
HAL Id: lirmm-00694569
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00694569v2

Submitted on 2 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sum-Max Graph Partitioning Problem
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau, Jean-Claude König

To cite this version:
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau, Jean-Claude König. Sum-Max Graph Parti-
tioning Problem. RR-12015, 2012. �lirmm-00694569v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00694569v2
https://hal.archives-ouvertes.fr

On The Sum-Max Graph Partitioning ProblemI

Rémi Watriganta, Marin Bougereta, Rodolphe Giroudeaua, Jean-Claude
Königa

aLIRMM
Université de Montpellier II

UMR 5506 CNRS
161 rue Ada

34392 Montpellier Cedex 5, France

Abstract

This paper tackles the following problem: given a connected graph G = (V,E)
with a weight function on its edges and an integer k ≤ |V |, find a partition of V
into k clusters such that the sum (over all pairs of clusters) of the heaviest edges
between the clusters is minimized. We first prove that this problem (and even
the unweighted variant) cannot be approximated within a factor of O(n1−ε)
unless P = NP, and cannot admit an FPT algorithm unless FPT = W [1].
Next, we develop several algorithms: we first present a greedy algorithm and
prove that it achieves a tight ratio smaller than k

2 . Concerning the unweighted
version of the problem, we study how the diameter of the input graph can in-
fluence its complexity, by obtaining negative results for graphs of low diameter,
positive results for graphs of high diameter, and a polynomial-time approxi-
mation algorithm with an approximation ratio smaller than k

2 and depending
on the diameter. We also highlight a link between the k-sparsest subgraph
problem and the unweighted version. This allows us to develop several constant
ratio approximation algorithms running in exponential time for general graphs,
and in polynomial time in some restricted graph classes. Finally, we discuss
the exact resolution for fixed k and the connections to a graph homomorphism
problem.

Keywords: graph partitioning problem, approximation, combinatorial
optimization

1. Introduction

1.1. Definition of the Problem
Graph partitioning problems are classical combinatorial optimization prob-

lems, and are the core of many practical issues [1]. They commonly consist in

IThis work has been funded by grant ANR 2010 BLAN 021902
Email addresses: watrigant@lirmm.fr (Rémi Watrigant), bougeret@lirmm.fr (Marin

Bougeret), rgirou@lirmm.fr (Rodolphe Giroudeau), konig@lirmm.fr (Jean-Claude König)

Preprint submitted to Theoretical Computer Science October 2, 2012

finding a partition of vertices of a given graph into subsets (or clusters) according
to different constraints and objective functions depending on the application.
In this paper, we focus on minimizing the sum, over all pair of clusters, of the
heaviest edges between the clusters. More formally, we study the following op-
timization problem:

sum-max graph partitioning (SM-GP)
Input: A connected graph G = (V,E), w : E → N, k ≤ |V |
Output: A k-partition {V1, ..., Vk} of V with Vi 6= ∅ for all i ∈ {1, ..., k}

Goal: Minimize cost(V1, ..., Vk) =

k∑

i,j=1
i>j

max
u∈Vi
v∈Vj

w(u, v)

We denote by U-sum-max graph partitioning (U-SM-GP) the unweighted
version of the problem, where w(e) = 1 ∀e ∈ E. The threshold value for the
associated decision version of the problem will be denoted by C. All graphs
studied here are supposed to be simple, non oriented and connected, unless oth-
erwise stated. Thus, it is easy to remark that any k-partition has a cost of at
least (k − 1) mine∈E w(e).

1.2. Applications and Related Work

Let us now point out some interesting links between SM-GP and several
classical combinatorial problems:

• Firstly, one can mention all graph partitioning problems using different
objective functions. Among them, one may want to minimize the sum
of all edge weights between each pair of clusters (instead of the heaviest
only), leading to the classical min-k-cut problem which has been exten-
sively studied on the side of complexity [2], exact algorithms [3], approx-
imability [4] or parameterized complexity [5]. Another objective function
is the optimization of the sum of the edge weights (or the heaviest one)
inside each cluster [6]. Finally, one can combine these objectives and min-
imize the cut ratio of the partition [7]. Some studies generalize many of
these problems though one natural formalization: [8] gives computational
lower bounds when the objective is to maximize some function over the
inner edges of the clusters, [9] designs an O∗(2n) algorithm for a whole
class of partition problems such as max-k-cut, k-domatic partition or
k-colouring, and [10] defines the M-partitioning problem where the
objective is to find a partition of the vertices respecting some constraints
defined by a matrix M .

• Secondly, the unweighted version of our graph partitioning problem can be
viewed as a graph homomorphism problem1 [11]. Indeed, we are looking

1Recall that an homomorphism from a graph G = (VG, EG) to a graph H = (VH , EH) is
a function h : VG → VH such that {x, y} ∈ EG implies {h(x), h(y)} ∈ EH .

2

for an homomorphism from G to a target graph with k vertices and as
few edges as possible, but with the additional constraints that (a) the
homomorphism must be edge-surjective and (b) the target graph must
be reflexive, i.e. contains a loop on every vertex. Several papers of N.
Vikas [12, 13, 14, 15] study the problem of deciding whether a graph G
admits such an homomorphism (called compaction) to a fixed graph H, by
restricting G or H to special graph classes in order to obtain polynomial
or NP-hardness results. In Section 6, we describe how these results can
help in the design of exact algorithms for U-SM-GP.

1.3. Contributions and Organization of the Paper

In this paper we describe both negative and positive results for sum-max
graph partitioning and its unweighted variant:

• On the negative side, we show in Section 2 that when k is part of the in-
put, the problem, and its unweighted variant are O(n1−ε) inapproximable
unless P = NP for all 0 < ε ≤ 1, and W [1]-hard for the parameter k.

Then, on the positive side, we present several algorithms together with their
approximation analysis:

• First, we present in Section 3 a natural greedy algorithm and show that its
approximation ratio for SM-GP is better than k/2. Moreover, we show
that the analysis is tight.

• Then in Section 4, for the unweighted version U-SM-GP, we show how
the diameter of the input graph can influence its complexity, by obtaining
negative results for graphs of low diameter, positive results for graphs of

high diameter, and a polynomial-time (k2 − d+ 2 + d2−3d
2(k−1))-approximation

algorithm where d is the diameter of the input graph.

• Also for the unweighted version, we present in Section 5 a link with the
k-sparsest subgraph problem and a general algorithm which provides

(2 − 2/k)-approximated solutions and runs in O(k2nω
k−1
3) time for gen-

eral graphs (where ω < 2.376 is the matrix multiplication exponent), in
polynomial time for split graphs and in FPT time in interval graphs, and
which provides (2 − 2/k + 1

ε)-approximated solution in proper interval
graphs in polynomial time for every fixed ε > 0. Still using the link with
k-sparsest subgraph, we provide a polynomial de-randomized approx-

imation algorithm achieving a ratio of (1 + m(k−2)
n(n−1)).

• Finally, in Section 6 we present a method to solve the weighted problem
for k = 3 and the unweighted problem for k = 4, and we use a negative
result of the compaction problem presented above to suggest that this
method may be hard to generalize for all fixed k. We also discuss some
open problems.

3

1.4. Notations

Recall that all graphs studied here are supposed to be simple, non oriented
and connected, unless otherwise stated. Given a graph G = (V,E) and w :
E → N, we define as usually n = |V | and m = |E|. A vertex ω ∈ V is called a
universal vertex of G if {ω, v} ∈ E for all v 6= ω. We denote by α(G) the size of
a maximum independent set of G (i.e. a set of pairwise non-adjacent vertices).
The eccentricity of a vertex is the greatest distance between this vertex and any
other vertex (in terms of number of edges of a shortest path connecting these
vertices). The diameter of G is the maximum eccentricity over all vertices, and
will be denoted by diam(G). Given a partition P = {V1, ..., Vk} of V , we define

cost(V1, ..., Vk) =
∑k
i=1

∑k
j=i+1 maxu∈Vi,v∈Vj

w(u, v). Moreover, we note G/P
the quotient graph obtained by the partition, i.e. the graph with {V1, ..., Vk} as
vertex set, and with an edge {Vi, Vj} of cost maxu∈Vi,v∈Vj

w(u, v) if there exists
in G an edge between a vertex of Vi and a vertex of Vj . For other definitions of
graph theory, approximation and parameterized complexity, we refer the reader
to the classical literature.

2. Computational Lower Bounds

In this section, we provide a reduction which highlights the intractability
of sum-max graph partitioning (and even the unweighted version), both
from approximation and parameterized complexity. Indeed, we show that the
problem is W [1]-hard for the parameter k, and that unless P = NP, we cannot
expect a O(n1−ε)-approximation algorithm for any fixed 0 < ε ≤ 1.

Theorem 1. U-sum-max graph partitioning (and thus the weighted ver-
sion) is W [1]-hard for the parameter k, and cannot be approximated within a
O(n1−ε) factor for any fixed 0 < ε ≤ 1, unless P = NP.

Proof. We show a gap preserving reduction from independent set to U-
SM-GP. It is known [16] that for any constant r ≤ 1, the following problem is
NP-complete:

gapr independent set
Input: a graph G = (V,E), k ∈ N
Output: Decide whether α(G) ≥ k or α(G) ≤ rk.

Let G = (V,E) be a graph, and k ∈ N. We construct an instance Φ′ of U-
sum-max graph partitioning, composed of a graph G′ = (V ′, E′), together
with r′ ≥ 1 and k′ ∈ N, such that:

• α(G) ≥ k ⇒ OPT (Φ′) ≤ k′

• α(G) ≤ rk ⇒ OPT (Φ′) ≥ r′k′

• r′ = O(1
r)

4

Where OPT (Φ′) is the cost of an optimal solution of U-SM-GP for Φ′.

The construction is as follows: G′ = (V ′, E′) is a copy of G, plus a universal
vertex ω. We define k′ = k + 1 and r′ = 1

2r . Notice that this reduction can
clearly be performed in polynomial time.
Suppose that α(G) ≥ k and let S = {s1, ..., sk} be an independent set of size k
in G, with si ∈ V for all i ∈ {1, ..., k}. We construct the following k′-partition
{V1, ..., Vk′} of V ′: Vi = {si} for all i ∈ {1, ..., k}, and Vk+1 = V ′\S. By
construction, it is clear that cost(V1, ..., Vk′) = k, and thus OPT (Φ′) ≤ k′.
Suppose now α(G) ≤ rk and let {V1, ..., Vk′} be any k′-partition of G′. Because
ω is an universal vertex, it is clear that the cost of this solution will be at
least k, plus the minimum number of edges of any graph with k nodes that
does not contain an independent set of size rk, i.e. OPT (Φ′) ≥ k + x, where
x = min{|EH | : H = (VH , EH) such that |VH | = k and α(H) ≤ rk}. Then,
since every graph H on nH vertices and mH edges contains an independent set
of size at least nH

2mH+nH
, we have:

rk ≥ α(H) ≥ k
2x
k+1

Which gives the following bound (we can suppose that rk ≥ 1):

OPT (Φ′) ≥ k +
k2

2rk
− k

2
≥ k + 1

2r
= r′k′

Thus, we have a gap of r′ = 1
2r , where r is arbitrary small.

Finally, notice that the parameter k from independent set is preserved through
the reduction (k′ = k+ 1). Since a gap preserving reduction is a special case of
polynomial reduction, and since independent set is a well known W [1]-hard
problem, this reduction also proves the W [1]-hardness of our problem.

3. Approximation Algorithm for the General Case

In this section we consider a simple greedy algorithm for sum-max graph
partitioning and prove that its approximation ratio is better than k/2. More-
over, we show that our analysis is tight.

3.1. Presentation of the Greedy Algorithm

It is clear that a feasible solution can be obtained by removing edges, until the
number of connected components (which will represent clusters) reaches k. As
the cost of such a solution depends on the weight of removed edges, it is natural
to consider them in non-decreasing order of weights. Thus, we consider the
greedy algorithm given by Algorithm 1, whose running time is clearly bounded
by O(|E| log |E|). Actually, this algorithm corresponds to the split algorithm
of [4], which gives (2−2/k)-approximated solutions for the min-k-cut problem.

5

Algorithm 1 a greedy algorithm for sum-max graph partitioning

Sort E in non-decreasing order of weights (ties are broken arbitrarily)
j ← 0
for i = 1 to k − 1 do

while G has i connected components do
G← G\{ej}
j ← j + 1

end while
// we denote by wi the weight of the last removed edge

end for
return Connected components of G

3.2. Analysis of the Algorithm

3.2.1. Notations

Let I = (G, k) be an instance of sum-max graph partitioning. We

define Ωk = k(k−1)
2 , and θ = max{ w(e)

w(e′) : e, e′ ∈ E, e 6= e′, w(e′) ≥ w(e)}. For a

solution S = {S1, ..., Sk} of the problem, we associate the set CS = {c1, ..., cps}
of edges of maximum weight between each pair of clusters, with pS ≤ Ωk. The
value of the solution is then defined by cost(S) =

∑pS
i=1 w(ci).

LetA = {A1, ..., Ak} be the solution returned by Algorithm 1, and {iA1, ...,
iAi}

the partial solution at the beginning of step i. The while loop consists in sepa-
rating a cluster iAt (for some t ∈ {1, ..., i}) into two clusters iA1

t and iA2
t . Thus,

when separating iAt, we add to CA the edge of maximum weight between iA1
t

and iA2
t , and at most (i − 1) edges (called the unexpected edges) between iA1

t

or iA2
t and the other clusters (cf Figure 1). We thereby add to the solution

value one term wi (between iA1
t and iA2

t) and (i− 1) terms (αji)j=1..(i−1). For
j ∈ {1, ..., (i− 1)}, if the edge of maximum weight between iAt and iAj has one

endpoint in iA1
t (resp. iA2

t), then αji is equal to the edge of maximum weight
between iA2

t (resp. iA1
t) and iAj , or 0 if the two clusters are not adjacent.

By definition, we have

cost(A) =

k−1∑

i=1

(wi +

i−1∑

j=1

αji) (1)

3.2.2. Preliminaries

Let us now state several properties of the algorithm that will be the base of
the approximation result (Theorem 2). First, It is clear by construction that
w1 ≤ w2 ≤ . . . ≤ wk−1. Then, we have the following result:

Lemma 1. Let us consider the beginning of step i, and the corresponding i
partition {iA1, ...,

iAi}. Then, for any t ∈ {1, . . . , i} we can upper bound the

6

iA1
t

iA2
t

iAt

i− 1

iA1
iAi

iAt−1
iAt+1

wi

Figure2: Dashed lines represent edges of maximum weight between iAt and other clusters, already
in CA, solid lines represent the at most (i − 1) new edges added to CA.

Preliminaries
Let us now state several properties of the algorithm that will be the base of the approximation

result (Theorem 3).

Remark 1. It is clear by construction that w1 ≤ w2 ≤ . . . ≤ wk−1

Lemma 1. Let us consider the beginning of step i, and the corresponding i partition {iA1, ...,
iAi}.

Then, for any t ∈ {1, . . . , i} we can upper bound the total weights of the heaviest edges outcoming
from iAt in the following way

i∑

j=1
j "=t

w(et,j) ≤
i−1∑

j=1

wj ,

where et,j denotes the edge of maximum weight between iAt and iAj .

Proof. We prove it by induction over i. Statement is clearly true for the first steps (case i = 1 is
meaningless since we have only 1 cluster, and case i = 2 is true since there is only two clusters,
and thus only one edge of maximum weight between them). We are at the beginning of Step i + 1:
during Step i, iAt has been separated into iA1

t and iA2
t , thus incurring an additional weight of wi.

For j0 $= t, notice that edge ej0,t (edge between iAj0 and iAt, before the split) is now replaced by
two edges ej0,t1 and ej0,t2 , with max(w(ej0,t1), w(ej0,t2)) = w(ej0,t). Let us now bound the weight
of edges out-coming from iAj0 . W.l.o.g., suppose that w(ej0,t1) = w(ej0,t), and let iSj0 be the sum
of all heaviest edges linking iAj0 to each one of the other clusters (including iA1

t and iA2
t . Thus, we

have

Figure 1: Dashed lines represent edges of maximum weight between iAt and other clusters,
already in CA, solid lines represent the at most (i− 1) new edges added to CA.

total weights of the heaviest edges outcoming from iAt in the following way

i∑

j=1
j 6=t

w(et,j) ≤
i−1∑

j=1

wj ,

where et,j denotes the edge of maximum weight between iAt and iAj.

Proof. We prove it by induction over i. Statement is clearly true for the first
steps (case i = 1 is meaningless since we have only 1 cluster, and case i = 2 is
true since there is only two clusters, and thus only one edge of maximum weight
between them). We are at the beginning of Step i + 1: during Step i, iAt has
been separated into iA1

t and iA2
t , thus incurring an additional weight of wi.

For j0 6= t, notice that edge ej0,t (edge between iAj0 and iAt, before the split)
is now replaced by two edges ej0,t1 and ej0,t2 , with max(w(ej0,t1), w(ej0,t2)) =
w(ej0,t). Let us now bound the weight of edges out-coming from iAj0 . W.l.o.g.,
suppose that w(ej0,t1) = w(ej0,t), and let iSj0 be the sum of all heaviest edges
linking iAj0 to each one of the other clusters (including iA1

t and iA2
t . Thus, we

have

iSj0 =

i∑

j=1
j 6=j0,j 6=t

w(ej0,j) + w(ej0,t1)︸ ︷︷ ︸
w(ej0,t)

+w(ej0,t2)︸ ︷︷ ︸
≤wi

≤
i−1∑

j=1

wj + wi using the induction hypothesis

Same arguments hold for sets iA1
t and iA2

t , which completes the proof.

7

Corollary 1. Let us consider the beginning of step i, and the corresponding i
partition {iA1, ...,

iAi}. When splitting iAt, the total weight of the unexpected

edges is upper bounded as follows:
∑i−1
j=1 α

j
i ≤ θ

∑i−1
j=1 wj

Proof. We re-use notation ej,t of Lemma 1. Let ẽj,t (with j 6= t) be the
unexpected edge between iAj and iAt. For example, if ej,t was in fact an edge
between iAj and iA1

t , ẽj,t is the edge between iAj and iA2
t . By definition of θ,

we have w(ẽj,t) ≤ θw(ej,t), and thus
∑i−1
j=1 α

j
i =

∑i
j=1,j 6=t w(ẽj,t) ≤ θ

∑i−1
j=1 wj

(by Lemma 1).

Let us now prove the following lower bound on the optimal value.

Lemma 2. Let S be any (i + 1)-partition, with CS = {c1, ..., cpS}. We have∑pS
j=1 w(cj) ≥

∑i
j=1 wj

Proof. We prove it by induction over i. The statement is clearly true for the
first step, since Algorithm 1 gives an optimal 2-partition. Consider now an
(i + 1)-partition S, with CS = {c1, ..., cpS}. Let wM = max

j=1...pS
w(cj), and let

(Si1 , Si2) be the two sets in S containing both endpoints of an edge of weight
wM . Considering the i-partition created when merging Si1 and Si2 in S, and

using the induction hypothesis, we have:
∑pS
j=1 w(cj)−wM ≥

∑i−1
j=1 wj . Finally,

notice that by construction any (i+ 1)-partition must have an edge of weight at
least wi, since after removing all edges of weight strictly smaller than wi in our
algorithm, we still not have an (i+ 1)-partition. This leads to wM ≥ wi and to
the desired inequality.

3.2.3. Proof of the Approximation Ratio

We now turn to our main theorem, and prove that Algorithm 1 has an
approximation ratio better than k

2 .

Theorem 2. Algorithm 1 is a (1 + (k2 − 1)θ)-approximation algorithm.

Proof. Using Lemma 2 with an optimal solution, it is sufficient to show the
following inequality:

cost(A) ≤ (1 + (
k

2
− 1)θ)

k−1∑

i=1

wi (2)

Let us prove it by induction over k. Statement is clear for k = 2. Suppose
now that the result is true for all k = 1, 2, ..., t and let us show that it remains
true for k = t+ 1. By Equation (1) and the induction hypothesis, we have:

8

cost(A) ≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +

t−1∑

j=1

αjt

= (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2

t−1∑

j=1

αjt +
1

2

t−1∑

j=1

αjt

≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2
θ

t−1∑

j=1

wj +
1

2

t−1∑

j=1

αjt using Lemma 1

≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2
θ

t−1∑

j=1

wj +
1

2
(t− 1)θwt as αjt ≤ θwt

≤ (1 + (
t+ 1

2
− 1)θ)

t−1∑

i=1

wi + wt + (
t+ 1

2
− 1)θwt

≤ (1 + (
t+ 1

2
− 1)θ)

t∑

i=1

wi

Which gives the desired inequality.

Thus, Algorithm 1 becomes arbitrarily good as θ tends to 0, i.e. when
the gap on the weight of any pair of edges becomes arbitrarily large. This is
not surprising, as Algorithm 1 only focuses on edge weights, rather than the
structure of the graph. Moreover, notice that sum-max graph partitioning
remains NP-hard even if all edge weights are different (and thus even when θ
tends to 0). Indeed, the reduction presented in the proof of Theorem 1 can be
adapted using classical scaling arguments (assigning weight 1 + iε to edge i).

It appears from the previous proof that the k
2 factor is mainly due to the

excessive number of edges in the solution given by Algorithm 1. Indeed, in the
worst case (of the unweighted problem) this solution forms a clique of size k

over the clusters, while the optimal forms a tree, resulting in a k(k−1)
2 /(k −

1) = k
2 ratio on the number of edges. This insight is the key point of the

following tightness result, where the instance is designed such that the lower
bound (

∑t
i=1(wj)) becomes tight.

Proposition 1. Approximation ratio of Algorithm 1 is tight.

Proof. Let k ∈ N. We define the instance Ik, composed of a split graph
G = (C ∪S,E,w) (with C as an induced clique and S as an induced stable set)
with as many edges as possible. We define C = {c1, ..., ck} and S = {s1, ..., sk}.
Finally, w(e) = 1 for all e ∈ E. Let us now define three categories of edges:

• first category: X = {{ci, sj} such that i 6= j or j = 1},

9

• second category: Y = {{ci, cj} such that i 6= j},

• third category: Z = {{ci, sj} such that i = j and j 6= 1}.

An example of such a graph is presented in Figure 2.

Proof. Let k ∈ N. We define the instance Ik, composed of a split graph G = (C ∪ S, E, w) (with
C as an induced clique and S as an induced stable set) with as many edges as possible. We define
C = {c1, ..., ck} and S = {s1, ..., sk}. Finally, w(e) = 1 for all e ∈ E. Let us now define three
categories of edges:

– first category: X = {{ci, sj} such that i #= j or j = 1},
– second category: Y = {{ci, cj} such that i #= j},
– third category: Z = {{ci, sj} such that i = j and j #= 1}.

An example of such a graph is presented in Figure 3.

s1

si

sk

c1

ci

ck

(a)

s1

si

sk

c1

ci

ck

(b)

s1

si

sk

c1

ci

ck

(c)

Figure3: (3a): Example of a graph that reaches the ratio. First category of edges is represented with
dashed lines, second category with solid lines, third category with bold lines (3b): Solution given
by Algorithm 1 (3c): Optimal solution

Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it starts by removing
edges from X , then those from Y . At this point, it is easy to see that a (k + 1)-partition is created.
Then, since each pair of clusters is adjacent, the value of this solution is (k+1)k

2 . On the contrary,
consider the following (k + 1)-partition (V1, ..., Vk):

– for all j ∈ {1, ..., k}, Vj = {sj}
– Vk+1 = C

The value of this solution is k, (it is thus an optimal one).

Then, notice that θ = max{ w(e)
w(e′) : e, e′ ∈ E, e #= e′, w(e′) ≥ w(e)} = 1. Let A(Ik) and OPT (Ik)

denote respectively the value of the solution given by Algorithm 1 and the value of an optimal
solution for Ik. We have:

A(Ik)

OPT (Ik)
=

k + 1

2

Which proves the result (we are looking for a (k + 1)-partition).
%&

Figure 2: (a): Example of a graph that reaches the ratio. First category of edges is represented
with dashed lines, second category with solid lines, third category with bold lines (b): Solution
given by Algorithm 1 (c): Optimal solution

Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it
starts by removing edges from X, then those from Y . At this point, it is easy
to see that a (k + 1)-partition is created. Then, since each pair of clusters is

adjacent, the value of this solution is (k+1)k
2 . On the contrary, consider the

following (k + 1)-partition (V1, ..., Vk): for all j ∈ {1, ..., k}, Vj = {sj}, and
Vk+1 = C. The value of this solution is k, (it is thus an optimal one). Then,

notice that θ = max{ w(e)
w(e′) : e, e′ ∈ E, e 6= e′, w(e′) ≥ w(e)} = 1. Let A(Ik)

and OPT (Ik) denote respectively the value of the solution given by Algorithm

1 and the value of an optimal solution for Ik. We have A(Ik)
OPT (Ik) = k+1

2 , which

proves the result (we are looking for a (k + 1)-partition).

Remark 1. It is possible to obtain the same result without using the fact that
edges of equal weight are sorted arbitrarily in Algorithm 1, by assigning different
edge weights that will respect the order of removed edges presented above, and
are large enough compared with |E|.

4. Using the Diameter of the Graph for the Unweighted Case

In this section we study how the diameter of the input graph influences the
complexity of U-sum-max graph partitioning.

10

4.1. Analysis for Extremal Values of the Diameter

Here we analyse the complexity of the problem for extremal values of the
diameter of the input graph. First, notice that the graph obtained in the reduc-
tion of Theorem 1 is of diameter 2 (because of the universal vertex). By slightly
modifying the reduction, we can obtain the same result for unweighted graphs
of diameter 3, and weighted graphs of all fixed diameter 4 ≤ d ≤ k, as shown in
the following proposition:

Proposition 2. U-SM-GP is NP-hard in graphs of diameter 3. SM-GP is
NP-hard in graphs of diameter d for all fixed d = 4, ..., k (even if edge weights
are defined over two distinct values).

Proof. We only sketch the proof of the second statement, as it uses the same
arguments of the proof of Theorem 1. This first statement will then be deduced
as a special case.

Let G = (V,E) be a graph, and k ≤ |V |. Let δ ≤ k. We construct the graph
G′ as a disjoint union of δ copies of G: (G1, . . . , Gδ) where Gi = (V i, Ei), with

V i = {vi1, ..., vin} for all i ∈ {1, . . . , δ}, and we set w(e) = 1 for all e ∈ ⋃δi=1E
i.

Moreover, for all i ∈ {1, ..., (δ − 1)} and all j ∈ {1, ..., n} , we make vij be

adjacent to vi+1
j with an edge of weight M > k. Then, for all i ∈ {1, . . . , δ}, we

add a vertex αi which is adjacent to every vertex of Gi, with edges of weight
1. Finally, we make αi be adjacent to αi+1 for all i ∈ {1, . . . , (δ − 1)} with
edges of weight M . It is clear that this construction can be done in polynomial
time (notice that δ ≤ k ≤ |V |), and that the diameter of the output graph is
d = δ + 1.
Suppose that G contains an independent set S of size k, with S = {s1, ..., sk}.
For i ∈ {1, . . . , δ}, we define the corresponding independent set Si = {si1, . . . , sik}
in G′. We build the the following (k+ 1)-partition P = {P1, . . . , Pk+1} of G′ as
follows:

• Pi = {sij : j ∈ {1, ..., δ}} for all i ∈ {1, ..., k}

• Pk+1 = V ′\
(⋃k

i=1 Pi

)

By construction this is a (k + 1)-partition of cost k. Conversely, because of the
edges of weight M , for all j ∈ {1, ..., n}, all {vij : i ∈ {1, ..., (δ − 1)}} must be
in the same cluster, as well as all {αi : i ∈ {1, ..., (δ − 1)}}. Thus, it is easily
seen that that if G′ contains a (k + 1)-partition of cost k, then G admits an
independent set of size k.
Moreover, for δ = 2 (i.e. which leads to a graph of diameter 3), we can set
M = 1 and obtain the result for the unweighted problem. Notice that the
equivalence does not hold anymore for δ = 3 when M = 1, since there is no
edge between G1 and G3 for instance, and hence we can no longer control the
structure of the solution (adding complete graphs between graphs Gi would
decrease the diameter of G′).

11

v0

Γ 1(v0) Γ 2(v0) Γ d(v0)

x1 = 2
y1 = 5

x2 = 3
y2 = 7

xd = 1
yd = 1

x0 = 1
y0 = 1

Figure1: Illustration of Algorithm expand-and-split

Proof. It is clear that the algorithm runs in polynomial time. Let A denotes the value of
the solution returned by expand-and-split. We have:

2A ≤

edges between clusters in Γ i(v0)︷ ︸︸ ︷
d∑

i=0

xi(xi − 1) +

edges between clusters of Γ i(v0) and Γ i+1(v0)︷ ︸︸ ︷
d−1∑

i=0

2xixi+1

=
d∑

i=0

x2
i −

d∑

i=0

xi +
d−1∑

i=0

2xixi+1

=

d∑

i=0

x2
i − k +

d∑

i=0

2xixi+1 − 2x0xd

=

(
d∑

i=0

xi

)2

−
∑

0≤i,j≤d
|i−j|≥2

xixj − k − 2xd

≤
(

d∑

i=0

xi

)2

−
∑

0≤i,j≤d
|i−j|≥2

xixj − k

= k2 − k − 2∆d with ∆d =
∑

0≤i,j≤d
|i−j|≥2

xixj (1)

Lemma 1. Let {x0, ..., xd} ∈ Nd such that
∑d

i=0 = k and xi > 0 for i ∈ {0, ..., d}, ∆d

is minimum if there exists i0 ∈ {1, ..., d − 1} such that xi0 = k − d, and xi = 1 for all
i $= i0.

Proof. Proof of Lemma 1 is given in Appendix A. %&

By Lemma 1, we have:

∆d ≥ k(d − 2) − d(d − 1)

2
+ 2 (2)

Figure 3: Illustration of Algorithm expand-and-split

Whereas the problem is hard for small values of diameter, we observe that
it is polynomial solvable on graphs of high diameter:

Proposition 3. U-SM-GP is polynomial solvable on graphs of diameter d ≥
k − 1.

Proof. Suppose that G has diameter d ≥ k − 1, and let v0 be a vertex of
maximum eccentricity in G. We define the following (d+ 1)-partition:

Γi(v0) =




{v0} if i = 0
N(v0) if i = 1
{N(v) : v ∈ Γi−1(v0)}\Γi−2(v0) if 1 < i ≤ d

Then, we output the solution P = {Γ0(v0), ...,Γk−2(v0),
⋃d
i=k−1 Γi(v0)}. By

construction, Γi(v0)∩Γj(v0) = ∅ for all i 6= j, and we thus have a k-partition of
V of minimum cost (k− 1), since its quotient graph is a path of length (k− 1).

We now turn to the definition and analysis of an algorithm using the diameter
the graph.

4.2. Presentation of Algorithm expand-and-split

Let G = (V,E) be a graph and k ≤ |V |. The idea of the following algorithm
is to construct the same partition as in the case of d ≥ k − 1, using a vertex
of maximum eccentricity, and then to modify it in order to obtain exactly k
clusters.

Let v0 be a vertex of maximum eccentricity in G, and let us consider the (d+
1)-partition {Γ0(v0), ...,Γd(v0)} as defined in Proposition 3. For all i ∈ {0, ..., d},
let yi = |Γi(v0)|. Since the graph has diameter d < k − 1, the expand-and-

split algorithm arbitrarily splits each Γi(v0) into xi clusters, with
∑d
i=0 xi = k.

An example of such a partition is depicted in Figure 3.

12

4.3. Analysis of the algorithm

Theorem 3. expand-and-split is a polynomial (k2−d+2+ d2−3d
2(k−1))-approximation

algorithm, where d denotes the diameter of the graph.

Proof. It is clear that the algorithm runs in polynomial time. Let A denote
the value of the solution returned by expand-and-split. We have:

2A ≤

edges between clusters in Γi(v0)︷ ︸︸ ︷
d∑

i=0

xi(xi − 1) +

edges between clusters of Γi(v0) and Γi+1(v0)︷ ︸︸ ︷
d−1∑

i=0

2xixi+1

=

d∑

i=0

x2
i −

d∑

i=0

xi +

d−1∑

i=0

2xixi+1

=

d∑

i=0

x2
i − k +

d∑

i=0

2xixi+1 − 2x0xd

=

(
d∑

i=0

xi

)2

−
∑

0≤i,j≤d
|i−j|≥2

xixj − k − 2xd

≤
(

d∑

i=0

xi

)2

−
∑

0≤i,j≤d
|i−j|≥2

xixj − k

= k2 − k −∆d with ∆d =
∑

0≤i,j≤d
|i−j|≥2

xixj (3)

Lemma 3. Let {x0, ..., xd} ∈ Nd+1 such that
∑d
i=0 = k and xi > 0 for i ∈

{0, ..., d}, ∆d is minimum if there exists i0 ∈ {1, ..., d−1} such that xi0 = k−d,
and xi = 1 for all i 6= i0.

Proof. Given d > 0, the goal is to find {x0, ..., xd} with xi ∈ N for all 0 ≤ i ≤ d
such that

z =
∑

0≤i,j≤d
i−j≥2

xixj

is minimized, under the the constraints:

• ∑d
i=0 xi = k

• xi > 0 ∀i ∈ {0, ..., d}

Notice that 2z = ∆d (because of the sum over i and j such that j − i ≥ 2
instead of |j − i| ≥ 2). Let us denote by z∗ the value of an optimal solution.
If d = 1 then the result is obvious (z∗ = 0). If d = 1, then z∗ = 1 for x0 = 0,

13

x1 = k − 1 and x2 = 1. Thus, in the following, we consider the case d ≥ 2.
For sake of readability, we define x−1 = xd+1 = 0. First, let us remark that

z =
∑
j−i≥2 xixj = 1

2

∑d
i=0(k − (xi−1 + xi + xj+1)). Thus, minimizing z is the

same as maximizing

t =

d∑

i=0

xi(xi−1 + xi + xi+1)

under the same constraints. Here again we denote by t∗ the value of an optimal
solution. For all i ∈ {1, ..., d}, we define αi = xi−1 + xi + xi+1. Thus, we have

t =
∑d
i=0 xiαi. The proof is divided in three steps:

• Step 1: There exists an optimal solution such that x0 = xd = 1

• Step 2: There exists an optimal solution such that:

– ∃j ∈ {1, ..., d− 1} such that αj = k − d+ 2

– ∀i ∈ {1, ..., d} with |j − i| ≥ 2 we have xi = 1

• Step 3: There exists an optimal solution such that:

– ∃j ∈ {1, ..., d− 1} such that xj = k − d
– ∀i 6= j we have xi = 1

Proof of Step 1:
Let {x0, ..., xd} be an optimal solution. Without loss of generality, suppose by
contradiction that x0 > 1, and let us define the following solution {x′0, ..., x′d}:
• x′0 = x0 − 1

• x′1 = x1 + 1

• x′i = xi for all 1 ≤ i ≤ d− 1

With the associated α′i = x′i−1 + x′i + x′i+1 for all i ∈ {0, ..., d}. We have:

d∑

i=0

x′iα
′
i = (x0 − 1)α0 + (x1 + 1)α1 + x2α2 +

d∑

i=3

xiαi

=

d∑

i=0

xiαi + x2

Since x2 > 0, it implies that {x0, ..., xd} is not an optimal solution. Contradic-
tion.

Proof of Step 2:
Let {x0, ..., xd} be an optimal solution, with x0 = xd = 1, and let j ∈ {0, ..., d}
such that αj = maxk=2...d αk (remark that j 6= 0 and j 6= d). By contradiction,
suppose that there exists i /∈ {j− 1, j, j+ 1} such that xi > 1. Let us define the
following solution {x′0, ..., x′d}:

14

• x′i = xi − 1

• x′j = xj + 1

• ∀k ∈ {i, j} x′k = xk

With the associated α′i = x′i−1 + x′i + x′i+1 for all i ∈ {0, ..., d}. Here we
distinguish 2 cases:
First case: i+ 1 = j − 1 (the case i− 1 = j + 1 is symmetrical). We have:

d∑

k=0

x′kα
′
k =

d∑

k=0

xkαk + 2

Second case: i /∈ {j − 2, j − 1, j, j + 1, j + 2}. We have:

d∑

k=0

x′kα
′
k =

d∑

k=0

xkαk + 2αj − 2αi + 2

With 2αj − 2αi + 2 > 0. In both cases, it implies that {x0, ..., xd} is not an
optimal solution. Contradiction.

Proof of Step 3:
Let {x0, ..., xd} be an optimal solution with:

• xj−1 + xj + xj+1 = k − d+ 2 for some j ∈ {1, ..., d− 1}

• xi = 1 for all i 6= {j − 1, j, j + 1}

And suppose that xj−1 > 1. Let us define the following solution {x′0, ..., x′d}:

• x′j−1 = xj−1 − 1

• xj = xj + 1

• for all k /∈ {j − 1, j} x′k = xk

With the associated α′i = x′i−1 + x′i + x′i+1 for all i ∈ {0, ..., d}. We have:

d∑

k=0

x′kα
′
k =

d∑

k=0

xkαk − αj−1 + αj + xj+1 − xj−2

And since −αj−1 +αj+xj+1−xj−2 ≥ 0, {x′0, ..., x′d} is also an optimal solution,
which proves the result.

By Lemma 3, we have:

∆d ≥ 2

(
k(d− 2)− d(d− 1)

2
+ 2

)
(4)

15

Using (3) and (4), we obtain:

2A ≤ k2 − k − 2k(d− 2) + d(d− 1)− 4

≤ k2 − 2kd+ 3k + d2 − d− 4

Let OPT denote the value of an optimal solution for the given instance. Using
OPT ≥ k − 1 (since G is connected), we get:

ρ =
2A

2OPT ≤ k2 − 2kd+ 3k + d2 − d− 4

2(k − 1)

≤ k

2
− d+ 2 +

d2 − 3d

2(k − 1)

Which proves the result.

5. Unbalanced Partitions

5.1. Definition and link with the k-sparsest subgraph problem

In this section, we study how structural properties of some very simple par-
titions, called unbalanced partitions, may help in the design of approximation
algorithms for the unweighted version of our problem. More precisely, we first
show that any optimal solution P of U-SM-GP can be restructured into an
unbalanced solution P ′ such that cost(P ′) ≤ (2− 2

k)cost(P). Then, we link the
simple structure of these solutions to the problem of finding in a graph k ver-
tices which induce as few edges as possible (namely the k-sparsest subgraph
problem). Combining these two remarks, we show that a ρ-approximated so-
lution for k-sparsest subgraph gives a (ρ + 1 − 2ρ

k)-approximated solution
for U-SM-GP. To apply this result, we provide for k-sparsest subgraph an

O(k2nω
k−1
3) algorithm on general graphs (where ω < 2.376 is the matrix mul-

tiplication exponent), and use three known results on some restricted graph
classes. Finally, we present a natural algorithm which consists in building an
unbalanced solution at random. We show that we can de-randomize the algo-

rithm to obtain a polynomial-time (1 + m(k−2)
n(n−1))-approximation algorithm. As

we could expect, this algorithm gives good solutions when the input graph has
low density.

Definition 1. Given G = (V,E) and k ∈ N, a k-partition of V is called an
unbalanced partition (or unbalanced solution) if (k − 1) parts are reduced to a
singleton.

Proposition 4. Let G = (V,E) and k ≤ |V |. Let P ∗ be a solution of U-
SM-GP for (G, k). Then we can construct in polynomial time an unbalanced
solution P such that cost(P) ≤ (2− 2

k)cost(P ∗).

16

Proof. Let G, k and P ∗ as in the statement, and note P ∗ = {V ∗1 , ..., V ∗k }.
Without loss of generality, suppose that V ∗k is a vertex of maximum degree in
G/P∗ . For all 1 ≤ i ≤ (k − 1), let xi be any vertex of V ∗i , and let us build the
following unbalanced k-partition P = {V1, ..., Vk}:

• Vi = {xi} for all 1 ≤ i ≤ (k − 1)

• Vk = V \
(⋃k−1

i=1 Vi

)

Let q be the number of edges in G/P between Vk and other vertices, and q∗

be the number of edges in G/P∗ between V ∗k and other vertices. We have the
following:

cost(P) ≤ cost(P ∗) + q − q∗

And by definition, q ≤ k − 1 ≤ cost(P ∗) and kq∗ ≥ 2cost(P ∗) (since q∗ is equal
to the maximum degree of G/P∗ which is a graph with k vertices and cost(P ∗)
edges), hence:

cost(P) ≤ cost(P ∗) + cost(P ∗)− 2cost(P ∗)
k

= (2− 2

k
)cost(P ∗)

Which concludes the proof.

Thus, by the previous result, enumerating all (k−1)-tuples of vertices allows
us to build a (2− 2

k)-approximated solution. In fact, one can observe that we can
focus on a subset of (k− 1) vertices which induce as few edges as possible. This
problem is more generally called the k-sparsest subgraph problem. In the
following, we show a any approximation algorithm for k-sparsest subgraph
can be transferred to U-SM-GP.

Proposition 5. Any ρ-approximated solution for (k−1)-sparsest subgraph
gives a (ρ+ 1− 2ρ

k)-approximated solution for U-SM-GP.

Proof. LetG = (V,E) and k ≤ |V |. Let S = {x1, ..., xk−1} be a ρ-approximated
solution for (k− 1)-sparsest subgraph, and P ∗ = {V ∗1 , ..., V ∗k } be an optimal
solution for U-SM-GP on (G, k) (as previously we suppose w.l.o.g. that V ∗k is
a vertex of maximum degree in G/P∗). We construct the following k-partition
P = {V1, ..., Vk}:

• Vi = {xi} for all 1 ≤ i ≤ (k − 1)

• Vk = V \
(⋃k−1

i=1 Vi

)

Let q (resp. q∗) be the number of edges in G/P (resp. in G/P∗) between Vk (resp.
V ∗k) and other vertices, and let α (resp. α∗) be the number of edges in G/P
(resp. in G/P∗) of the subgraph induced by {V1, ..., Vk−1} (resp. {V ∗1 , ..., V ∗k−1}).

17

By definition, we have cost(P) = q + α and cost(P ∗) = q∗ + α∗. As S is a ρ-
approximated solution, we have α ≤ ρα∗. Thus, we have

cost(P) = q + α+ q∗ − q∗ ≤ q + ρα∗ + q∗ − q∗
= q + ρ(α∗ + q∗)− ρq∗
= q + ρcost(P ∗)− ρq∗

Then, by definition we have q ≤ k − 1 ≤ cost(P ∗) and kq∗ ≥ 2cost(P ∗) (as
previously). Hence:

cost(P) ≤ cost(P ∗)(ρ+ 1− 2ρ

k
)

Which concludes the proof.

5.2. Applications to U-sum-max graph partitioning

In the following, we show how to solve k-sparsest subgraph inO(k2nω
k−1
3)

time, where ω < 2.376 [17] is the matrix multiplication exponent. In addition,
we present three results for the same problem on some special graph classes.

Proposition 6. k-sparsest subgraph can be solved in O(k2nω
k
3) time, where

ω < 2.376 is the matrix multiplication exponent.

Proof. We only sketch the proof, as it is similar to the approach of [18] for
the k-clique problem. Let G = (V,E) and k ∈ N. The algorithm consists
in creating a graph whose vertices correspond to all k

3 -tuples of vertices of G,
and linking two vertices if the two corresponding tuples do not share any vertex.
Additionally, each vertex receives a weight corresponding to the number of edges
in the subgraph induced by vertices of the corresponding tuple in G, and each
edge receives a weight corresponding to the number of edges in G between
vertices of the two corresponding tuples. Finally, the algorithm consists in
finding a triangle of minimum weight in the constructed graph (the weight of a
triangle is defined as the sum of the edge and vertex weights in the triangle).
This can be done in time O(Mnω) for any graph on n vertices and integer
weights in [0,M], where ω < 2.376 is the matrix multiplication exponent [18].

Thus, the running time of our algorithm is O(k2nω
k
3).

Let us now mention some results of [19] for k-sparsest subgraph that we
will use in the following.k-sparsest subgraph admits:

• A polynomial-time algorithm in split graphs.

• A PTAS in proper interval graphs.

• An FPT algorithm in interval graphs (parameterized by the cost of the
solution).

Thus, by Propositions 5 and 6, we have the following result:

18

Proposition 7. The following results hold for U-SM-GP:

• in general graphs, a (2 − 2/k)-approximated solution can be found in

O(k2nω
k−1
3) time.

• in split graphs, a (2− 2/k)-approximated solution can be found in polyno-
mial time.

• in proper interval graphs, a (2− 2/k + 1/ε)-approximated solution can be
found in polynomial time for any fixed ε > 0.

• in interval graphs, a (2−2/k)-approximated solution can be found in FPT
time (parameterized by the cost of the solution).

5.3. On Graphs on Low Density

Let us now consider the algorithm that picks randomly an unbalanced solu-
tion, i.e. that picks uniformly (k − 1) different vertices2 {X1, . . . , Xk−1}. Let
Arand denotes the random variable corresponding to the value of the corre-
sponding solution. As we can expect, the expected value of Arand decreases in
graphs of low density.

Proposition 8. E(Arand) ≤ (k − 1)(1 + m(k−2)
n(n−1)).

Proof. We can upper bound the expected value of Arand as follows (assuming
that the kth cluster is connected to the (k − 1) singletons):

E(Arand) ≤ k − 1 +
1

2

∑
E(1i,j)

i,j∈{X1,...,Xk−1},i6=j

where 1i,j equals 1 if there is an edge between vertex i and j, and 0 otherwise.
Moreover, for any i and j we have E(1i,j) = m 2

n(n−1) . Thus, we get

E(Arand) ≤ k − 1 + (k − 1)(k − 2)
m

n(n− 1)

Now, we prove that the (1+ m(k−2)
n(n−1)) ratio can be achieved by a deterministic

polynomial-time algorithm using classical de-randomized arguments.

Proposition 9. There is a deterministic polynomial (1+m(k−2)
n(n−1))-approximation

algorithm for U-SM-GP.

2In this section, picking uniformly x different elements corresponds to pick uniformly an
element among the set of x-subsets.

19

Proof. We will de-randomize Arand using the conditional expectation method.
Roughly speaking, at each of the (k − 1) steps we find in polynomial time the
next most ”promising” vertex, i.e. the vertex that minimizes our upper bound
on the conditional expectation.

Let us consider a fixed instance composed ofG = (V,E) and k ≤ |V |. For any
set of k − 1 different vertices {x1, . . . , xk−1}, let us define f({x1, . . . , xk−1}) =
k − 1 + 1

2

∑
i,j∈{x1,...,xk−1},i6=j 1i,j . Notice that f({x1 , . . . , xk−1}) corresponds

to the upper bound used in Proposition 8 on the cost of the unbalanced solution
where {x1, ..., xk−1} are singletons. Thus, Property 8 states that when choosing
uniformly the {Xt, 1 ≤ t ≤ k − 1} we get E(f({X1, . . . , Xk−1})) ≤ b(n,m, k),

with b(n,m, k) = (k − 1)(1 + m(k−2)
n(n−1)).

Let us now come back to the de-randomization. For any i, 0 ≤ i ≤ k−2 and
any set of i different vertices {x1, . . . , xi}, let X({x1, . . . , xi}) be the following
random variable:

• pick uniformly (among V \ {x1, . . . , xi}) (k − 1 − i) different vertices
(Xt)1≤t≤k−1−i

• return f({x1, . . . , xi, X1, . . . , Xk−1−i}).

Thus, following the conditional expectation principle it is now sufficient to prove
by induction on i (0 ≤ i ≤ k−2) that we can find in polynomial time (x1, . . . , xi)
such that E(X(x1, . . . , xi)) ≤ b(n,m, k). Statement is clearly true for i = 0 as
E(X(∅)) = E(f({X1, . . . , Xk−1})) ≤ b(n,m, k). Let us now consider any i, and
see how to find the (i+ 1)th vertex. We have:

E(X(x1, . . . , xi)) =
1

n− i
∑

xt /∈{x1,...,xi}
E(X(x1, . . . , xi, xt))

As E(X(x1, . . . , xi)) ≤ b(n,m, k), there must exists xt /∈ {x1, . . . , xi} such
that E(X(x1, . . . , xi, xt)) ≤ b(n,m, k), and thus we chose xi+1 as:

xi+1 = argmin
xt /∈{x1,...,xi}

(E(X(x1, . . . , xi, xt)))

Moreover, notice that for any xt, E(X(x1, . . . , xi, xt)) can be computed in poly-
nomial time using directly the definition of f and the linearity of expectation
(even if the Xt are not independent).

6. Exact Algorithms for Fixed k and Open Problems

In terms of exact algorithms, the W [1]-hardness presented in Section 2 shows
that we cannot expect to solve the problem in O(f(k).p(n, k)) for any function f
and any polynomial p. Hence, a natural question is to ask whether the problem
is in the complexity class XP, i.e. if there exists an exact algorithm running in
O∗(nf(k)) time for some function f . A natural approach would be to enumerate
all possible quotient graphs, and then to try to match them one by one. Here

20

we show that this strategy leads to a polynomial algorithm for the weighted
problem for k = 3. Unfortunately, generalizing this simple method is hopeless
even in the unweighted case, as it corresponds to the H-compaction problem
of Vikas et al. [12], who proved, among others, that matching a non-chordal
graph (and thus the cycle of length four in the case of k = 4) is NP-hard.
Nevertheless, we bypass the previous strategy to show how we still can solve the
problem for k = 4 in the unweighted case.

6.1. A Polynomial Algorithm for k = 3

Here we present a polynomial algorithm for SM-GP when k = 3:

Theorem 4. SM-GP is polynomial-time solvable if k = 3.

Proof. Let G = (V,E) be a graph. The principle of the following algorithm
is to enumerate all pairs (or triplets) of edges in order to find the largest edges
between the clusters in an optimal solution (i.e. edges that will be taken into
account in the solution value). Thus, for each fixed pairs (or triplets) of edges
the algorithm tries to arrange all remaining vertices in clusters without changing
the solution value.

Let us now distinguish two cases: one where an optimal solution contains
only two edges between the clusters (the partition forms a path over the three
clusters), and one where any optimal solution contains three edges (the partition
forms a clique over the three clusters). Let (V1, V2, V3) be the partition we are
building, and (V ∗1 , V

∗
2 , V

∗
3) an optimal solution.

First case: one optimal solution contains only two edges. Let us first assume
that we know the two edges e∗a and e∗b that are taken into account in the optimal
solution value (as depicted in Figure 4). Let a be the value of the edge e∗a =
{a1, a2} between V ∗1 and V ∗2 , and b be the value of the edge e∗b = {b1, b2} between
V ∗2 and V ∗3 . Notice that four cases are possible, depending of the orientation
of e∗a and e∗b (for example a1 could be in V ∗1 or V ∗2). We assume that ai ∈ V ∗i
and bi ∈ V ∗i+1, and thus the algorithm will have to enumerate these four cases.
Without loss of generality, we suppose a ≤ b. In the first step, the algorithm
mimics the optimal solution and adds a1 to V1, a2 and b1 to V2, and b2 to V3. Let
S1 (resp. S3) be the set of all vertices reachable from V1 (resp. V3) using edges
of weight strictly greater than a (resp. b). As the cost of the considered optimal
solution is a+ b, we know that (1) S1 ⊂ V ∗1 and S3 ⊂ V ∗3 , (2) S1 ∩ S3 = ∅ and
(3) there is no edge between S1 and S3. Thus, in the second step the algorithm
adds S1 to V1 and S3 to V3.

Finally, the algorithm assigns all remaining vertices to V2. It is easy to see
that this strategy will not create any forbidden edge (i.e. edge that increases the
weight of the maximum edge between two clusters), as the remaining vertices
were not adjacent to any vertex of V1 (resp. V3) using edges of weight strictly
greater than a (resp. b).

21

and (3) there is no edge between S1 and S3 of weight strictly larger than a. Thus, we
add Si to Vi. Finally, the algorithm assigns all remaining vertices to V2. As before, it is
straightforward to see that this will not create any forbidden edge.

Overall complexity The overall algorithm consists in re-executing the previous rou-
tine for any pair and any triplet of edges, taking the best execution. Thus, the overall
complexity is clearly polynomial, with a main factor in O(m3) due to the enumeration.

ba

V1 V3

V2

S1 S3

> a > b

remaining vertices
a1

a2 b1

b2

(a)

c

a
V1 V3

V2

S1 S3

> b > c

remaining vertices
b

a1
b1

c1

c2
a2

b2

(b)

Figure 1: Illustration of the polynomial algorithm for k = 3. Bold arrows represent
assignments to clusters. (1a): One optimal solution contains 2 edges (1b): Any optimal
solution contains 3 edges

3.2 Polynomial algorithm for k = 4 for the unweighted case

Theorem 11. For k = 4 fixed and when all edge weights are equal, sum-max graph
partitioning is solvable in polynomial time.

Proof. Let G = (V,E) be a graph, and C ∈ N. We Suppose that 3 ≤ C ≤ 6, and |V | ≥ 4
(otherwise the problem is obvious). For each C ∈ {3, 4, 5, 6}, and for each pattern graph
P on C vertices, the graph tests whether it is possible to build a 4-partition (V1, . . . , V4)
which matches the pattern P . The different patterns are represented in Figure 2.

• Pattern 2a: for all vertex v ∈ V , try to build the following partition:

– V1 = {v}
– V2 = N(v)

– V3 =
⋃

u∈N(v) N(u)

– V4 = V \(V1 ∪ V2 ∪ V3)

If one of the Vi is empty, then it is not possible to match this pattern with v as
starting vertex. If none of the vertices do not lead to a legal partition, then it is
not possible to match this pattern at all, because otherwise, it would be possible

11

Figure 4: Illustration of the polynomial algorithm for k = 3. Bold arrows represent assign-
ments to clusters. (a): One optimal solution contains 2 edges (b): Any optimal solution
contains 3 edges

Second case: any optimal solution contains three edges. Here again suppose
that we know the three edges e∗a, e∗b and e∗c that are taken into account in
an optimal solution value (as depicted in Figure 4). As before, we assume a
fixed orientation of the guessed edges, to the price of the enumeration of a fixed
number of cases. Let a be the value of the edge e∗a = {a1, a2} between V ∗1 and
V ∗3 (where a1 ∈ V ∗1 , a2 ∈ V ∗3), b be the value of the edge e∗b = {b1, b2} between
V ∗1 and V ∗2 (where bi ∈ V ∗i), and c be the value of the edge e∗c = {c1, c2} between
V ∗2 and V ∗3 (where ci ∈ V ∗i+1). Without loss of generality, we suppose a ≤ b ≤ c.

Again, in the first step, the algorithm mimics the optimal and adds a1 and
b1 to V1, b2 and c1 to V2, and a2 and c2 to V3. Let S1 (resp. S3) be the set of
vertices reachable from V1 (resp. V3) using edges of weight strictly greater than
b (resp. c). Using the same kind of arguments, we know that (1) Si ⊂ V ∗i (for
i ∈ {1, 3}), (2) S1∩S3 = ∅ and (3) there is no edge between S1 and S3 of weight
strictly larger than a. Thus, we add Si to Vi. Finally, the algorithm assigns all
remaining vertices to V2. As before, it is straightforward to see that this will
not create any forbidden edge.

Overall complexity. The overall algorithm consists in re-executing the previous
routine for any pair and any triplet of edges, taking the best execution. Thus,
the overall complexity is clearly polynomial, with a main factor in O(m3) due
to the enumeration.

6.2. Higher k Values for the Unweighted Problem

Let us try to generalize the previous algorithm for higher fixed k values, in
the unweighted case. Thus, we are given an input graph G = (V,E), and we
enumerate all quotient graphs with k vertices in increasing order of number of
edges. Let H be a given target graph with k vertices, and let H̄ be the graph
obtained from H by adding a loop on every vertex. It is easily seen that:

22

Remark 2. G admits a k-partition P such that G/P is isomorphic to H if and
only if there exists an edge-surjective homomorphism (also called a compaction
in [12]) from G to H̄.

Unfortunately, given a fixed graph H, testing whether a graph G admits
a compaction to H̄ is NP-hard if H is not a chordal graph [12]. Thus, it is
hopeless to extend the previous algorithm for all fixed k, as even for k = 4 this
would lead to test whether G admits a compaction to the cycle of length four,
which is a non-chordal graph.

Nevertheless, we can slightly modify the algorithm to obtain the following
result for the unweighted version of our problem:

Proposition 10. U-SM-GP is polynomial-time solvable for k = 4.

Proof. Let G = (V,E) be our input graph, with |V | ≥ 4. We will successively
try to build a 4-partition of cost C = 3, 4, 5, 6.
By Proposition 3, if diam(G) ≥ 3, then we can build a 4-partition of cost 3
(where the quotient graph is a path).
Otherwise, G admits a 4-partition of cost 3 if and only if G contains an inde-
pendent set of size 3. Indeed, if such a set {x, y, z} exists, then {x}, {y}, {z},
V \{x, y, z} is a partition of cost 3. Conversely, if diam(G) < 3 and G admits
a 4-partition of size 3, then the quotient graph must be isomorphic to the star
K1,3, and thus contains an independent set of size 3.
Suppose now that G does not admit a 4-partition of cost 3. If there exists
x, y, z ∈ V such that {x, y}, {x, z} /∈ E, then {x}, {y}, {z}, V \{x, y, z} is a
4-partition of cost at most 4. Otherwise, then every vertex of G is adjacent to
at least |V |−2 vertices. In this case it is easily seen that unless G is isomorphic
to C4, it cannot admit a 4-partition of cost 4.
Thus, if now G is not complete, then there exists x, y ∈ V such that {x, y} /∈ E.
In this case we can clearly build a 4-partition of cost 5. Otherwise G is complete
and the problem is obvious.
Finally, notice that the running time of the algorithm is O(n3), since we only
enumerate pairs or triplets of vertices.

7. Conclusion and Future Work

The strategy used in the previous result is a bypass of the general algorithm
presented in the beginning of Section 6.2, in the sense that if we are not able to
test in polynomial time if there exists a partition (or equivalently a compaction)
to a given pattern, then we try with an ”easier” pattern which uses the same
number of edges (or less). In the previous algorithm for instance, instead of
testing to match the cycle of length four, we first try to match the 3-pan (i.e.
the cycle of length 3 with a pending vertex). Thus, an idea for solving the
unweighted problem for all fixed k would be to solve the following problem in
polynomial time: given an input graph G and a number of edges C as objective,

23

such that G does not admit a compaction to a chordal graph with C edges, does
G admit a compaction to a graph with C edges ?

On the other side, because U-SM-GP is harder than the independent set
problem (see Theorem 1), it would be interesting to investigate the complexity
of our problem on restricted graph classes, such as graph classes where inde-
pendent set is polynomial, as for instance perfect graphs and their subclasses.

[1] C.-E. Bichot, P. Siarry, Graph Partitioning, Wiley-ISTE, 2011.

[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979.

[3] O. Goldschmidt, D. S. Hochbaum, Polynomial algorithm for the k-cut prob-
lem, in: Proceedings of the 29th annual symposium on Foundations Of
Computer Science, 1988, pp. 444–451.

[4] H. Saran, V. V. Vazirani, Finding k cuts within twice the optimal, SIAM
Journal of Computing 24 (1) (1995) 101–108.

[5] R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto, F. A.
Rosamund, Cutting up is hard to do: The parameterised complexity of
k-cut and related problems, Electronic Notes in Theoretical Computer Sci-
ence 78 (0) (2003) 209 – 222.

[6] M. Hansen, P.and Delattre, Complete-link cluster analysis by graph col-
oring, Journal of the American Statistical Association 73 (362) (1978) pp.
397–403.

[7] S. B. Patkar, H. Narayanan, An efficient practical heuristic for good ratio-
cut partitioning, in: Proceedings of the 16th International Conference on
VLSI Design, 2003, pp. 64–69.

[8] T. Gonzalez, On the computational complexity of clustering and related
problems, in: System Modeling and Optimization, Vol. 38, 1982, pp. 174–
182.

[9] M. Koivisto, An O(2n) algorithm for graph coloring and other partitioning
problems via inclusion-exclusion, in: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, 2006, pp. 583–590.

[10] T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of graph partition
problems, in: Proceedings of the 31st annual Symposium on Theory Of
Computing, 1999, pp. 464–472.

[11] P. Hell, Graphs and Homomorphisms, Oxford University Press, 2004.

[12] N. Vikas, Computational complexity of compaction to reflexive cycles,
SIAM Journal of Computing 32 (1) (2002) 253–280.

24

[13] N. Vikas, Computational complexity classification of partition under com-
paction and retraction, in: Proceedings of the 10th international Comput-
ing and Combinatorics Conference, 2004, pp. 380–391.

[14] N. Vikas, A complete and equal computational complexity classification
of compaction and retraction to all graphs with at most four vertices and
some general results, Journal of Computer and System Sciences 71 (4)
(2005) 406–439.

[15] N. Vikas, Algorithms for partition of some class of graphs under com-
paction, in: Proceedings of the 17th international Computing and Combi-
natorics Conference, 2011, pp. 319–330.

[16] J. H̊astad, Clique is hard to approximate within n1−ε, in: Proceedings of
the 37th annual symposium on Foundations Of Computer Science, 1996,
pp. 627–636.

[17] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic pro-
gressions, in: Proceedings of the 9th annual Symposium on Theory Of
Computing, 1987, pp. 1–6.

[18] J. Nesetril, S. Poljak, on the complexity of the subgraph problem, Com-
mentationes Mathematicae Universitatis Carolinae 26 (1985) 415–419.

[19] R. Watrigant, M. Bougeret, R. Giroudeau, The k-sparsest subgraph prob-
lem, Tech. Rep. RR-12019, LIRMM-CNRS-UMR 5506 (2012).

25

