i and x j there exists an edge {x i , x j } ∈ E G linking vertices x i and x j .

The concept of pseudo-tree arrangement of a constraint graph has been introduced first by Freuder and Quinn in [START_REF] Freuder | Taking advantage of stable sets of variables in constraint satisfaction problems[END_REF]. The purpose of this arrangement is to perform search in parallel on independent branches of the pseudo-tree in order to improve search in centralized constraint satisfaction problems.

Definition 6 A pseudo-tree arrangement T = (X T , E T) of a graph G = (X G , E G
) is a rooted tree with the same set of vertices as G (X G = X T) such that vertices in different branches of T do not share any edge in G. x 6

x 7

x 8

x 9

(a) a constraint graph G.

Level 1 Level 2 Level 3 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9
(b) a pseudo-tree arrangement T . c 26 , c 37 , c 38 , c 49 }. An example of a pseudo-tree arrangement T of this constraint graph is illustrated in Fig. 3(b). Notice that G and T have the same vertices (X G = X T). However, a new (dotted) edge ({x 1 , x 3 }) linking x 1 to x 3 is added to T where {x 1 , x 3 } / ∈ E G . Moreover, edges {x 1 , x 7 }, {x 1 , x 8 } and {x 1 , x 8 } belonging to the constraint graph G are not part of T . They are represented in T by dashed edges to show that constrained variables must be located in the same branch of T even if there is not an edge linking them.

From a pseudo-tree arrangement of the constraint graph we can define:

• A branch of the pseudo-tree is a path from the root to some leaf (e.g., {x 1 , x 4 , x 9 }).

• A leaf is a vertex that has no child (e.g., x 9).

• The children of a vertex are its descendants connected to it through tree edges (e.g., children(x 1) = {x 2 , x 3 , x 4 }).

• The descendants of a vertex x i are vertices belonging to the subtree rooted at x i (e.g., descendants(x 2) ={x 5 , x 6 } and descendants(x 1)={X \ x 1 }).

• The linked descendants of a vertex are its descendants constrained with it together with its children, (e.g., linkedDescendants(x 1) = {x 2 , x 3 , x 4 , x 7 , x 8 , x 9 }).

• The parent of a vertex is the ancestor connected to it through a tree edge (e.g., parent(x 9) = {x 4 }, parent(x 3) = {x 1 }).

• A vertex x i is an ancestor of a vertex x j if x i is the parent of x j or an ancestor of the parent of x j .

• The ancestors of a vertex x i is the set of agents forming the path from the root to x i 's parent (e.g., ancestors(x 8) = {x 1 , x 3 }).

The construction of the pseudo-tree can be processed by a centralized procedure. First, a system agent must be elected to gather information about the constraint graph. Such system agent can be chosen using a leader election algorithm like that presented in [START_REF] Hosame | Fault-tolerant distributed algorithm for election in complete networks[END_REF]. Once, all information about the constraint graph is gathered by the system agent, it can perform a centralized algorithm to build the pseudo-tree ordering. A decentralized modification of the procedure for building the pseudo-tree was introduced by Chechetka and Sycara in [START_REF] Chechetka | A decentralized variable ordering method for distributed constraint optimization[END_REF]. This algorithm allows the distributed construction of pseudo-trees without needing to deliver any global information about the whole problem to a single process.

Whatever the method (centralized or distributed) for building the pseudo-tree, the obtained pseudo-tree may require the addition of some edges not belonging to the original constraint graph. In the example presented in Fig. 3(b), a new edge linking x 1 to x 3 is added to the resulting pseudo-tree T . The structure of the pseudo-tree will be used for communication between agents. Thus, the added link between x 1 and x 3 will be used to exchange messages between them. However, in some distributed applications, the communication might be restricted to the neighboring agents (i.e., a message can be passed only locally between agents that share a constraint). The solution in such applications is to use a depth-first search tree (DFS-tree). DFS-trees are special cases of pseudo-trees where all edges belong to the original graph.

We present in Fig. 4 a simple distributed algorithm for the distributed construction of the DFS-tree named DistributedDFS algorithm. The DistributedDFS is similar to the algorithm proposed by Cheung in [START_REF] Cheung | Graph traversal techniques and the maximum flow problem in distributed computation[END_REF]. The DistributedDFS algorithm is a distribution of a DFS traversal of the constraint graph. Each agent maintains a set V isited where it stores its neighbours which are already visited (line 2). The first step is to design the root agent using a leader election algorithm (line 1). An example of leader election algorithm was presented by Abu-Amara in [START_REF] Hosame | Fault-tolerant distributed algorithm for election in complete networks[END_REF]. Once the root is designed, it can start the distributed construction of the DFS-tree (procedure CheckNeighbourhood call, line 3). The designed root initiates the propagation of a token, which is a unique message that will be circulated on the network until "visiting" all the agents of the problem.

When an agent x i receives the token, it marks all its neighbours included in the received message as visited (line 6). Next, x i checks if the token is sent back by a child. procedure distributedDFS()

1.
Select the root via a leader election algorithm ; 2. V isited ← ∅; end ← f alse ; 3. if (x i is the elected root) then CheckNeighbourhood() ; 4. while (¬end) do msg ← getMsg();

6. V isited ← V isited ∪ (neighbours(x i) ∩ msg.DF S) ; 7. if (msg.Sender ∈ children(x i)) then 8.
descendants(x i)← descendants(x i) ∪ msg.DF S ; ancestors(x i)← msg.DF S ;

12.

CheckNeighbourhood();

procedure CheckNeighbourhood()

13. if (neighbours(x i) = V isited) then 14. sendMsg : token(descendants(x i) ∪ {x i }) to parent(x i) ; 15. end ← true ; 16. else 17. select x j in neighbours(x i)\V isited ; 18. children(x i) ← children(x i) ∪ x j ; 19.
sendMsg : token(ancestors(x i) ∪ {x i }) to x j ; Figure 4: The distributed depth-first search construction algorithm.

If it is the case, x i sets all agents belonging to the subtree rooted at message sender (i.e., its child) as its descendants (lines 7-8). Otherwise, the token is received for the first time from the parent of x i . Thus, x i marks the sender as its parent (line 10) and all agents contained in the token (i.e., the sender and its ancestors) as its ancestors (line 11). Afterwards, x i calls the procedure CheckNeighbourhood to check if it has to pass on the token to an unvisited neighbour or to return back the token to its parent if all its neighbours are already visited.

The procedure CheckNeighbourhood checks if all neighbours are already visited (line 13). If it is the case, the agent x i sends back the token to its parent (line 14). The token contains the set DF S composed by x i and its descendants. Until this point the agent x i knows all its ancestors, its children and its descendants. Thus, the agent x i terminates the execution of DistributedDFS (line 15). Otherwise, agent x i chooses one of its neighbours (x j) not yet visited and designs it as a child (lines 17-18). Afterwards, x i passes on to x j the token where it puts the ancestors of the child x j (i.e., ancestors(x i) ∪ {x i }) (line 19). x 6

x 7

x 8

x 9

Figure 5: A DFS-tree arrangement of the constraint graph in Fig. 3(a).

Consider for example the constraint graph G presented in Fig. 3(a). Fig. 5 shows an example of a DFS-tree arrangement of the constraint graph G obtained by performing distributively the DistributedDFS algorithm. The DistributedDFS algorithm can be performed as follows. First, let x 1 be the elected root of the DFS-tree (i.e., the leader election algorithm elects the most connected agent). The root x 1 initiates the DFStree construction by calling procedure CheckNeighbourhood (line 3). Then, x 1 selects from its unvisited neighbours x 2 to be its child (lines 17-18). Next, x 1 passes on the token to x 2 where it put itself to be the ancestor of the receiver (x 2) (line 19). After receiving the token, x 2 updates the set of its visited neighbours (line 6) by marking x 1 (the only neighbour included in the token) visited. Afterwards, x 2 sets x 1 to be its parent and puts {x 1 } to be its set of ancestors (lines 10-11). Next, x 2 calls procedure CheckNeighbourhood (line 12). Until this point, x 2 has one visited neighbour (x 1) and two unvisited neighbours (x 5 and x 6). For instance, let x 2 chooses x 5 to be its child. Thus, x 2 sends the token to x 5 where it sets the DF S set to {x 1 , x 2 }. After receiving the token, x 5 marks its single neighbour x 2 as visited (line 6), sets x 2 to be its parent (line 10), sets {x 1 , x 2 } to be its ancestors ans sends the token back to x 2 where it puts itself. After receiving back the token from x 5 , x 2 adds x 5 to its descendants and selects the last unvisited neighbour (x 6) to be its child and passes the token to x 6 . In a similar way, x 6 returns back the token to x 2 . Then, x 2 sends back the token to its parent x 1 since all its neighbours have been visited. The token contains the descendants of x 1 ({x 2 , x 5 , x 6 }) on the subtree rooted at x 2 . After receiving the token back from x 2 , x 1 will select an agent from its unvisited neighbours {x 4 , x 7 , x 8 , x 9 }. Hence, the subtree rooted at x 2 where each agent knows its ancestors and its descendants is build without delivering any global information. The other subtrees respectively rooted at x 7 and x 4 are build in a similar manner. Thus, we obtain the DFS-tree shown in Fig. 5.

The AFC-tree algorithm

The AFC-tree algorithm is based on AFC-ng performed on a pseudo-tree ordering of the constraint graph (built in a preprocessing step). Agents are prioritized according to the pseudo-tree ordering in which each agent has a single parent and various children. Using this priority ordering, AFC-tree performs multiple AFC-ng processes on the paths from the root to the leaves. The root initiates the search by generating a CPA, assigning its value on it, and sending CPA messages to its linked descendants. Among all agents that receive the CPA, children perform AFC-ng on the sub-problem restricted to its ancestors (agents that are assigned in the CPA) and the set of its descendants. Therefore, instead of giving the privilege of assigning to only one agent, agents who are in disjoint subtrees may assign their variables simultaneously. AFC-tree thus exploits the potential speedup of a parallel exploration in the processing of distributed problems. The degree of asynchronism is enhanced. An execution of AFC-tree on a sample DisCSP problem is shown in Fig. 6. At time t 1 , the root x 1 sends copies of the CPA on cpa messages to its linked descendants. Children x 2 , x 3 and x 4 assign their values simultaneously in the received CPAs and then perform concurrently the AFC-tree algorithm. Agents x 7 , x 8 and x 9 only perform a forwardchecking. At time t 2 , x 9 finds an empty domain and sends a ngd message to x 1 . At the same time, other CPAs propagate down through the other paths. For instance, a CPA has propagated down from x 3 to x 7 and x 8 . x 7 detects an empty domain and sends a nogood to x 3 attached on a ngd message. For the CPA that propagates on the path (x 1 , x 2 , x 6), x 6 successfully assigned its value and initiated a solution detection. The same thing is going to happen on the path (x 1 , x 2 , x 5) when x [START_REF] Brito | Synchronous, asynchronous and hybrid algorithms for DisCSP[END_REF] (not yet instantiated) will receive the CPA from its parent x 2 . When x 1 receives the ngd message from x 9 , it initiates a new search process by sending a new copy of the CPA which will dominate all other CPAs where x 1 is assigned its old value. This new CPA generated by x 1 can then take advantage from efforts done by the obsolete CPAs. Consider for instance the subtree rooted at x 2 . If the value of x 2 is consistent with the value of x 1 on the new CPA, all nogoods stored on the subtree rooted at x 2 are still valid and a solution is reached on the subtree without any nogood generation.

In AFC-ng, a solution is reached when the last agent in the agent ordering receives the CPA and succeeds in assigning its variable. In AFC-tree, the situation is different because a CPA can reach a leaf agent without being complete. When all agents are assigned and no constraint is violated, this state is a global solution and the network has reached quiescence, meaning that no message is traveling through it. Such a state can be detected using specialized snapshot algorithms [START_REF] Chandy | Distributed snapshots: determining global states of distributed systems[END_REF], but AFC-tree uses a different mechanism that allows to detect solutions before quiescence. AFC-tree uses an additional type of messages called accept that informs parents of the acceptance of their CPA. Termination can be inferred earlier and the number of messages required for termination detection can be reduced. A similar technique of solution detection was used in the AAS algorithm [START_REF] Silaghi | Asynchronous aggregation and consistency in distributed constraint satisfaction[END_REF].

The mechanism of solution detection is as follows: whenever a leaf node succeeds in assigning its value, it sends an accept message to its parent. This message contains the CPA that was received from the parent incremented by the value-assignment of the leaf node. When a non-leaf agent A i receives accept messages from all its children that are all consistent with each other, all consistent with A i 's AgentView and with A i 's value, A i builds an accept message being the conjunction of all received accept messages plus A i 's value-assignment. If A i is the root a solution is found, and A i broadcasts this solution to all agents. Otherwise, A i sends the built accept message to its parent.

Description of the algorithm

We present in Fig. 7 only the procedures that are new or different from those of AFCng in Figs. 1 and2. In InitAgentView, the AgentView of A i is initialized to the set ancestors(A i) and t j is set to 0 for each agent (x j) in ancestors(A i) (line 11). The new data structure storing the received accept messages is initialized to the empty set (line 12). In SendCPA(CPA), instead of sending copies of the CPA to all agents not yet instantiated on it, A i sends copies of the CPA only to its linked descendants (linkedDescendants(A i), lines [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF][START_REF] Hirayama | The effect of nogood learning in distributed constraint satisfaction[END_REF]. When the set linkedDescendants(A i) is empty (i.e., A i is a leaf), A i calls the procedure SolutionDetection to build and send an accept message. In CheckAssign(sender), A i assigns its value if the CPA was received from its parent (line 16) (i.e., if sender is the parent of A i).

In ProcessAccept(msg), when A i receives an accept message from its child for the first time, or the CPA contained in the received accept message is stronger than that received before, A i stores the content of this message (lines 17-18) and calls the SolutionDetection procedure (line [START_REF] Meisels | Using additional information in DisCSP search[END_REF].

In SolutionDetection, if A i is a leaf (i.e., children(A i) is empty, line 20), it sends an accept message to its parent. The accept message sent by A i contains its AgentView incremented by its assignment (lines 20-21). If A i is not a leaf, it calls function BuildAccept to build an accept partial solution P A (line 23). If the returned partial solution P A is not empty and A i is the root, P A is a solution of the problem. Then, A i broadcasts it to other agents including the system agent and sets the end flag to true (line 25). Otherwise, A i sends an accept message containing P A to its parent (line 26).

In BuildAccept, if an accept partial solution is reached. A i generates a partial solution P A incrementing its AgentView with its assignment (line 27). Next, A i loops over the set of accept messages received from its children. If at least one child has never sent an accept message or the accept message is inconsistent with P A, then the partial solution has not yet been reached and the function returns empty (line 29). Otherwise, the partial solution P A is incremented by the accept message of child (line 30). Finally, the accept partial solution is returned (line 31).

Correctness Proofs

Theorem 1 The spatial complexity of AFC-ng (resp. AFC-tree) is polynomially bounded by O(nd) per agent.

Proof. 1 In AFC-ng, the size of nogoods is bounded by n, the total number of variables. In AFC-tree, the size of nogoods is bounded by h (h ≤ n), the height of the pseudo-tree. Now, on each agent, AFC-ng (resp. AFC-tree) only stores one nogood per removed value. Thus, the space complexity of AFC-ng is in O(nd) on each agent. AFC-tree also stores its set of descendants and ancestors, which is bounded by n on each agent. Therefore, AFC-tree has a space complexity in O(hd + n).

Lemma 1 AFC-ng is guaranteed to terminate.

Proof. 2 We prove by induction on the agent ordering that there will be a finite number of new generated CPAs (at most d n , where d is the size of the initial domain and n the number of variables.), and that agents can never fall into an infinite loop for a given CPA. The base case for induction (i = 1) is obvious. The only messages that x 1 can receive are ngd messages. All nogoods contained in these ngd messages have an empty lhs. Hence, values on their rhs are removed once and for all from the domain of x 1 . Now, x 1 only generates a new CPA when it receives a nogood ruling out its current value. Thus, the maximal number of CPAs that x 1 can generate equals the size of its initial domain (d). Suppose now that the number of CPAs that agents x 1 , . . . , x i-1 can generate is finite (and bounded by d i-1). Given such a CPA on [x 1 , . . . , x i-1], x i generates new CPAs (line 13, Fig. 1) only when it changes its assignment after receiving a nogood ruling out its current value v i . Given the fact that any received nogood can include, in its lhs, only the assignments of higher priority agents ([x 1 , . . . , x i-1]), this nogood will remain valid as long as the CPA on [x 1 , . . . , x i-1] does not change. Thus, x i cannot regenerate a new CPA containing v i without changing assignments on higher priority agents ([x 1 , . . . , x i-1]). Since there are a finite number of values on the domain of variable x i , there will be a finite number of new CPAs generated by x i (d i). Therefore, by induction we have that there will be a finite number of new CPAs (d n) generated by AFC-ng.

Let cpa be the strongest CPA generated in the network and A i be the agent that generated cpa. After a finite amount of time, all unassigned agents on cpa ([x i+1 , . . . , x n]) will receive cpa and thus will discard all other CPAs. Two cases occur. First case, at least one agent detects a dead-end and thus backtracks to an agent A j included in cpa (i.e., j ≤ i) forcing it to change its current value on cpa and to generate a new stronger CPA. Second case (no agent detects dead-end), if i < n, A i+1 generates a new stronger CPA by adding its assignment to cpa, else (i = n), a solution is reported. As a result, agents can never fall into an infinite loop for a given CPA and AFC-ng is thus guaranteed to terminate.

Lemma 2 AFC-ng cannot infer inconsistency if a solution exists.

Proof. 3 Whenever a stronger CPA or a ngd message is received, AFC-ng agents update their NogoodStore. Hence, for every CPA that may potentially lead to a solution, agents only store valid nogoods. In addition, every nogood resulting from a CPA is redundant with regard to the DisCSP to solve. Since all additional nogoods are generated by logical inference when a domain wipe-out occurs, the empty nogood cannot be inferred if the network is satisfiable. This mean that AFC-ng is able to produce all solutions.

Theorem 2 AFC-ng is correct.

Proof. [START_REF] Bessiere | Asynchronous backtracking without adding links: a new member in the ABT family[END_REF] The argument for soundness is close to the one given in [START_REF] Meisels | Asynchronous forward-checking for DisCSPs[END_REF][START_REF] Nguyen | Dynamic distributed backjumping[END_REF]. The fact that agents only forward consistent partial solution on the CPA messages at only one place in procedure Assign (line 14, Fig. 1), implies that the agents receive only consistent assignments. A solution is reported by the last agent only in procedure SendCPA(CPA) at line 17. At this point, all agents have assigned their variables, and their assignments are consistent. Thus the AFC-ng algorithm is sound. Completeness comes from the fact that AFC-ng is able to terminate and does not report inconsistency if a solution exists (Lemmas 1 and 2).

Theorem 3 AFC-tree algorithm is correct.

Proof. 5 AFC-tree agents only forward consistent partial assignments (CPAs). Hence, leaf agents receive only consistent CPAs. Thus, leaf agents only send accept message holding consistent assignments to their parent. Since a parent builds an accept message only when the accept messages received from all its children are consistent with each other and all consistent with its own value, the accept message it sends contains a consistent partial solution. The root broadcasts a solution only when it can build itself such an accept message. Therefore, the solution is correct and AFC-tree is sound.

From Lemma 1 we deduce that the AFC-tree agent of highest priority cannot fall into an infinite loop. By induction on the level of the pseudo-tree no agent can fall in such a loop, which ensures the termination of AFC-tree. AFC-tree performs multiple AFC-ng processes on the paths of the pseudo-tree from the root to the leaves. Thus, from Lemma 2, AFC-tree inherits the property that an empty nogood cannot be inferred if the network is satisfiable. As AFC-tree terminates, this ensures its completeness.

Experimental Evaluation

In this section we experimentally compare AFC-ng and AFC-tree to two other algorithms: AFC and ABT. Algorithms are evaluated on three benchmarks: uniform binary random DisCSPs, distributed sensor-mobile networks and distributed meeting scheduling problems. All experiments were performed on the DisChoco 2.0 platform1 [START_REF] Wahbi | DisChoco 2: A platform for distributed constraint reasoning[END_REF], in which agents are simulated by Java threads that communicate only through message passing. All algorithms are tested on the same static agents ordering using the dom/deg heuristic [START_REF] Bessiere | MAC and combined heuristics: Two reasons to forsake FC (and CBJ?) on hard problems[END_REF] and the same nogood selection heuristic (HPLV) [START_REF] Hirayama | The effect of nogood learning in distributed constraint satisfaction[END_REF]. For ABT we implemented an improved version of Silaghi's solution detection [START_REF] Silaghi | Generalized dynamic ordering for asynchronous backtracking on DisCSPs[END_REF] and counters for tagging assignments.

We evaluate the performance of the algorithms by communication load [START_REF] Lynch | Distributed Algorithms[END_REF] and computation effort. Communication load is measured by the total number of exchanged messages among agents during algorithm execution (#msg), including those of termination detection (system messages). Computation effort is measured by the number of non-concurrent constraint checks (#ncccs) [START_REF] Zivan | Message delay and DisCSP search algorithms[END_REF]. #ncccs is the metric used in distributed constraint solving to simulate the computation time.

Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are characterized by n, d, p 1 , p 2 , where n is the number of agents/variables, d is the number of values in each of the domains, p 1 the network connectivity defined as the ratio of existing binary constraints, and p 2 the constraint tightness defined as the ratio of forbidden value pairs. We solved instances of two classes of constraints graphs: sparse graphs 20, 10, 0.2, p 2 and dense ones 20, 10, 0.7, p 2 . We vary the tightness from 0.1 to 0.9 by steps of 0.05. For each pair of fixed density and tightness (p 1 , p 2) we generated 25 instances, solved 4 times each. We report average over the 100 runs.

Fig. 8 presents performance of AFC-tree, AFC-ng, AFC, and ABT running on the sparse instances (p 1 = 0.2). In terms of computational effort (Fig. 8(a)), we observe that at the complexity peak, AFC is the less efficient algorithm. It is better than ABT (the second worst) only on instances to the right of the complexity peak (overconstrained). On the most difficult instances, AFC-ng improves AFC the performance of standard AFC by a factor of 3.5 and outperforms ABT by a factor of 2. AFC-tree takes advantage of the pseudo-tree arrangement to improve the speed-up of AFC-ng. Concerning communication load (Fig. 8(b)), AFC dramatically deteriorates compared to all other algorithms. AFC-ng improves AFC by a factor of 7. AFC-ng exchanges slightly fewer messages than ABT in the over-constrained area whereas AFC-tree has the smallest communication load on all problems. Fig. 9 presents the results on the dense instances (p 1 = 0.7). When comparing the computational effort (Fig. 9(a)), the results obtained show that ABT dramatically deteriorates compared to synchronous algorithms. AFC-ng and AFC-tree show a small im- ABT is again significantly the worst. AFC-ng and AFC-tree outperform AFC by a factor 3. On these dense graphs, AFC-tree behaves like AFC-ng because it does not benefit from the pseudo-tree arrangement, which is like a chain-tree in such graphs.

Distributed sensor-mobile problems

The distributed sensor-mobile problem (SensorDisCSP) [START_REF] Béjar | Sensor networks and distributed csp: communication, computation and complexity[END_REF] We encode SensorDisCSP in DisCSP as follows. Each agent represents one mobile. There are three variables per agent, one for each sensor that we need to allocate to the corresponding mobile. The domain of each variable is the set of sensors that can detect the corresponding mobile. The intra-agent constraints between the variables of one agent (mobile) specify that the three sensors assigned to the mobile must be distinct and pairwise compatible. The inter-agent constraints between the variables of different agents specify that a given sensor can be selected by at most one agent. In our implementation of the DisCSP algorithms, this encoding is translated to an equivalent formulation where we have three virtual agents for every real agent, each virtual agent handling a single variable.

Problems are characterized by n, m, p c , p v , where n is the number of sensors, m is the number of mobiles, each sensor can communicate with a fraction p c of the sensors that are in its sensing range, and each mobile can be tracked by a fraction p v of the sensors having the mobile in their sensing range. We present results for the class 25, 5, 0.4, p v , where we vary p v from 0.1 to 0.9 by steps of 0.05. Again, for each pair (p c , p v) we generated 25 instances, solved 4 times each, and averaged over the 100 runs. Fig. 10 presents the performance of AFC-tree, AFC-ng, AFC, and ABT obtained on these SensorDisCSP with n = 25, m = 5, p c = 0.4 . When comparing the computational effort, (Fig. 10(a)), ABT outperforms AFC whereas AFC-ng outperforms both. AFC-tree outperforms all the compared algorithms. Concerning communication load (Fig. 10(b)), the ranking of algorithms is similar to that on computational effort, though differences tend to be smaller between ABT, AFC-ng and AFC-tree. AFC-tree 0.0⋅10 0 5.0⋅10 5 1.0⋅10 6 remains the best on all problems except for a single point (p v = 1.5), where it is slightly dominated by the other algorithms.

Distributed meeting scheduling problems

The Distributed Meeting Scheduling Problem (DMSP) is a truly distributed benchmark where agents may not desire to deliver their personal information to a centralized agent to solve the whole problem [START_REF] Wallace | Constraint-based multi-agent meeting scheduling: effects of agent heterogeneity on performance and privacy loss[END_REF][START_REF] Meisels | Using additional information in DisCSP search[END_REF]. The DMSP consists of a set of n agents having a personal private calendar and a set of m meetings each taking place in a specified location. Each agent knows the set of the k among m meetings he/she must attend.

It is assumed that each agent knows the travelling time between the locations where his/her meetings will be held. The travelling time between two meetings m i and m j is denoted by T ravellingT ime(m i , m j). Solving the problem consists in satisfying the following constraints: (i) all agents attending a meeting must agree on when it will occur, (ii) an agent cannot attend two meetings at same time, (iii) an agent must have enough time to travel from the location where he/she is to the location where the next meeting will be held. We encode the DMSP in DisCSP as follows. Each DisCSP agent represents a real agent and contains k variables representing the k meetings to which the agent participates. These k meetings are selected randomly among the m meetings. The domain of each variable contains the d × h slots where a meeting can be scheduled. A slot is one hour long, and there are h slots per day and d days. There is an equality constraint for each pair of variables corresponding to the same meeting in different agents. This equality constraint means that all agents attending a meeting must schedule it at the same slot (constraint (i)). There is an arrival-time constraint between all variables/meetings belonging to the same agent. The arrival-time constraint between two variables m i and m j is |m im j |duration > T ravellingT ime(m i , m j), where duration is the duration of every meeting. This arrival-time constraint allows us to express both constraints (ii) and (iii). We place meetings randomly on the nodes of a uniform grid of size g × g and the travelling time between two adjacent nodes is 1 hour. Thus, the travelling time between two meetings equals the Euclidean distance between nodes representing the locations where they will be held. For varying the tightness of the arrival-time constraint we vary the size of the grid on which meetings are placed. Problems are characterized by n, m, k, d, h, g , where n is the number of agents, m is the number meetings, k is the number of meetings/variables per agent, d is the number of days and h is the number of hours per day, and g is the grid size. The duration of each meeting is one hour. In our implementation of the DisCSP algorithms, this encoding is translated to an equivalent formulation where we have k (number of meetings per agent) virtual agents for every real agent, each virtual agent handling a single variable. We present results for the class 20, 9, 3, 2, 10, g where we vary g from 2 to 22 by steps of 2. Again, for each g we generated 25 instances, solved 4 times each, and averaged over the 100 runs.

On this class of meeting scheduling benchmarks AFC-tree and AFC-ng continue to perform well. They are close to each other, with a slight gain for AFC-tree. They are both significantly better that ABT and AFC, both for computational effort (Fig. 11(a)) and communication load (Fig. 11(b)). Concerning the computational effort, ABT is the slowest algorithm to solve such problems. AFC outperforms ABT by a factor of 2 at the peak. However, ABT requires less messages than AFC.

Discussion

A first observation on these experiments is that AFC-ng is always better than AFC, both in terms of exchanged messages and computational effort (#ncccs). A closer look at the type of exchanged messages shows that the backtrack operation in AFC requires exchanging a lot of not ok messages (approximately 50% of the total number of messages sent by agents). This confirms the significance of using nogoods as justification of value removals and allowing several concurrent backtracks in AFC-ng. A second observation 0.0⋅10 0 2.0⋅10 6 4.0⋅10 6 6.0⋅10 6 8.0⋅10 6 1.0⋅10 7 1.2⋅10 on these experiments is that AFC-tree is almost always better than or equivalent to AFCng both in terms of communication load and computational effort. When the graph is sparse, AFC-tree benefits from running separate search processes in disjoint problem subtrees. When agents are highly connected (dense graphs), AFC-tree runs on a chaintree pseudo-tree and thus mimics AFC-ng. A final observation on these experiments is that ABT performs bad in dense graphs compared to synchronous algorithms.

Other Related Work

In [START_REF] Brito | Synchronous, asynchronous and hybrid algorithms for DisCSP[END_REF][START_REF] Zivan | Synchronous vs asynchronous search on DisCSPs[END_REF] the performance of asynchronous (ABT), synchronous (Synchronous Conflict BackJumping, SCBJ), and hybrid approaches (ABT-Hyb) was studied. It is shown that ABT-Hyb improves over ABT and that SCBJ requires less communication effort than ABT-Hyb. In Interleaved Asynchronous Backtracking (IDIBT) [START_REF] Hamadi | Interleaved backtracking in distributed constraint networks[END_REF], agents participate in multiple processes of asynchronous backtracking. Each agent keeps a separate AgentView for each search process in IDIBT. The number of search processes is fixed by the first agent in the ordering. The performance of concurrent asynchronous backtracking [START_REF] Hamadi | Interleaved backtracking in distributed constraint networks[END_REF] was tested and found to be ineffective for more than two concurrent search processes [START_REF] Hamadi | Interleaved backtracking in distributed constraint networks[END_REF]. Dynamic Distributed BackJumping (DDBJ) was presented in [START_REF] Nguyen | Dynamic distributed backjumping[END_REF]. It is an improved version of the basic AFC. It combines the concurrency of an asynchronous dynamic backjumping algorithm, and the computational efficiency of the AFC algorithm, coupled with the possible conflict heuristics of dynamic value and variable ordering. As in DDBJ, AFC-ng performs several backtracks simultaneously. However, AFC-ng should not be confused with DDBJ. DDBJ is based on dynamic ordering and requires additional messages to compute ordering heuristics. In AFC-ng, all agents that received a ngd message continue search concurrently. Once a stronger CPA is received by an agent, all nogoods already stored can be kept if consistent with that CPA.

Conclusion

Two new complete, asynchronous algorithms are presented. The first algorithm, Nogood-Based Asynchronous Forward Checking (AFC-ng), is an improvement on AFC. Besides its use of nogoods as justification of value removal, AFC-ng allows simultaneous backtracks going from different agents to different destinations. Thus, it enhances the asynchronism of the forward-checking phase. The second algorithm, Asynchronous Forward-Checking Tree (AFC-tree), is based on AFC-ng and is performed on a pseudo-tree arrangement of the constraint graph. AFC-tree runs simultaneous AFC-ng processes on each branch of the pseudo-tree to exploit the parallelism inherent in the problem. Our experiments show that AFC-ng improves the AFC algorithm in terms of computational effort and number of exchanged messages. Experiments also show that AFC-tree is the most robust algorithm. It is particularly good when the problems are sparse because it takes advantage of the pseudo-tree ordering.

19 .Figure 1 :

 191 Figure 1: Nogood-based AFC algorithm running by agent A i (Part 1).

Figure 2 :

 2 Figure 2: Nogood-based AFC algorithm running by agent A i (Part 2).

Fig. 3 (

 3 Fig. 3(a) shows an example of a constraint graph G of a problem involving 9 variables X = X G = {x 1 , . . . , x 9 } and 10 constraints C = {c 12 , c 14 , c 17 , c 18 , c 19 , c 25 ,

Figure 3 :

 3 Figure 3: Example of a pseudo-tree arrangement of a constraint graph.

else 10 .

 10 parent(x i)← msg.Sender ; 11.

Figure 6 :

 6 Figure 6: An example of the AFC-tree execution.

Figure 8 :

 8 Figure 8: Total number of messages sent and #ncccs performed on sparse problems (p 1 = 0.2)

Figure 9 :

 9 Figure 9: Total number of messages sent and #ncccs performed on dense problems (p 1 = 0.7)

Figure 10 :

 10 Figure 10: Total number of messages sent and #ncccs performed on instances where p c = 0.4

10 0

 10 n = 20, m = 9, k = 3, d = 2, h = n = 20, m = 9, k = 3, d = 2, h = 10

Figure 11 :

 11 Figure 11: Total number of messages sent and #ncccs performed on meeting scheduling benchmarks where the number of meeting per agent is 3 (k = 3).

1 .

 1 InitAgentView(); 2. end ← false; AgentV iew.Consistent ← true; 3. if (A i = IA) then Assign(); 4. while (¬end) do

	5.	msg ← getMsg();
	6.	switch (msg.type) do
	7.	cpa	: ProcessCPA(msg);
	8.		

ngd

: ProcessNogood(msg);

9.

 20. if (¬AgentV iew.Consistent ∧ AgentV iew ⊂ msg.CP A) then return ; 21. if (msg.CP A is stronger than AgentV iew) then

	22.

http://www.lirmm.fr/coconut/dischoco/

procedure AFC-tree()

cpa

: ProcessCPA(msg);

procedure SendCPA(CPA)

foreach (desc ∈ linkedDescendants(A i)) do sendMsg : cpa(CPA) to desc

SolutionDetection() ;

procedure SolutionDetection()

P A ← BuildAccept() ;

24.

if

if (A i = root) then broadcastMsg : terminate(P A); end ←true ;

26.

else sendMsg : accept(P A) to parent(A i) ;

function BuildAccept()

)) then return ∅ ;