Rémi Watrigant
email: watrigant@lirmm.fr

Marin Bougeret
email: bougeret@lirmm.fr

Rodolphe Giroudeau

Jean-Claude König
email: konig@lirmm.fr

On The Sum-Max Graph Partitioning Problem $

Keywords: graph partitioning problem, approximation, combinatorial optimization

This paper tackles the following problem: given a connected graph G = (V, E) with a weight function on its edges and an integer k ≤ |V |, find a partition of V into k clusters such that the sum (over all pairs of clusters) of the heaviest edges between the clusters is minimized. We first prove that this problem (and even the unweighted variant) cannot be approximated within a factor of O(n 1-) unless P = N P, and cannot admit an F P T algorithm unless

Next, we develop several algorithms: we first present a greedy algorithm and prove that it achieves a tight ratio smaller than k 2 . Concerning the unweighted version of the problem, we study how the diameter of the input graph can influence its complexity, by obtaining negative results for graphs of low diameter, positive results for graphs of high diameter, and a polynomial-time approximation algorithm with an approximation ratio smaller than k 2 and depending on the diameter. We also highlight a link between the k-sparsest subgraph problem and the unweighted version. This allows us to develop several constant ratio approximation algorithms running in exponential time for general graphs, and in polynomial time in some restricted graph classes. Finally, we discuss the exact resolution for fixed k and the connections to a graph homomorphism problem.

Introduction

Definition of the Problem

Graph partitioning problems are classical combinatorial optimization problems, and are the core of many practical issues [START_REF] Bichot | Graph Partitioning[END_REF]. They commonly consist in finding a partition of vertices of a given graph into subsets (or clusters) according to different constraints and objective functions depending on the application. In this paper, we focus on minimizing the sum, over all pair of clusters, of the heaviest edges between the clusters. More formally, we study the following optimization problem: sum-max graph partitioning (SM-GP)

Input: A connected graph G = (V, E), w : E → N, k ≤ |V | Output: A k-partition {V 1 , ..., V k } of V with V i = ∅ for all i ∈ {1, ..., k} Goal: Minimize cost(V 1 , ..., V k) = k i,j=1 i>j max u∈Vi v∈Vj w(u, v)
We denote by U-sum-max graph partitioning (U-SM-GP) the unweighted version of the problem, where w(e) = 1 ∀e ∈ E. The threshold value for the associated decision version of the problem will be denoted by C. All graphs studied here are supposed to be simple, non oriented and connected, unless otherwise stated. Thus, it is easy to remark that any k-partition has a cost of at least (k -1) min e∈E w(e).

Applications and Related Work

Let us now point out some interesting links between SM-GP and several classical combinatorial problems:

• Firstly, one can mention all graph partitioning problems using different objective functions. Among them, one may want to minimize the sum of all edge weights between each pair of clusters (instead of the heaviest only), leading to the classical min-k-cut problem which has been extensively studied on the side of complexity [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF], exact algorithms [START_REF] Goldschmidt | Polynomial algorithm for the k-cut problem[END_REF], approximability [START_REF] Saran | Finding k cuts within twice the optimal[END_REF] or parameterized complexity [START_REF] Downey | Cutting up is hard to do: The parameterised complexity of k-cut and related problems[END_REF]. Another objective function is the optimization of the sum of the edge weights (or the heaviest one) inside each cluster [START_REF] Hansen | Complete-link cluster analysis by graph coloring[END_REF]. Finally, one can combine these objectives and minimize the cut ratio of the partition [START_REF] Patkar | An efficient practical heuristic for good ratiocut partitioning[END_REF]. Some studies generalize many of these problems though one natural formalization: [START_REF] Gonzalez | On the computational complexity of clustering and related problems[END_REF] gives computational lower bounds when the objective is to maximize some function over the inner edges of the clusters, [START_REF] Koivisto | An O(2 n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion[END_REF] designs an O * (2 n) algorithm for a whole class of partition problems such as max-k-cut, k-domatic partition or k-colouring, and [START_REF] Feder | Complexity of graph partition problems[END_REF] defines the M-partitioning problem where the objective is to find a partition of the vertices respecting some constraints defined by a matrix M .

• Secondly, the unweighted version of our graph partitioning problem can be viewed as a graph homomorphism problem1 [START_REF] Hell | Graphs and Homomorphisms[END_REF]. Indeed, we are looking for an homomorphism from G to a target graph with k vertices and as few edges as possible, but with the additional constraints that (a) the homomorphism must be edge-surjective and (b) the target graph must be reflexive, i.e. contains a loop on every vertex. Several papers of N.

Vikas [START_REF] Vikas | Computational complexity of compaction to reflexive cycles[END_REF][START_REF] Vikas | Computational complexity classification of partition under compaction and retraction[END_REF][START_REF] Vikas | A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results[END_REF][START_REF] Vikas | Algorithms for partition of some class of graphs under compaction[END_REF] study the problem of deciding whether a graph G admits such an homomorphism (called compaction) to a fixed graph H, by restricting G or H to special graph classes in order to obtain polynomial or N P-hardness results. In Section 6, we describe how these results can help in the design of exact algorithms for U-SM-GP.

Contributions and Organization of the Paper

In this paper we describe both negative and positive results for sum-max graph partitioning and its unweighted variant:

• On the negative side, we show in Section 2 that when k is part of the input, the problem, and its unweighted variant are O(n 1-) inapproximable unless P = N P for all 0 < ≤ 1, and W [1]-hard for the parameter k.

Then, on the positive side, we present several algorithms together with their approximation analysis:

• First, we present in Section 3 a natural greedy algorithm and show that its approximation ratio for SM-GP is better than k/2. Moreover, we show that the analysis is tight.

• Then in Section 4, for the unweighted version U-SM-GP, we show how the diameter of the input graph can influence its complexity, by obtaining negative results for graphs of low diameter, positive results for graphs of high diameter, and a polynomial-time

(k 2 -d + 2 + d 2 -3d 2(k-1)
)-approximation algorithm where d is the diameter of the input graph.

• Also for the unweighted version, we present in Section 5 a link with the k-sparsest subgraph problem and a general algorithm which provides (2 -2/k)-approximated solutions and runs in O(k 2 n ω k-1 3) time for general graphs (where ω < 2.376 is the matrix multiplication exponent), in polynomial time for split graphs and in FPT time in interval graphs, and which provides (2 -2/k + 1)-approximated solution in proper interval graphs in polynomial time for every fixed > 0. Still using the link with k-sparsest subgraph, we provide a polynomial de-randomized approximation algorithm achieving a ratio of (1 + m(k-2) n(n-1)).

• Finally, in Section 6 we present a method to solve the weighted problem for k = 3 and the unweighted problem for k = 4, and we use a negative result of the compaction problem presented above to suggest that this method may be hard to generalize for all fixed k. We also discuss some open problems.

Notations

Recall that all graphs studied here are supposed to be simple, non oriented and connected, unless otherwise stated. Given a graph G = (V, E) and w : E → N, we define as usually n = |V | and m = |E|. A vertex ω ∈ V is called a universal vertex of G if {ω, v} ∈ E for all v = ω. We denote by α(G) the size of a maximum independent set of G (i.e. a set of pairwise non-adjacent vertices). The eccentricity of a vertex is the greatest distance between this vertex and any other vertex (in terms of number of edges of a shortest path connecting these vertices). The diameter of G is the maximum eccentricity over all vertices, and will be denoted by diam(G). Given a partition

P = {V 1 , ..., V k } of V , we define cost(V 1 , ..., V k) = k i=1 k j=i+1 max u∈Vi,v∈Vj w(u, v)
. Moreover, we note G /P the quotient graph obtained by the partition, i.e. the graph with {V 1 , ..., V k } as vertex set, and with an edge {V i , V j } of cost max u∈Vi,v∈Vj w(u, v) if there exists in G an edge between a vertex of V i and a vertex of V j . For other definitions of graph theory, approximation and parameterized complexity, we refer the reader to the classical literature.

Computational Lower Bounds

In this section, we provide a reduction which highlights the intractability of sum-max graph partitioning (and even the unweighted version), both from approximation and parameterized complexity. Indeed, we show that the problem is W [1]-hard for the parameter k, and that unless P = N P, we cannot expect a O(n 1-)-approximation algorithm for any fixed 0 < ≤ 1.

Theorem 1. U-sum-max graph partitioning (and thus the weighted version) is W [1]-hard for the parameter k, and cannot be approximated within a O(n 1-) factor for any fixed 0 < ≤ 1, unless P = N P.

Proof. We show a gap preserving reduction from independent set to U-SM-GP. It is known [START_REF] Håstad | Clique is hard to approximate within n 1[END_REF] that for any constant r ≤ 1, the following problem is N P-complete:

gap r independent set Input: a graph G = (V, E), k ∈ N Output: Decide whether α(G) ≥ k or α(G) ≤ rk.
Let G = (V, E) be a graph, and k ∈ N. We construct an instance Φ of Usum-max graph partitioning, composed of a graph G = (V , E), together with r ≥ 1 and k ∈ N, such that:

• α(G) ≥ k ⇒ OPT (Φ) ≤ k • α(G) ≤ rk ⇒ OPT (Φ) ≥ r k • r = O(1 r)
Where OPT (Φ) is the cost of an optimal solution of U-SM-GP for Φ .

The construction is as follows: G = (V , E) is a copy of G, plus a universal vertex ω. We define k = k + 1 and r = 1 2r . Notice that this reduction can clearly be performed in polynomial time. Suppose that α(G) ≥ k and let S = {s 1 , ..., s k } be an independent set of size k in G, with s i ∈ V for all i ∈ {1, ..., k}. We construct the following k -partition {V 1 , ..., V k } of V : V i = {s i } for all i ∈ {1, ..., k}, and V k+1 = V \S. By construction, it is clear that cost(V 1 , ..., V k) = k, and thus OPT (Φ) ≤ k . Suppose now α(G) ≤ rk and let {V 1 , ..., V k } be any k -partition of G . Because ω is an universal vertex, it is clear that the cost of this solution will be at least k, plus the minimum number of edges of any graph with k nodes that does not contain an independent set of size rk, i.e. OPT (Φ) ≥ k + x, where

x = min{|E H | : H = (V H , E H) such that |V H | = k
rk ≥ α(H) ≥ k 2x k+1
Which gives the following bound (we can suppose that rk ≥ 1):

OPT (Φ) ≥ k + k 2 2rk - k 2 ≥ k + 1 2r = r k
Thus, we have a gap of r = 1 2r , where r is arbitrary small. Finally, notice that the parameter k from independent set is preserved through the reduction (k = k + 1). Since a gap preserving reduction is a special case of polynomial reduction, and since independent set is a well known W [1]-hard problem, this reduction also proves the W [1]-hardness of our problem.

Approximation Algorithm for the General Case

In this section we consider a simple greedy algorithm for sum-max graph partitioning and prove that its approximation ratio is better than k/2. Moreover, we show that our analysis is tight.

Presentation of the Greedy Algorithm

It is clear that a feasible solution can be obtained by removing edges, until the number of connected components (which will represent clusters) reaches k. As the cost of such a solution depends on the weight of removed edges, it is natural to consider them in non-decreasing order of weights. Thus, we consider the greedy algorithm given by Algorithm 1, whose running time is clearly bounded by O(|E| log |E|). Actually, this algorithm corresponds to the split algorithm of [START_REF] Saran | Finding k cuts within twice the optimal[END_REF], which gives (2-2/k)-approximated solutions for the min-k-cut problem.

Algorithm 1 a greedy algorithm for sum-max graph partitioning

Sort E in non-decreasing order of weights (ties are broken arbitrarily) j ← 0 for i = 1 to k -1 do while G has i connected components do G ← G\{e j } j ← j + 1 end while // we denote by w i the weight of the last removed edge end for return Connected components of G 3.2. Analysis of the Algorithm

Notations

Let I = (G, k) be an instance of sum-max graph partitioning. We define Ω k = k(k-1)

2

, and θ = max{ w(e) w(e) : e, e ∈ E, e = e , w(e) ≥ w(e)}. For a solution S = {S 1 , ..., S k } of the problem, we associate the set C S = {c 1 , ..., c ps } of edges of maximum weight between each pair of clusters, with p S ≤ Ω k . The value of the solution is then defined by cost(S) = p S i=1 w(c i). Let A = {A 1 , ..., A k } be the solution returned by Algorithm 1, and { i A 1 , ..., i A i } the partial solution at the beginning of step i. The while loop consists in separating a cluster i A t (for some t ∈ {1, ..., i}) into two clusters i A 1 t and i A 2 t . Thus, when separating i A t , we add to C A the edge of maximum weight between i A 1 t and i A 2

t , and at most (i -1) edges (called the unexpected edges) between i A 1 t or i A 2 t and the other clusters (cf Figure 1). We thereby add to the solution value one term w i (between i A 1 t and i A 2 t) and (i -1) terms (α j i) j=1..(i-1) . For j ∈ {1, ..., (i -1)}, if the edge of maximum weight between i A t and i A j has one endpoint in i A 1 t (resp. i A 2 t), then α j i is equal to the edge of maximum weight between i A 2 t (resp. i A 1 t) and i A j , or 0 if the two clusters are not adjacent. By definition, we have

cost(A) = k-1 i=1 (w i + i-1 j=1 α j i) (1)

Preliminaries

Let us now state several properties of the algorithm that will be the base of the approximation result (Theorem 2). First, It is clear by construction that w 1 ≤ w 2 ≤ . . . ≤ w k-1 . Then, we have the following result: Lemma 1. Let us consider the beginning of step i, and the corresponding i partition { i A 1 , ..., i A i }. Then, for any t ∈ {1, . . . , i} we can upper bound the

i A 1 t i A 2 t i A t i -1 i A 1 i A i i A t-1 i A t+1
wi Figure2: Dashed lines represent edges of maximum weight between i A t and other clusters, already in C A , solid lines represent the at most (i -1) new edges added to C A .

Preliminaries

Let us now state several properties of the algorithm that will be the base of the approximation result (Theorem 3).

Remark 1. It is clear by construction that

w 1 ≤ w 2 ≤ . . . ≤ w k-1
Lemma 1. Let us consider the beginning of step i, and the corresponding i partition { i A 1 , ..., i A i }. Then, for any t ∈ {1, . . . , i} we can upper bound the total weights of the heaviest edges outcoming from i A t in the following way

i j=1 j =t w(e t,j) ≤ i-1 j=1 w j ,
where e t,j denotes the edge of maximum weight between i A t and i A j .

Proof. We prove it by induction over i. Statement is clearly true for the first steps (case i = 1 is meaningless since we have only 1 cluster, and case i = 2 is true since there is only two clusters, and thus only one edge of maximum weight between them). We are at the beginning of Step i + 1: during Step i, i A t has been separated into i A 1 t and i A 2 t , thus incurring an additional weight of w i . For j 0 = t, notice that edge e j0,t (edge between i A j0 and i A t , before the split) is now replaced by two edges e j0,t1 and e j0,t2 , with max(w(e j0,t1), w(e j0,t2)) = w(e j0,t). Let us now bound the weight of edges out-coming from i A j0 . W.l.o.g., suppose that w(e j0,t1) = w(e j0,t), and let i S j0 be the sum of all heaviest edges linking i A j0 to each one of the other clusters (including i A 1 t and i A 2 t . Thus, we have total weights of the heaviest edges outcoming from i A t in the following way

i j=1 j =t w(e t,j) ≤ i-1 j=1 w j ,
where e t,j denotes the edge of maximum weight between i A t and i A j .

Proof. We prove it by induction over i. Statement is clearly true for the first steps (case i = 1 is meaningless since we have only 1 cluster, and case i = 2 is true since there is only two clusters, and thus only one edge of maximum weight between them). We are at the beginning of Step i + 1: during Step i, i A t has been separated into i A 1 t and i A 2 t , thus incurring an additional weight of w i . For j 0 = t, notice that edge e j0,t (edge between i A j0 and i A t , before the split) is now replaced by two edges e j0,t1 and e j0,t2 , with max(w(e j0,t1), w(e j0,t2)) = w(e j0,t). Let us now bound the weight of edges out-coming from i A j0 . W.l.o.g., suppose that w(e j0,t1) = w(e j0,t), and let i S j0 be the sum of all heaviest edges linking i A j0 to each one of the other clusters (including i A 1 t and i A 2 t . Thus, we have

i S j0 = i j=1 j =j0,j =t
w(e j0,j) + w(e j0,t1)

w(ej 0 ,t) + w(e j0,t2) ≤wi ≤ i-1 j=1
w j + w i using the induction hypothesis Same arguments hold for sets i A 1 t and i A 2 t , which completes the proof.

Corollary 1. Let us consider the beginning of step i, and the corresponding i partition { i A 1 , ..., i A i }. When splitting i A t , the total weight of the unexpected edges is upper bounded as follows:

i-1 j=1 α j i ≤ θ i-1 j=1 w j
Proof. We re-use notation e j,t of Lemma 1. Let ẽj,t (with j = t) be the unexpected edge between i A j and i A t . For example, if e j,t was in fact an edge between i A j and i A 1 t , ẽj,t is the edge between i A j and i A 2 t . By definition of θ, we have w(ẽ j,t) ≤ θw(e j,t), and thus

i-1 j=1 α j i = i j=1,j =t w(ẽ j,t) ≤ θ i-1
j=1 w j (by Lemma 1).

Let us now prove the following lower bound on the optimal value. Lemma 2. Let S be any (i + 1)-partition, with C S = {c 1 , ..., c p S }. We have

p S j=1 w(c j) ≥ i j=1 w j
Proof. We prove it by induction over i. The statement is clearly true for the first step, since Algorithm 1 gives an optimal 2-partition. Consider now an (i + 1)-partition S, with C S = {c 1 , ..., c p S }. Let w M = max j=1...p S w(c j), and let (S i1 , S i2) be the two sets in S containing both endpoints of an edge of weight w M . Considering the i-partition created when merging S i1 and S i2 in S, and using the induction hypothesis, we have:

p S j=1 w(c j)-w M ≥ i-1 j=1 w j .
Finally, notice that by construction any (i + 1)-partition must have an edge of weight at least w i , since after removing all edges of weight strictly smaller than w i in our algorithm, we still not have an (i + 1)-partition. This leads to w M ≥ w i and to the desired inequality.

Proof of the Approximation Ratio

We now turn to our main theorem, and prove that Algorithm 1 has an approximation ratio better than k 2 .

Theorem 2. Algorithm 1 is a (1 + (k 2 -1)θ)-approximation algorithm.

Proof. Using Lemma 2 with an optimal solution, it is sufficient to show the following inequality:

cost(A) ≤ (1 + (k 2 -1)θ) k-1 i=1 w i (2)
Let us prove it by induction over k. Statement is clear for k = 2. Suppose now that the result is true for all k = 1, 2, ..., t and let us show that it remains true for k = t + 1. By Equation (1) and the induction hypothesis, we have:

cost(A) ≤ (1 + (t 2 -1)θ) t-1 i=1 w i + w t + t-1 j=1 α j t = (1 + (t 2 -1)θ) t-1 i=1 w i + w t + 1 2 t-1 j=1 α j t + 1 2 t-1 j=1 α j t ≤ (1 + (t 2 -1)θ) t-1 i=1 w i + w t + 1 2 θ t-1 j=1 w j + 1 2 t-1 j=1 α j t using Lemma 1 ≤ (1 + (t 2 -1)θ) t-1 i=1 w i + w t + 1 2 θ t-1 j=1 w j + 1 2 (t -1)θw t as α j t ≤ θw t ≤ (1 + (t + 1 2 -1)θ) t-1 i=1 w i + w t + (t + 1 2 -1)θw t ≤ (1 + (t + 1 2 -1)θ) t i=1 w i
Which gives the desired inequality.

Thus, Algorithm 1 becomes arbitrarily good as θ tends to 0, i.e. when the gap on the weight of any pair of edges becomes arbitrarily large. This is not surprising, as Algorithm 1 only focuses on edge weights, rather than the structure of the graph. Moreover, notice that sum-max graph partitioning remains N P-hard even if all edge weights are different (and thus even when θ tends to 0). Indeed, the reduction presented in the proof of Theorem 1 can be adapted using classical scaling arguments (assigning weight 1 + i to edge i).

It appears from the previous proof that the k 2 factor is mainly due to the excessive number of edges in the solution given by Algorithm 1. Indeed, in the worst case (of the unweighted problem) this solution forms a clique of size k over the clusters, while the optimal forms a tree, resulting in a k(k-1)

2 /(k - 1) = k
2 ratio on the number of edges. This insight is the key point of the following tightness result, where the instance is designed such that the lower bound (t i=1 (w j)) becomes tight.

Proposition 1. Approximation ratio of Algorithm 1 is tight.

Proof. Let k ∈ N. We define the instance I k , composed of a split graph G = (C ∪ S, E, w) (with C as an induced clique and S as an induced stable set) with as many edges as possible. We define C = {c 1 , ..., c k } and S = {s 1 , ..., s k }. Finally, w(e) = 1 for all e ∈ E. Let us now define three categories of edges:

• first category: X = {{c i , s j } such that i = j or j = 1},

• second category: Y = {{c i , c j } such that i = j},

• third category: Z = {{c i , s j } such that i = j and j = 1}.

An example of such a graph is presented in Figure 2.

Proof. Let k ∈ N. We define the instance I k , composed of a split graph G = (C ∪ S, E, w) (with C as an induced clique and S as an induced stable set) with as many edges as possible. We define C = {c 1 , ..., c k } and S = {s 1 , ..., s k }. Finally, w(e) = 1 for all e ∈ E. Let us now define three categories of edges:

first category: X = {{c i , s j } such that i = j or j = 1}, second category: Y = {{c i , c j } such that i = j}, third category: Z = {{c i , s j } such that i = j and j = 1}.

An example of such a graph is presented in Figure 3.

s1 si s k c1 ci c k (a) s1 si s k c1 ci c k (b) s1 si s k c1 ci c k (c)
Figure3: (3a): Example of a graph that reaches the ratio. First category of edges is represented with dashed lines, second category with solid lines, third category with bold lines (3b): Solution given by Algorithm 1 (3c): Optimal solution Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it starts by removing edges from X, then those from Y . At this point, it is easy to see that a (k + 1)-partition is created. Then, since each pair of clusters is adjacent, the value of this solution is (k+1)k 2 . On the contrary, consider the following (k + 1)-partition (V 1 , ..., V k):

for all j ∈ {1, ..., k}, V j = {s j } -V k+1 = C

The value of this solution is k, (it is thus an optimal one).

Then, notice that θ = max{ w(e) w(e) : e, e ∈ E, e = e , w(e) ≥ w(e)} = 1. Let A(I k) and OPT (I k) denote respectively the value of the solution given by Algorithm 1 and the value of an optimal solution for I k . We have:

A(I k) OPT (I k) = k + 1 2
Which proves the result (we are looking for a (k + 1)-partition). Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it starts by removing edges from X, then those from Y . At this point, it is easy to see that a (k + 1)-partition is created. Then, since each pair of clusters is adjacent, the value of this solution is (k+1)k 2 . On the contrary, consider the following (k + 1)-partition (V 1 , ..., V k): for all j ∈ {1, ..., k}, V j = {s j }, and V k+1 = C. The value of this solution is k, (it is thus an optimal one). Then, notice that θ = max{ w(e)

w(e) : e, e ∈ E, e = e , w(e) ≥ w(e)} = 1. Let A(I k) and OPT (I k) denote respectively the value of the solution given by Algorithm 1 and the value of an optimal solution for I k . We have A(I k)

OPT (I k) = k+1 2 , which proves the result (we are looking for a (k + 1)-partition). Remark 1. It is possible to obtain the same result without using the fact that edges of equal weight are sorted arbitrarily in Algorithm 1, by assigning different edge weights that will respect the order of removed edges presented above, and are large enough compared with |E|.

Using the Diameter of the Graph for the Unweighted Case

In this section we study how the diameter of the input graph influences the complexity of U-sum-max graph partitioning.

Analysis for Extremal Values of the Diameter

Here we analyse the complexity of the problem for extremal values of the diameter of the input graph. First, notice that the graph obtained in the reduction of Theorem 1 is of diameter 2 (because of the universal vertex). By slightly modifying the reduction, we can obtain the same result for unweighted graphs of diameter 3, and weighted graphs of all fixed diameter 4 ≤ d ≤ k, as shown in the following proposition: Proposition 2. U-SM-GP is N P-hard in graphs of diameter 3. SM-GP is N P-hard in graphs of diameter d for all fixed d = 4, ..., k (even if edge weights are defined over two distinct values).

Proof. We only sketch the proof of the second statement, as it uses the same arguments of the proof of Theorem 1. This first statement will then be deduced as a special case.

Let G = (V, E) be a graph, and k ≤ |V |. Let δ ≤ k. We construct the graph G as a disjoint union of δ copies of G: (G 1 , . . . , G δ) where

G i = (V i , E i), with V i = {v i 1 , ..., v i n }
for all i ∈ {1, . . . , δ}, and we set w(e) = 1 for all e ∈ δ i=1 E i . Moreover, for all i ∈ {1, ..., (δ -1)} and all j ∈ {1, ..., n} , we make v i j be adjacent to v i+1 j with an edge of weight M > k. Then, for all i ∈ {1, . . . , δ}, we add a vertex α i which is adjacent to every vertex of G i , with edges of weight 1. Finally, we make α i be adjacent to α i+1 for all i ∈ {1, . . . , (δ -1)} with edges of weight M . It is clear that this construction can be done in polynomial time (notice that δ ≤ k ≤ |V |), and that the diameter of the output graph is d = δ + 1. Suppose that G contains an independent set S of size k, with S = {s 1 , ..., s k }. For i ∈ {1, . . . , δ}, we define the corresponding independent set S i = {s i 1 , . . . , s i k } in G . We build the the following (k + 1)-partition P = {P 1 , . . . , P k+1 } of G as follows:

• P i = {s i j : j ∈ {1, ..., δ}} for all i ∈ {1, ..., k}

• P k+1 = V \ k i=1 P i
By construction this is a (k + 1)-partition of cost k. Conversely, because of the edges of weight M , for all j ∈ {1, ..., n}, all {v i j : i ∈ {1, ..., (δ -1)}} must be in the same cluster, as well as all {α i : i ∈ {1, ..., (δ -1)}}. Thus, it is easily seen that that if G contains a (k + 1)-partition of cost k, then G admits an independent set of size k. Moreover, for δ = 2 (i.e. which leads to a graph of diameter 3), we can set

v0 Γ 1 (v0) Γ 2 (v0) Γ d (v0) x1 = 2 y1 = 5 x2 = 3 y2 = 7 x d = 1 y d = 1 x0 = 1 y0 = 1
Figure1: Illustration of Algorithm expand-and-split

Proof. It is clear that the algorithm runs in polynomial time. Let A denotes the value of the solution returned by expand-and-split. We have:

2A ≤ edges between clusters in Γ i (v 0) d i=0 x i (x i -1) + edges between clusters of Γ i (v 0) and Γ i+1 (v 0) d-1 i=0 2x i x i+1 = d i=0 x 2 i - d i=0 x i + d-1 i=0 2x i x i+1 = d i=0 x 2 i -k + d i=0 2x i x i+1 -2x 0 x d = d i=0 x i 2 - 0≤i,j≤d |i-j|≥2 x i x j -k -2x d ≤ d i=0 x i 2 - 0≤i,j≤d |i-j|≥2 x i x j -k = k 2 -k -2∆ d with ∆ d = 0≤i,j≤d |i-j|≥2 x i x j (1)
Lemma 1. Let {x 0 , ..., x d } ∈ N d such that d i=0 = k and x i > 0 for i ∈ {0, ..., d}, ∆ d is minimum if there exists i 0 ∈ {1, ..., d -1} such that x i 0 = kd, and x i = 1 for all i = i 0 .

Proof. Proof of Lemma 1 is given in Appendix A.

By Lemma 1, we have: Whereas the problem is hard for small of diameter, we observe that it is polynomial solvable on graphs of high diameter:

∆ d ≥ k(d -2) - d(d -1) 2 + 2 (2)
Proposition 3. U-SM-GP is polynomial solvable on graphs of diameter d ≥ k -1.
Proof. Suppose that G has diameter d ≥ k -1, and let v 0 be a vertex of maximum eccentricity in G. We define the following (d + 1)-partition:

Γ i (v 0) =    {v 0 } if i = 0 N (v 0) if i = 1 {N (v) : v ∈ Γ i-1 (v 0)}\Γ i-2 (v 0) if 1 < i ≤ d
Then, we output the solution P = {Γ 0 (v 0), ..., Γ k-2 (v 0), d i=k-1 Γ i (v 0)}. By construction, Γ i (v 0) ∩ Γ j (v 0) = ∅ for all i = j, and we thus have a k-partition of V of minimum cost (k -1), since its quotient graph is a path of length (k -1).

We now turn to the definition and analysis of an algorithm using the diameter the graph.

Presentation of Algorithm expand-and-split

Let G = (V, E) be a graph and k ≤ |V |. The idea of the following algorithm is to construct the same partition as in the case of d ≥ k -1, using a vertex of maximum eccentricity, and then to modify it in order to obtain exactly k clusters.

Let v 0 be a vertex of maximum eccentricity in G, and let us consider the (d+ 1)-partition {Γ 0 (v 0), ..., Γ d (v 0)} as defined in Proposition 3. For all i ∈ {0, ..., d}, let y i = |Γ i (v 0)|. Since the graph has diameter d < k -1, the expand-andsplit algorithm arbitrarily splits each Γ i (v 0) into x i clusters, with

d i=0 x i = k.
An example of such a partition is depicted in Figure 3.

Analysis of the algorithm

Theorem 3. expand-and-split is a polynomial (k 2 -d+2+ d 2 -3d 2(k-1))-approximation algorithm, where d denotes the diameter of the graph.

Proof. It is clear that the algorithm runs in polynomial time. Let A denote the value of the solution returned by expand-and-split. We have:

2A ≤ edges between clusters in Γ i (v0) d i=0 x i (x i -1)
+ edges between clusters of Γ i (v0) and Γ i+1 (v0)

d-1 i=0 2x i x i+1 = d i=0 x 2 i - d i=0 x i + d-1 i=0 2x i x i+1 = d i=0 x 2 i -k + d i=0 2x i x i+1 -2x 0 x d = d i=0 x i 2 - 0≤i,j≤d |i-j|≥2 x i x j -k -2x d ≤ d i=0 x i 2 - 0≤i,j≤d |i-j|≥2 x i x j -k = k 2 -k -∆ d with ∆ d = 0≤i,j≤d |i-j|≥2 x x j (3)
Lemma 3. Let {x 0 , ..., x d } ∈ N d+1 such that d i=0 = k and x i > 0 for i ∈ {0, ..., d}, ∆ d is minimum if there exists i 0 ∈ {1, ..., d -1} such that x i0 = kd, and x i = 1 for all i = i 0 .

Proof. Given d > 0, the goal is to find {x 0 , ..., x d } with

x i ∈ N for all 0 ≤ i ≤ d such that z = 0≤i,j≤d i-j≥2
x i x j is minimized, under the the constraints:

• d i=0 x i = k • x i > 0 ∀i ∈ {0, ...

, d}

Notice that 2z = ∆ d (because of the sum over i and j such that ji ≥ 2 instead of |j -i| ≥ 2). Let us denote by z * the value of an optimal solution. If d = 1 then the result is obvious (z * = 0). If d = 1, then z * = 1 for x 0 = 0, x 1 = k -1 and x 2 = 1. Thus, in the following, we consider the case d ≥ 2. For sake of readability, we define x -1 = x d+1 = 0. First, let us remark that z = j-i≥2 x i x j = 1 2 d i=0 (k -(x i-1 + x i + x j+1)). Thus, minimizing z is the same as maximizing

t = d i=0 x i (x i-1 + x i + x i+1)
under the same constraints. Here again we denote by t * the value of an optimal solution. For all i ∈ {1, ..., d}, we define α i = x i-1 + x i + x i+1 . Thus, we have t = d i=0 x i α i . The proof is divided in three steps:

• Step 1: There exists an optimal solution such that x 0 = x d = 1

• Step 2: There exists an optimal solution such that:

-∃j ∈ {1, ..., d -1} such that α j = k -d + 2
-∀i ∈ {1, ..., d} with |j -i| ≥ 2 we have x i = 1

• Step 3: There exists an optimal solution such that:

-∃j ∈ {1, ..., d -1} such that x j = k -d -∀i = j we have x i = 1
Proof of Step 1: Let {x 0 , ..., x d } be an optimal solution. Without loss of generality, suppose by contradiction that x 0 > 1, and let us define the following solution {x 0 , ..., x d }:

• x 0 = x 0 -1 • x 1 = x 1 + 1 • x i = x i for all 1 ≤ i ≤ d -1
With the associated α i = x i-1 + x i + x i+1 for all i ∈ {0, ..., d}. We have:

d i=0 x i α i = (x 0 -1)α 0 + (x 1 + 1)α 1 + x 2 α 2 + d i=3 x i α i = d i=0 x i α i + x 2
Since x 2 > 0, it implies that {x 0 , ..., x d } is not an optimal solution. Contradiction.

Proof of Step 2:

Let {x 0 , ..., x d } be an optimal solution, with x 0 = x d = 1, and let j ∈ {0, ..., d} such that α j = max k=2...d α k (remark that j = 0 and j = d). By contradiction, suppose that there exists i / ∈ {j -1, j, j + 1} such that x i > 1. Let us define the following solution {x 0 , ..., x d }:

• x i = x i -1 • x j = x j + 1 • ∀k ∈ {i, j} x k = x k
With the associated α i = x i-1 + x i + x i+1 for all i ∈ {0, ..., d}. Here we distinguish 2 cases: First case: i + 1 = j -1 (the case i -1 = j + 1 is symmetrical). We have:

d k=0 x k α k = d k=0 x k α k + 2
Second case: i / ∈ {j -2, j -1, j, j + 1, j + 2}. We have:

d k=0 x k α k = d k=0 x k α k + 2α j -2α i + 2 With 2α j -2α i + 2 > 0.
In both cases, it implies that {x 0 , ..., x d } is not an optimal solution. Contradiction.

Proof of Step 3: Let {x 0 , ..., x d } be an optimal solution with:

• x j-1 + x j + x j+1 = k -d + 2 for some j ∈ {1, ..., d -1} • x i = 1 for all i = {j -1, j, j + 1}
And suppose that x j-1 > 1. Let us define the following solution {x 0 , ..., x d }:

• x j-1 = x j-1 -1 • x j = x j + 1 • for all k / ∈ {j -1, j} x k = x k
With the associated α i = x i-1 + x i + x i+1 for all i ∈ {0, ..., d}. We have:

d k=0 x k α k = d k=0 x k α k -α j-1 + α j + x j+1 -x j-2
And since -α j-1 + α j + x j+1x j-2 ≥ 0, {x 0 , ..., x d } is also an optimal solution, which proves the result.

By Lemma 3, we have:

∆ d ≥ 2 k(d -2) - d(d -1) 2 + 2 (4)
Using (3) and (4), we obtain:

2A ≤ k 2 -k -2k(d -2) + d(d -1) -4 ≤ k 2 -2kd + 3k + d 2 -d -4
Let OPT denote the value of an optimal solution for the given instance. Using OPT ≥ k -1 (since G is connected), we get:

ρ = 2A 2OPT ≤ k 2 -2kd + 3k + d 2 -d -4 2(k -1) ≤ k 2 -d + 2 + d 2 -3d 2(k -1)
Which proves the result.

Unbalanced Partitions

Definition and link with the k-sparsest subgraph problem

In this section, we study how structural properties of some very simple partitions, called unbalanced partitions, may help in the design of approximation algorithms for the unweighted version of our problem. More precisely, we first show that any optimal solution P of U-SM-GP can be restructured into an unbalanced solution P such that cost(P) ≤ (2 -2 k)cost(P). Then, we link the simple structure of these solutions to the problem of finding in a graph k vertices which induce as few edges as possible (namely the k-sparsest subgraph problem). Combining these two remarks, we show that a ρ-approximated solution for k-sparsest subgraph gives a (ρ + 1 -2ρ k)-approximated solution for U-SM-GP. To apply this result, we provide for k-sparsest subgraph an O(k 2 n ω k-1

3) algorithm on general graphs (where ω < 2.376 is the matrix multiplication exponent), and use three known results on some restricted graph classes. Finally, we present a natural algorithm which consists in building an unbalanced solution at random. We show that we can de-randomize the algorithm to obtain a polynomial-time (1 + m(k-2) n(n-1))-approximation algorithm. As we could expect, this algorithm gives good solutions when the input graph has low density. By definition, we have cost(P) = q + α and cost(P *) = q * + α * . As S is a ρapproximated solution, we have α ≤ ρα * . Thus, we have cost(P) = q + α + q *q * ≤ q + ρα * + q *q * = q + ρ(α * + q *)ρq * = q + ρcost(P *)ρq * Then, by definition we have q ≤ k -1 ≤ cost(P *) and kq * ≥ 2cost(P *) (as previously). Hence:

Definition 1. Given G = (V, E) and k ∈ N, a k-partition of V is called an unbalanced partition (or unbalanced solution) if (k -1)
cost(P) ≤ cost(P *)(ρ + 1 - 2ρ k)
Which concludes the proof.

Applications to U-sum-max graph partitioning

In the following, we show how to solve k-sparsest subgraph in O(k 2 n ω k-1 3) time, where ω < 2.376 [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF] is the matrix multiplication exponent. In addition, we present three results for the same problem on some special graph classes. Proposition 6. k-sparsest subgraph can be solved in O(k 2 n ω k 3) time, where ω < 2.376 is the matrix multiplication exponent.

Proof. We only sketch the proof, as it is similar to the approach of [START_REF] Nesetril | on the complexity of the subgraph problem[END_REF] for the k-clique problem. Let G = (V, E) and k ∈ N. The algorithm consists in creating a graph whose vertices correspond to all k 3 -tuples of vertices of G, and linking two vertices if the two corresponding tuples do not share any vertex. Additionally, each vertex receives a weight corresponding to the number of edges in the subgraph induced by vertices of the corresponding tuple in G, and each edge receives a weight corresponding to the number of edges in G between vertices of the two corresponding tuples. Finally, the algorithm consists in finding a triangle of minimum weight in the constructed graph (the weight of a triangle is defined as the sum of the edge and vertex weights in the triangle). This can be done in time O(M n ω) for any graph on n vertices and integer weights in [0, M], where ω < 2.376 is the matrix multiplication exponent [START_REF] Nesetril | on the complexity of the subgraph problem[END_REF]. Thus, the running time of our algorithm is O(k 2 n ω k 3).

Let us now mention some results of [START_REF] Watrigant | The k-sparsest subgraph problem[END_REF] for k-sparsest subgraph that we will use in the following.k-sparsest subgraph admits:

• A polynomial-time algorithm in split graphs.

• A P T AS in proper interval graphs.

• An FPT algorithm in interval graphs (parameterized by the cost of the solution).

Thus, by Propositions 5 and 6, we have the following result:

Proposition 7. The following results hold for U-SM-GP:

• in general graphs, a (2 -2/k)-approximated solution can be found in O(k2 n ω k-1 3) time.

• in split graphs, a (2 -2/k)-approximated solution can be found in polynomial time.

• in proper interval graphs, a (2 -2/k + 1/)-approximated solution can be found in polynomial time for any fixed > 0.

• in interval graphs, a (2-2/k)-approximated solution can be found in FPT time (parameterized by the cost of the solution).

On Graphs on Low Density

Let us now consider the algorithm that picks randomly an unbalanced solution, i.e. that picks uniformly (k -1) different vertices 2 {X 1 , . . . , X k-1 }. Let A rand denotes the random variable corresponding to the value of the corresponding solution. As we can expect, the expected value of A rand decreases in graphs of low density.

Proposition 8. E(A rand) ≤ (k -1)(1 + m(k-2)
n(n-1)).

Proof. We can upper bound the expected value of A rand as follows (assuming that the k th cluster is connected to the (k -1) singletons):

E(A rand) ≤ k -1 + 1 2 E(1 i,j) i,j∈{X1,...,X k-1 },i =j
where 1 i,j equals 1 if there is an edge between vertex i and j, and 0 otherwise.

Moreover, for any i and j we have E(1 i,j) = m 2 n(n-1) . Thus, we get

E(A rand) ≤ k -1 + (k -1)(k -2) m n(n -1)
Now, we prove that the (1+ m(k-2) n(n-1)) ratio can be achieved by a deterministic polynomial-time algorithm using classical de-randomized arguments. Proposition 9. There is a deterministic polynomial (1+ m(k-2) n(n-1))-approximation algorithm for U-SM-GP.

Proof. We will de-randomize A rand using the conditional expectation method. Roughly speaking, at each of the (k -1) steps we find in polynomial time the next most "promising" vertex, i.e. the vertex that minimizes our upper bound on the conditional expectation.

Let us consider a fixed instance composed of G = (V, E) and k ≤ |V |. For any set of k -1 different vertices {x 1 , . . . , x k-1 }, let us define f ({x 1 , . . . , x k-1 }) = k -1 + 1 2 i,j∈{x1,...,x k-1 },i =j 1 i,j . Notice that f ({x 1 , . . . , x k-1 }) corresponds to the upper bound used in Proposition 8 on the cost of the unbalanced solution where {x 1 , ..., x k-1 } are singletons. Thus, Property 8 states that when choosing uniformly the {X t ,

1 ≤ t ≤ k -1} we get E(f ({X 1 , . . . , X k-1 })) ≤ b(n, m, k), with b(n, m, k) = (k -1)(1 + m(k-2)
n(n-1)). Let us now come back to the de-randomization. For any i, 0 ≤ i ≤ k -2 and any set of i different vertices {x 1 , . . . , x i }, let X({x 1 , . . . , x i }) be the following random variable:

• pick uniformly (among V \ {x 1 , . . . , x i }) (k -1 -i) different vertices (X t) 1≤t≤k-1-i • return f ({x 1 , . . . , x i , X 1 , . . . , X k-1-i }).
Thus, following the conditional expectation principle it is now sufficient to prove by induction on i (0 ≤ i ≤ k-2) that we can find in polynomial time (x 1 , . . . , x i) such that E(X(x 1 , . . . ,

x i)) ≤ b(n, m, k). Statement is clearly true for i = 0 as E(X(∅)) = E(f ({X 1 , . . . , X k-1 })) ≤ b(n, m, k).
Let us now consider any i, and see how to find the (i + 1) th vertex. We have:

E(X(x 1 , . . . , x i)) = 1 n -i xt / ∈{x1,...,xi} E(X(x 1 , . . . , x i , x t))
As E(X(x 1 , . . . , x i)) ≤ b(n, m, k), there must exists x t / ∈ {x 1 , . . . , x i } such that E(X(x 1 , . . . , x i , x t)) ≤ b(n, m, k), and thus we chose x i+1 as:

x i+1 = argmin xt / ∈{x1,...,xi} (E(X(x 1 , . . . , x i , x t)))
Moreover, notice that for any x t , E(X(x 1 , . . . , x i , x t)) can be computed in polynomial time using directly the definition of f and the linearity of expectation (even if the X t are not independent).

Exact Algorithms for Fixed k and Open Problems

In terms of exact algorithms, the W [1]-hardness presented in Section 2 shows that we cannot expect to solve the problem in O(f (k).p(n, k)) for any function f and any polynomial p. Hence, a natural question is to ask whether the problem is in the complexity class X P, i.e. if there exists an exact algorithm running in O * (n f (k)) time for some function f . A natural approach would be to enumerate all possible quotient graphs, and then to try to match them one by one. Here and (3) there is no edge between S 1 and S 3 of weight strictly larger than a. Thus, we add S i to V i . Finally, the algorithm assigns all remaining vertices to V 2 . As before, it is straightforward to see that this will not create any forbidden edge.

Overall complexity

The overall algorithm consists in re-executing the previous routine for any pair and any triplet of edges, taking the best execution. Thus, the overall complexity is clearly polynomial, with a main factor in O(m 3) due to the enumeration. Proof. Let G = (V, E) be a graph, and C ∈ N. We Suppose that 3 ≤ C ≤ 6, and |V | ≥ 4 (otherwise the problem is obvious). For each C ∈ {3, 4, 5, 6}, and for each pattern graph P on C vertices, the graph tests whether it is possible to build a 4-partition (V 1 , . . . , V 4) which matches the pattern P . The different patterns are represented in Figure 2.

b a V 1 V 3 V 2 S 1 S 3 > a > b remaining vertices a 1 a 2 b 1 b 2 (a) c a V 1 V 3 V 2 S 1 S 3 > b > c remaining vertices b a 1 b 1 c 1 c 2 a 2 b 2 (b)
• Pattern 2a: for all vertex v ∈ V , try to build the following partition:

-

V 1 = {v} -V 2 = N (v) -V 3 = u∈N (v) N (u) -V 4 = V \(V 1 ∪ V 2 ∪ V 3)
If one of the V i is empty, then it is not possible to match this pattern with v as starting vertex. If none of the vertices do not lead to a legal partition, then it is not possible to match this pattern at all, because otherwise, it would be possible 11 Second case: any optimal solution contains three edges. Here again suppose that we know the three edges e * a , e * b and e * c that are taken into account in an optimal solution value (as depicted in Figure 4). As before, we assume a fixed orientation of the guessed edges, to the price of the enumeration of a fixed number of cases. Let a be the value of the edge e * a = {a 1 , a 2 } between V * 1 and V * 3 (where

a 1 ∈ V * 1 , a 2 ∈ V * 3), b be the value of the edge e * b = {b 1 , b 2 } between V *
1 and V * 2 (where b i ∈ V * i), and c be the value of the edge e * c = {c 1 , c 2 } between V * 2 and V * 3 (where c i ∈ V * i+1). Without loss of generality, we suppose a ≤ b ≤ c. Again, in the first step, the algorithm mimics the optimal and adds a 1 and b 1 to V 1 , b 2 and c 1 to V 2 , and a 2 and c 2 to V 3 . Let S 1 (resp. S 3) be the set of vertices reachable from V 1 (resp. V 3) using edges of weight strictly greater than b (resp. c). Using the same kind of arguments, we know that (1) S i ⊂ V * i (for i ∈ {1, 3}), (2) S 1 ∩ S 3 = ∅ and (3) there is no edge between S 1 and S 3 of weight strictly larger than a. Thus, we add S i to V i . Finally, the algorithm assigns all remaining vertices to V 2 . As before, it is straightforward to see that this will not create any forbidden edge.

Overall complexity. The overall algorithm consists in re-executing the previous routine for any pair and any triplet of edges, taking the best execution. Thus, the overall complexity is clearly polynomial, with a main factor in O(m 3) due to the enumeration.

Higher k Values for the Unweighted Problem

Let us try to generalize the previous algorithm for higher fixed k values, in the unweighted case. Thus, we are given an input graph G = (V, E), and we enumerate all quotient graphs with k vertices in increasing order of number of edges. Let H be a given target graph with k vertices, and let H be the graph obtained from H by adding a loop on every vertex. It is easily seen that: Remark 2. G admits a k-partition P such that G /P is isomorphic to H if and only if there exists an edge-surjective homomorphism (also called a compaction in [START_REF] Vikas | Computational complexity of compaction to reflexive cycles[END_REF]) from G to H.

Unfortunately, given a fixed graph H, testing whether a graph G admits a compaction to H is N P-hard if H is not a chordal graph [START_REF] Vikas | Computational complexity of compaction to reflexive cycles[END_REF]. Thus, it is hopeless to extend the previous algorithm for all fixed k, as even for k = 4 this would lead to test whether G admits a compaction to the cycle of length four, which is a non-chordal graph.

Nevertheless, we can slightly modify the algorithm to obtain the following result for the unweighted version of our problem: Proposition 10. U-SM-GP is polynomial-time solvable for k = 4.

Proof. Let G = (V, E) be our input graph, with |V | ≥ 4. We will successively try to build a 4-partition of cost C = 3, 4, 5, 6. By Proposition 3, if diam(G) ≥ 3, then we can build a 4-partition of cost 3 (where the quotient graph is a path). Otherwise, G admits a 4-partition of cost 3 if and only if G contains an independent set of size 3. Indeed, if such a set {x, y, z} exists, then {x}, {y}, {z}, V \{x, y, z} is a partition of cost 3. Conversely, if diam(G) < 3 and G admits a 4-partition of size 3, then the quotient graph must be isomorphic to the star K 1,3 , and thus contains an independent set of size 3. Suppose now that G does not admit a 4-partition of cost 3. If there exists x, y, z ∈ V such that {x, y}, {x, z} / ∈ E, then {x}, {y}, {z}, V \{x, y, z} is a 4-partition of cost at most 4. Otherwise, then every vertex of G is adjacent to at least |V | -2 vertices. In this case it is easily seen that unless G is isomorphic to C 4 , it cannot admit a 4-partition of cost 4. Thus, if now G is not complete, then there exists x, y ∈ V such that {x, y} / ∈ E. In this case we can clearly build a 4-partition of cost 5. Otherwise G is complete and the problem is obvious. Finally, notice that the running time of the algorithm is O(n 3), since we only enumerate pairs or triplets of vertices.

Conclusion and Future Work

The strategy used in the previous result is a bypass of the general algorithm presented in the beginning of Section 6.2, in the sense that if we are not able to test in polynomial time if there exists a partition (or equivalently a compaction) to a given pattern, then we try with an "easier" pattern which uses the same number of edges (or less). In the previous algorithm for instance, instead of testing to match the cycle of length four, we first try to match the 3-pan (i.e. the cycle of length 3 with a pending vertex). Thus, an idea for solving the unweighted problem for all fixed k would be to solve the following problem in polynomial time: given an input graph G and a number of edges C as objective,

Figure 1 :

 1 Figure 1: Dashed lines represent edges of maximum weight between i At and other clusters, already in C A , solid lines represent the at most (i -1) new edges added to C A .

Figure 2 :

 2 Figure 2: (a): Example of a graph that reaches the ratio. First category of edges is represented with dashed lines, second category with solid lines, third category with bold lines (b): Solution given by Algorithm 1 (c): Optimal solution

Figure 3 :

 3 Figure 3: Illustration of Algorithm expand-and-split

Proposition 4 .

 4 parts are reduced to a singleton. Let G = (V, E) and k ≤ |V |. Let P * be a solution of U-SM-GP for (G, k). Then we can construct in polynomial time an unbalanced solution P such that cost(P) ≤ (2 -2 k)cost(P *).

Figure 1 :

 1 Figure 1: Illustration of the polynomial algorithm for k = 3. Bold arrows represent assignments to clusters. (1a): One optimal solution contains 2 edges (1b): Any optimal solution contains 3 edges

Figure 4 :

 4 Figure 4: Illustration of the polynomial algorithm for k = 3. Bold arrows represent assignments to clusters. (a): One optimal solution contains 2 edges (b): Any optimal solution contains 3 edges

 and α(H) ≤ rk}. Then, since every graph H on n H vertices and m H edges contains an independent set of size at least

	n H 2m H +n H , we have:

Recall that an homomorphism from a graphG = (V G , E G) to a graph H = (V H , E H) is a function h : V G → V H such that {x, y} ∈ E G implies {h(x), h(y)} ∈ E H .

M = 1 and obtain the result for the unweighted problem. Notice that the equivalence does not hold anymore for δ = 3 when M = 1, since there is no edge between G 1 and G 3 for instance, and hence we can no longer control the structure of the solution (adding complete graphs between graphs G i would decrease the diameter of G).

In this section, picking uniformly x different elements corresponds to pick uniformly an element among the set of x-subsets.

$ This work has been funded by grant ANR 2010 BLAN 021902

Proof. Let G, k and P * as in the statement, and note P * = {V * 1 , ..., V * k }. Without loss of generality, suppose that V * k is a vertex of maximum degree in G /P * . For all 1 ≤ i ≤ (k -1), let x i be any vertex of V * i , and let us build the following unbalanced k-partition P = {V 1 , ..., V k }:

Let q be the number of edges in G /P between V k and other vertices, and q * be the number of edges in G /P * between V * k and other vertices. We have the following:

And by definition, q ≤ k -1 ≤ cost(P *) and kq * ≥ 2cost(P *) (since q * is equal to the maximum degree of G /P * which is a graph with k vertices and cost(P *) edges), hence:

Which concludes the proof.

Thus, by the previous result, enumerating all (k -1)-tuples of vertices allows us to build a (2-2 k)-approximated solution. In fact, one can observe that we can focus on a subset of (k -1) vertices which induce as few edges as possible. This problem is more generally called the k-sparsest subgraph problem. In the following, we show a any approximation algorithm for k-sparsest subgraph can be transferred to U-SM-GP.

Proposition 5. Any ρ-approximated solution for (k -1)-sparsest subgraph gives a (ρ + 1 -2ρ k)-approximated solution for U-SM-GP.

Proof. Let G = (V, E) and k ≤ |V |. Let S = {x 1 , ..., x k-1 } be a ρ-approximated solution for (k -1)-sparsest subgraph, and P * = {V * 1 , ..., V * k } be an optimal solution for U-SM-GP on (G, k) (as previously we suppose w.l.o.g. that V * k is a vertex of maximum degree in G /P *). We construct the following k-partition P = {V 1 , ..., V k }:

Let q (resp. q *) be the number of edges in G /P (resp. in G /P *) between V k (resp. V * k) and other vertices, and let α (resp. α *) be the number of edges in

we show that this strategy leads to a polynomial algorithm for the weighted problem for k = 3. Unfortunately, generalizing this simple method is hopeless even in the unweighted case, as it corresponds to the H-compaction problem of Vikas et al. [START_REF] Vikas | Computational complexity of compaction to reflexive cycles[END_REF], who proved, among others, that matching a non-chordal graph (and thus the cycle of length four in the case of k = 4) is N P-hard. Nevertheless, we bypass the previous strategy to show how we still can solve the problem for k = 4 in the unweighted case.

A Polynomial Algorithm for k = 3

Here we present a polynomial algorithm for SM-GP when k = 3:

Proof. Let G = (V, E) be a graph. The principle of the following algorithm is to enumerate all pairs (or triplets) of edges in order to find the largest edges between the clusters in an optimal solution (i.e. edges that will be taken into account in the solution value). Thus, for each fixed pairs (or triplets) of edges the algorithm tries to arrange all remaining vertices in clusters without changing the solution value.

Let us now distinguish two cases: one where an optimal solution contains only two edges between the clusters (the partition forms a path over the three clusters), and one where any optimal solution contains three edges (the partition forms a clique over the three clusters). Let (V 1 , V 2 , V 3) be the partition we are building, and (V * 1 , V * 2 , V * 3) an optimal solution.

First case: one optimal solution contains only two edges. Let us first assume that we know the two edges e * a and e * b that are taken into account in the optimal solution value (as depicted in Figure 4). Let a be the value of the edge e * a = {a 1 , a 2 } between V * 1 and V * 2 , and b be the value of the edge e * b = {b 1 , b 2 } between V * 2 and V * 3 . Notice that four cases are possible, depending of the orientation of e * a and e * b (for example a 1 could be in V * 1 or V * 2). We assume that a i ∈ V * i and b i ∈ V * i+1 , and thus the algorithm will have to enumerate these four cases. Without loss of generality, we suppose a ≤ b. In the first step, the algorithm mimics the optimal solution and adds a 1 to V 1 , a 2 and b 1 to V 2 , and b 2 to V 3 . Let S 1 (resp. S 3) be the set of all vertices reachable from V 1 (resp. V 3) using edges of weight strictly greater than a (resp. b). As the cost of the considered optimal solution is a + b, we know that (1) S 1 ⊂ V * 1 and S 3 ⊂ V * 3 , (2) S 1 ∩ S 3 = ∅ and (3) there is no edge between S 1 and S 3 . Thus, in the second step the algorithm adds S 1 to V 1 and S 3 to V 3 .

Finally, the algorithm assigns all remaining vertices to V 2 . It is easy to see that this strategy will not create any forbidden edge (i.e. edge that increases the weight of the maximum edge between two clusters), as the remaining vertices were not adjacent to any vertex of V 1 (resp. V 3) using edges of weight strictly greater than a (resp. b).