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Abstract

Dans les systèmes pair-à-pair (P2P) non-structurés, les requêtes de type top-k sont une
solution intéressante, car elles évitent de submerger l’utilisateur avec un grand nombre
de réponses. Cependant, les techniques existantes présentent l’inconvénient d’un temps
d’attente important pour l’utilisateur. En effet, pour que le résultat de la requête top-
k soit retourné à l’utilisateur, les réponses de tous les pairs doivent être intégrées. Le
pair le plus lent impose donc son rythme. Dans ce papier nous revisitons le problème du
temps d’attente de l’utilisateur. Pour qualifier ce temps, en plus du temps de réponse,
nous introduisons deux nouvelles notions : le temps de stabilisation des réponses et la
qualité restante cumulée au cours de l’exécution de la requête. La prise en compte de ces
trois notions nous permet de redéfinir formellement le comportement d’un algorithme de
traitement d’une requête top-k et de comparer différentes solutions suivant de nouveaux
critères. Enfin, nous proposons une famille d’algorithmes, “As Soon As Possible” (ASAP).
Cette nouvelle proposition est évaluée expérimentalement, et les résultats obtenus mon-
trent une amélioration notoire, notre approche retournant le résultat nettement plus tôt
à l’utilisateur avec un coût raisonnable.

Keywords: pair-à-pair non-structurés, top-k, temps d’attente, temps de stabilisation, qualité
restante cumulée.

1 Introduction

Unstructured Peer-to-Peer (P2P) networks have been widely used for sharing resources and
content over the Internet [4, 22, 19]. In these systems, there is neither a centralized directory
nor any control over the network topology or resource placement. Because of few topological
constraints, they require little maintenance in highly dynamic environnements [20]. However,
executing queries over unstructured P2P systems typically by flooding may incur high network
traffic and produce lots of query results.

∗Work partially funded by the DataRing project of the french ANR.
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To reduce network traffic and avoid overwhelming users with high numbers of query results,
complex query processing techniques based on top-k answers have been proposed e.g. in [2].
With a top-k query, the user specifies a number k of the most relevant answers to be returned
by the system. The quality (i.e. score of relevance) of the answers to the query is determined
by user-specified scoring functions [8, 15]. Despite the fact that these top-k query processing
solutions reduce network traffic, they may significantly delay the answers to users. This is be-
cause top-k results are returned to the user only when all queried peers have finished processing
the query. Thus, query response time is dominated by the slowest queried peer, which makes
users suffer from long waiting times. Therefore, these solutions are not suitable for emerging
applications such as P2P data sharing for online communities, which may have high numbers
of autonomous data sources with various access performance. Most of the previous work on
top-k processing have focused on efficiently computing the exact or approximate result sets and
reducing network traffic [5, 14, 24, 23, 2].

A naive solution to reduce users’ waiting time is to have each peer return its top-k results
directly to the query originator as soon as it is done executing the query. However, this sig-
nificantly increases network traffic and may cause a bottleneck at the query originator when
returning high numbers of results. In this paper, we aim at reducing users’ waiting time by
returning high quality intermediate results, while avoiding high network traffic. The intermedi-
ate results are the results of peers which have already processed locally their query. Providing
intermediate results to users is quite challenging because a naive solution may saturate users
with results of low quality, and incur significant network traffic which in turn may increase
query response time.

In this paper, our objective is to return high quality results to users as soon as possible. For
this, we revisit top-k query processing in P2P systems by introducing two notions to complement
response time: stabilization time and cumulative quality gap. The stabilization time is the time
needed to obtain the final top-k result set, which may be much lower than the response time
(when it is sure that there is no other top-k result). The quality gap of the top-k intermediate
result set is the quality that remains to be the final top-k result set. The cumulative quality
gap is the sum of the quality gaps of all top-k intermediate result sets during query execution.

In summary, this paper makes the following contributions:

• We formally define the as-soon-as-possible top-k query processing in large P2P systems
based on both stabilization time and cumulative quality gap.

• We propose, a family of efficient algorithms called As Soon As Possible (ASAP). ASAP
uses a threshold-based scheme that considers the score and rank of intermediate results
to return quickly high quality results to users.

• We analytically evaluate ASAP’s communication cost in terms of numbers of answer
messages and volume of transferred data.

• We validated our solution through implementation and extensive experimentation. Our
performance evaluation shows that ASAP significantly outperforms baseline algorithms
by returning faster the final top-k results. It also shows that ASAP achieves a good trade-
off between the time to receive all the final top-k results, the total number of intermediate
results returned and the communication cost. Finally, the results demonstrate that in the
presence of peers’ failures, ASAP provides approximative top-k results with good accuracy
compared to baseline algorithms.

The rest of this paper is organized as follows. In section 2, we propose a model for unstructured
P2P systems and present basic definitions regarding top-k queries in P2P systems. Section 3
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formally defines the as-soon-as-possible top-k query processing problem. In Section 4, we
give an overview of ASAP top-k query processing. Section 5 presents ASAP approaches for
bubbling up as soon as possible high quality results. In Section 6, we analytically evaluate the
communication cost of ASAP. Section 7 gives a performance evaluation of ASAP. In Section 8,
we discuss related work. Section 9 concludes.

2 SYSTEM MODEL

In this section, we first present a general model of unstructured P2P systems which is needed
for describing our solution. Then, we provide a model and definitions for top-k queries.

2.1 Unstructured P2P Model

We model an unstructured P2P network of n peers as an undirected graph G = (P,E), where
P = {p0, p1, · · · , pn−1} is the set of peers and E the set of connections between the peers. For
pi, pj ∈ P, (pi, pj) ∈ E denotes that pi and pj are neighbours. We also denote by N(pi), the set
of peers to which pi is directly connected, so N(pi) = {pj|(pi, pj) ∈ E}. The value ‖N(pi)‖ is
called the degree of pi. The average degree of peers in G is called the average degree of G and
is denoted by ϕ. The r-neighborhood N r(p) (r ∈ N) of a peer p ∈ P is defined as the set of
peers which are at most r hops away from peer p, so

N r(p) =

∣∣∣∣∣∣
p if r = 0

p
⋃

p′∈N(p)

N r−1(p′) if r ≥ 1

Each peer p ∈ P holds and maintains a set D(p) of data items such as images, documents
or relational data (i.e. tuples). We denote by Dr(p)(r ∈ N), the set of all data items which are
in N r(p), so

Dr(p) =
⋃

p′∈Nr(p)

D(p′)

In our model, the query is forwarded from the query originator to its neighbours until the
ttl (time-to-live) value of the query decreases to 0 or the current peer has no peer to forward
the query. So the query processing flow can be represented as a tree, which is called the query
forwarding tree. When a peer p0 ∈ P issues query q to peers in its r-neighborhood, the results
of these peers are bubbled up using query q’s forwarding tree with root p0 including all the
peers belonging to N r(p0). The set of children of a peer p ∈ N r(p0) in query q’s forwarding
tree is denoted by ψ(p, q).

2.2 Top-k Queries

We characterize each top-k q by a tuple < qid, c, ttl, k, f, p0 > such that qid is the query
identifier, c is the query itself (e.g. SQL query), ttl ∈ N (Time-To-Live) is the maximum hop
distance set by the user, k ∈ N∗ is the number of results requested by the user, f : D×Q → [0,1]
is a scoring function that denotes the score of relevance (i.e. the quality) of a given data item
with respect to a given query and p0 ∈ P the originator of query q, where D is the set of data
items and Q the set of queries.

A top-k result set of a given query q is the k top results among data items owned by all
peers that receive q. Formally we define this as follows.
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(a) Quality evolution. (b) Normalized Quality evolution.

Figure 1: Quality of top-k results at the query originator wrt. Execution time

Definition 1 Top-k Result Set. Given a top-k query q, let D′ = Dq.ttl(q.p0). The top-k
result set of q, denoted by Topk(D′, q), is a sorted set on the score (in decreasing order) such
that:

1. Topk(D′, q) ⊆ D′;

2. If ‖D′‖ < q.k, Topk(D′, q) = D′, otherwise ‖Topk(D′, q)‖ = q.k;

3. ∀d ∈ Topk(D′, q), ∀d′ ∈ D′ \ Topk(D′, q), q.f(d, q.c) ≥ q.f(d′, q.c).

Definition 2 Result’s Rank. Given a top-k Result set I. We define the rank of result d ∈ I,
denoted by rank(d, I), as the position of d in the set I.

Note that the rank of a given top-k item is in the interval
[
1; k].

In large unstructured P2P systems, peers have different processing capabilities and store
different volumes of data. In addition, peers are autonomous in allocating the resources to
process a given query. Thus, some peers may process more quickly a given query than others.
Intuitively, the top-k intermediate result set for a given peer is the k best results of both the
results the peer received so far from its children and its local results (if any). Formally, we
define this as follows.

Definition 3 Top-k Intermediate Result Set. Given a top-k query q, and p ∈ N q.ttl(q.p0).
Let D1 be the result set of q received so far by p from peers in ψ(p, q) and D2 = D1 ∪ D(p).
The top-k intermediate result set of q at peer p, denoted by Iq(p), is such that:

Iq(p) =

∣∣∣∣∣∣
Topk(D2, q) if p has already processed q locally

Topk(D1, q) otherwise

3 Problem Definition

Let us first give our assumptions regarding schema management and the unstructured P2P
architecture. We assume that peers are able to express queries over their own schema without
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relying on a centralized global schema as in data integration systems [21]. Several solutions
have been proposed to support decentralized schema mapping. However, this issue is out of
scope of this paper and we assumed it is provided using one of the existing techniques, e.g.
[18], [21] and [1]. We also assume that all peers in the system are trusted and cooperative. In
the following, we first give some definitions which are useful to define the problem we focus and
formally state the problem.

3.1 Foundations

To process a top-k query in P2P systems, an ASAP top-k algorithm provides intermediate
results to users as soon as peers process the query locally. This allows users to progressively
see the evolution of their query execution by receiving intermediate results for their queries.
Note that at some point of query execution, the top-k intermediate results received by a peer
may not change any more, until the end of the query execution. We denote this point as the
stabilization time.

Recall that the main goal of ASAP top-k query processing is to return high-quality results
to user as soon as possible. To reflect this, we introduce the quality evolution concept. Given
a top-k query q, we define the quality evolution Y (t) of q at time t as the sum of scores of q’s
intermediate top-k results at t and at q’s originator. Figure 1(a) shows the quality evolution of
intermediate top-k results obtained at the query originator during a given query execution. To
be independent of the scoring values —which can be different from one query to another—, we
normalize the quality evolution of a query. With this in mind, we divide the quality evolution
of a given query by the sum of scores of the final top-k results of that query. Thus, the quality
evolution values are in the interval [0, 1] and the quality of the top-k final results are equal to
1 (see Figure 1(b)).

The quality evolution of intermediate top-k results at the query originator increases as peers
answer a query. To reflect this, we introduce the cumulative quality gap, which is defined as the
sum of the quality difference between intermediate top-k result sets received until the stabiliza-
tion time and the final top-k result set (see Figure 1(b)). We formalize this in Definition 4.

Definition 4 Cumulative quality gap. Given a top-k query q and Y (t), the quality evolu-
tion of q at time t at q originator, let S be the stabilization time of q. The cumulative quality
gap of the query q, denoted by Cqg is:

Cqg =

S∫
0

(1− Y (t)) dt = S −
S∫

0

Y (t) dt (1)

3.2 Problem Statement

Formally, we define the ASAP top-k query processing problem as follows. Given a top-k query
q, let S be the stabilization time of q and Cqg be the cumulative quality gap of q. The problem
is to minimize both Cqg and S in addition to the communication cost.

4 ASAP Top-k Query Processing Overview

ASAP query processing proceeds in two main phases. The first phase is the query forwarding
and local execution of the query. The second phase is the bubbling up of the peers’ results for
the query along the query forwarding tree.
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Algorithm 1: receive Query(msg)
input : msg, a query message.

1 begin
2 if (!already Received(msg.getID()) then
3 memorize(msg);
4 msg.decreaseTTL();
5 if (msg.getTTL() > 0) then
6 forwardToNeighbors(msg);
7 end
8 executeLocally(msg.getQuery());

9 else
10 qid = msg.getID();
11 oldMsg = SeenQuery(qid).;
12 if (msg.getTTL() > oldMsg.TTL()) then
13 memorize(msg);
14 msg.decreaseTTL();
15 if (msg.getTTL() > 0) then
16 forwardToNeighbors(msg);
17 end
18 sendDuplicateSignal(qid, oldMsg.getSender());

19 else
20 sendDuplicateSignal(qid,msg.getSender());
21 end

22 end

23 end

4.1 Query Forwarding and Local Execution

Query processing starts at the query originator, i.e. the peer at which a user issues a top-k
query q. The query originator performs some initialization. First, it sets ttl which is either
user-specified (or default). Second, it creates a unique identifier qid for q which is useful to
distinguish between new queries and those received before. Then, q is included in a message
that is broadcast by the query originator to its reachable neighbors. Algorithm 1 shows the
pseudo-code of query forwarding. Each peer that receives the message including q checks qid
(see line 2, Algorithm 1). If it is the first time the peer has received q, it saves the query (i.e.
saves the query in the list of seen queries and the address of the sender as its parent) and
decreases the query ttl by 1 (see lines 3-4, Algorithm 1). If the ttl is greater than 0, then the
peer sends the query message to all neighbors except its parent (see lines 5-7, Algorithm 1).
Then, it executes q locally. If q has been already received, then if the old ttl is greater than
the new ttl, the peer proceeds as where q is received for the first time but without executing q
locally (see lines 10-18, Algorithm 1), else the peer sends a duplicate message to the peer from
which it has received q.

4.2 Bubbling Up Results

Recall that, when a peer submits a top-k query q, the local results of the peers that received
q are bubbled up to the query originator using query q’s forwarding tree. In ASAP, a peer’s
decision to send or not intermediate results are based on the improvement impact brings by its
current top-k intermediate result set compared to the top-k intermediate result set which it sent
so far to its parent. This improvement impact can be computed in two ways: by using the score
or rank of top-k results in the result set. Therefore, we introduce two types of improvement
impact: score-based improvement impact and rank-based improvement impact.

Intuitively, the score-based improvement impact at a given peer for a given top-k query is the
gain of score of that peer’s current top-k intermediate set compared to the top-k intermediate
set it sent so far.
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Definition 5 Score-based improvement impact. Given a top-k query q, and peer p ∈
N q.ttl(q.p0), let Tcur be the current top-k intermediate set of q at p and Told be the top-k inter-
mediate set of q sent so far by p. The score-based improvement impact of q at peer p, denoted
by IScore(Tcur, Told) is computed as

IScore(Tcur, Told) =

∑
d∈Tcur

q.f(d, q.c)−
∑

d′∈Told

q.f(d′, q.c)

k
(2)

Note that in Formula 2, we divide by k instead of ‖Tcur − Told‖ because we do not want that
IScore(Tcur, Told) be an average which would not be very sensitive to the values of scores. The
score-based improvement impact values are in the interval [0, 1].

Intuitively, the rank-based improvement impact at a given peer for a given top-k query is
the loss of rank of results in the top-k intermediate result set sent so far by that peer due to
the arrival of new intermediate results.

Definition 6 Rank-based improvement impact. Given a top-k query q and peer p ∈
N q.ttl(q.p0), let Tcur be the current top-k intermediate result set of q at p and Told be the top-k
intermediate result set of q sent so far by p. The rank-based improvement impact of q at peer
p, denoted by IRank(Tcur, Told) is computed as

IRank(Tcur, Told) =

∑
d∈Tcur\Told

(k − rank(d, Tcur) + 1)

k ∗ (k + 1)

2

(3)

Note that in Formula 3, we divide by k∗(k+1)
2

which is the sum of ranks of a set containing k
items. The rank-based improvement impact values are in the interval [0, 1].

Notice also that, in order to minimize network traffic, ASAP does not bubble up the results
(which could be large), but only their scores and addresses. A score-list is simply a list of k
couples (ad, s), such that ad is the address of the peer owning the data item and s its score.

5 ASAP Threshold-based Approaches for Bubbling up

Results

In this section, we present ASAP static and dynamic threshold-based approaches which use
score and rank of intermediate results for bubbling up as-soon-as-possible high quality results.

5.1 Static Approaches

In these approaches, the minimum value that must reach the improvement impact before a peer
sends newly received intermediate results to its parent is initially set by the application and it
is the same for all peers in the system. Note also that this threshold does not change during
the execution of the query. Using both types of improvement impact introduced in the previous
section, we have two types of static threshold-based approaches. The first approach uses the
score-based improvement impact and the second one the rank-based improvement impact.

A generic algorithm for our static threshold-based approaches is given in Algorithm 2. In
these approaches, each peer maintains for each query a set Told of top-k intermediate results
sent so far to its parent and a set Tcur of current top-k intermediate results. When a peer
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Algorithm 2: s Treat(k, Tcur, Told, N, delta, IFunc)
input : k, number of results; Tcur, current top-k; Told, top-k sent so far; N , new result set; delta, impact

threshold; IFunc, type of improvement impact.
1 begin
2 Tcur = mergingSort Topk(k, Tcur, N);
3 imp = IFunc(Tcur, Told);
4 if ((imp ≥ delta) or all Results()) then
5 Ttosend = Tcur \ Told;
6 send Parent(Ttosend, all Results());
7 Told = Tcur;

8 end

9 end

receives a new result set N from its children (or its own result set after local processing of
a query), it first updates the set Tcur with results in N (see line 2, Algorithm 2). Then, it
computes the improvement impact imp of Tcur compared to Told (line 3, Algorithm 2). If imp
is greater than or equal to the defined threshold delta or if there are no more children’ results
to wait for, the peer sends the set Ttosend = Tcur \ Told to its parent and subsequently sets Tcurr
to Told (see lines 4-7, Algorithm 2).

5.2 Dynamic Approaches

Although the static threshold-based approaches are interesting to provide results quickly to
user, they may be blocking if results having higher scores are bubbled up before those of lower
score. In other words, sending higher score’s results will induce a decrease of improvement
impact of the following results. This is because the improvement impact considered the top-
k intermediate results sent so far by the peer. Thus, results of low scores even if they are
in the final top-k results may be returned at the end of the query execution. To deal with
this problem, an interesting way would be to have a dynamic threshold, i.e. a threshold that
decreases as the query execution progresses. However, this would require finding the right
parameter on which the threshold depends. We have identified two possible solutions for the
dynamic threshold. The first one is to use an estimation of the query execution time. However,
estimating the query execution time in large P2P system is very difficult because it depends
on network dynamics, such as connectivity, density, medium access contention, etc., and the
slowest queried peer. The second, more practical, solution is to use for each peer the proportion
of peers in its sub-tree including itself (i.e. all children, and children’s children and itself) which
have already processed the query to decrease the threshold.

5.2.1 Peer’s Local Result Set Coverage

Definition 7 Peer’s local result set coverage. Given a top-k query, and p ∈ N q.ttl(q.p0),
let A be the set of peers in the sub-tree whose root is p in the query q’s forwarding tree. Let E
be the set of peers in A which have already processed q locally. The local result set coverage of
peer p for q, denoted by Cov(E ,A), is computed using the following equation:

Cov(E ,A) =
‖E‖
‖A‖

Peer’s local result set coverage values are in the interval [0, 1].
Note that is very difficult to have the exact value of a peer’s local result set coverage without

inducing an additional number of messages in the network. This is because each peer must
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send a message to its parent each time its local coverage result set value changes. Thus, when a
peer at hop m from query originator updates its local result coverage, m messages will be sent
over the network. To deal with this problem, an interesting solution is to have an estimation
of this value instead of the exact value.

The estimation of peer’s local result set coverage can be done using two different strategies:
optimistic and pessimistic. In the optimistic strategy, each peer computes the initial value
of its local result set coverage based only on its children nodes. This value is then updated
progressively as the peers in its sub-tree bubble up their results. Indeed, each peer includes in
each response message sent to its parent the number of peers in its sub-tree (including itself)
which have already processed the query locally and the total number of peers in its sub-tree
including itself. This couple of values is used in turn by its parent to estimate its local result
set coverage. Contrary to the optimistic strategy, in the pessimistic strategy, the local result
set coverage estimation is computed at the beginning by each peer based on the Time-To-Live
received with the query and the average degree of peers in the system. As in the case of the
optimistic strategy, this value is updated progressively as the peers in its sub-tree bubble up
their results.

In our dynamic threshold-based approaches, we estimate a peer’s local result set coverage
using the pessimistic strategy because the estimation value is more stable than with the op-
timistic strategy. Now, let us give more details about how a peer’s local result set coverage
pessimistic estimation strategy is done.

5.2.2 Peer’s Local Result set Coverage Pessimistic Estimation

In order to estimate its local result set coverage, each peer pi maintains for each top-k query
q and for each child pj a set C1 of couples (pj, a) where a ∈ N is the number of peers in the
sub-tree of peer pj including pj itself. pi maintains also a set C2 of couples (pj, e) where e ∈ N
is the total number of peers in the sub-tree of peer pj including pj itself which have already
processed locally q. Now let ttl′ be the time-to-live with which pi received query q and ϕ be the
average degree of peers in the system. At the beginning of query processing, for all children of

pi, e = 0 and a =
ttl′−2∑
u=0

ϕu. During query processing, when a child pj in ψ(pi, q) wants to send

results to pi, it inserts in the answer message its couple of values (e, a). Once pi receives this
message, it unpacks the message, gets these values (i.e. e and a) and updates the sets C1 and
C2. The local result set coverage of peer pi for the query q is then estimated using Formula 4.

C̃ov(C1, C2) =

∑
(pj ,e)∈C1

e

∑
(pj ,a)∈C2

a
(4)

Note that peer’s local result set coverage estimation values are in the interval [0, 1].

5.2.3 Dynamic Threshold Function

In the dynamic threshold approaches, the improvement impact threshold used by a peer at a
given time t of the query execution depends on its local result set coverage at that time. This
improvement impact threshold decreases as the local result set coverage increases. A dynamic
threshold function is a function that allows peers to set their improvement impact threshold
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for a given local result set coverage. Now let us define formally what the dynamic threshold
function means in Definition 8.

Definition 8 Dynamic Threshold Function. Given a top-k query q and p ∈ N q.ttl(q.p0),
the improvement impact threshold used by p during q’s execution, is a monotonically decreasing
function H such that:

H :

∣∣∣∣∣∣
[0, 1] → [0, 1]

x 7→ −α ∗ x+ α
(5)

with α ∈ [0, 1[. Notice that x is a peer’s result set coverage at given time and α the initial

improvement impact threshold (i.e. H(0) = α).

5.2.4 Reducing Communication Cost

Using a rank-based improvement impact has the drawback of not minimizing as much as possible
network traffic. This is because the rank-based improvement impact value is equal to 1 (the
maximum value it can reach) when a peer receives the first result set containing k results
(from one of its children or after local processing of a query). Thus, each peer always sends
a message over the network when it receives the first result set containing k results. To deal
with this problem and thus reduce communication cost, we use peers’ result sets coverage to
prevent them to send a message when they receive their first result set. Therefore, the idea is
to allow peers to start sending a message if and only if their local result sets coverage reaches
a predefined threshold. With this result set coverage threshold, peers send intermediate results
based on the improvement impact threshold obtained from the dynamic threshold function H
define above.

5.2.5 Dynamic Threshold Approaches Algorithms

our dynamic threshold approaches algorithms are based on the same principles as the static
threshold ones. A generic algorithm for our dynamic threshold-based approaches is given in
Algorithm 3. When a peer receives a new result set N from its children (or its own result set
after local processing of a query), it first updates the set Tcur of its current top-k intermediate
results with results in N (see line 2, Algorithm 3). If its current result set coverage cov is greater
than the defined threshold result set coverage cov′, then the peer computes the improvement
threshold delta using the dynamic function H and subsequently the improvement impact imp
(see lines 3-5, Algorithm 3). If imp is greater than or equal to delta or if there are no more
children’ results to wait for, then the peer sends the set Ttosend = Tcur \ Told to its parent and
subsequently sets Tcurr to Told (see lines 6-9, Algorithm 3). Recall that Tcur is the set of the
current top-k intermediate results and Told is the top-k intermediate results sent so far to its
parent.

5.3 Example

To better illustrate ASAP top-k processing, consider the query forwarding tree of a network
graph consisting of seven peers p0, · · · ,p6 as shown in Figure 2. Let us assume that p0 issues a
top-3 query q (i.e. k = 3), and the end of local processing of q at peers is in the following order
p0, p4, p1, p5, p3, p6. Let list0, · · · , list6 be respectively p0 · · · p6 top-3 lists after local processing
of q. Due to space limitations, we only illustrate the ASAP static threshold-based approach
which uses score-based improvement impact and only on the portion (p0, p1, p4) of the query
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Algorithm 3: d Treat(k, Tcur, Told, N, IFunc, cov, cov
′, H)

input : k; Tcur; Told; N ; IFunc; cov, current local result set coverage; cov′, result set coverage threshold;
H, a dynamic threshold function.

1 begin
2 Tcur = mergingSort Topk(k, Tcur, N);
3 if (cov > cov′) then
4 delta = H(cov);
5 imp = IFunc(Tcur, Told);
6 if ((imp ≥ delta) or all Results()) then
7 Ttosend = Tcur \ Told;
8 send Parent(Ttosend, all Results());
9 Told = Tcur;

10 end

11 end

12 end

P0

P1 P2

P3 P4 P5 P6

P0

P1 P2

P3 P4 P5 P6

List 1

Data 
item

Score

  d11 0.74

d12 0.2

d13 0.14

List 3

Data 
item

Score

 d31 0.71

d32 0.3

d33 0.1

List 4

Data 
item

Score

 d41 0.9

d42 0.45

d43 0.13

List 5

Data 
item

Score

  d51 0.8

d52 0.5

d53 0.4

List 6

Data 
item

Score

 d61 0.7

d62 0.52

d63 0.24

List 2

Data 
item

Score

  d21 0.6

d22 0.4

d23 0.35

List 0

Data 
item

Score

Figure 2: Query forwarding tree of an example of unstructured P2P system

forwarding tree. We assume that the score-based improvement threshold is delta = 0.2. The
algorithm works as follows: after processing locally q, p4 sends immediately list4 to its parent
p1 (because p4 has no children to wait for). Peer p1, when receiving p4’s results, computes the
score-based improvement impact of its current top-3 list compared with the top-k list sent so
far i.e. (0.9+0.45+0.13)−(0)

3
= 0.493. Since this value is greater than 0.2, the predefined threshold,

p1 sends list4 to p0. Once p1 has completed the local processing of q, it computes the score-
based improvement impact of its new current top-3 intermediate result set compared to list4
(i.e. the top-3 it sent so far) as follows (0.9+0.74+0.45)−(0.9+0.45+0.13)

3
= 0.203. Because the value of

improvement impact is greater than the predefined threshold, p1 sends to p0 the item in list1
whose score is 0.74.

6 ASAP Cost Analysis

In this section, we analytically evaluate the cost of ASAP in terms of number of answer messages
and volume of transferred data (number of bytes) over the network to return final top-k results
to the user.

With ASAP, each peer sends a single answer message in the best case. Thus, if n is the
number of peers in the network, then the number of answer messages in the best case is equal
to n−1. In the worst case, the number of answer messages sent by a peer depends on its depth
in the query forwarding tree (i.e. the ttl with which the peer receives the query). Let P (i) be
the number of peers at the hop i in the query forwarding tree from initiator peer of a query q
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with a time-to-live ttl. In the worst case the number of answer messages denoted by n′′asap is:

n′′asap = 0 ∗ P (0) + 1 ∗ P (1) + 2 ∗ P (2) + · · ·
+(ttl − 2) ∗ P (ttl − 2) + ttl ∗ P (ttl)

≤ ttl ∗ P (1) + ttl ∗ P (2) + · · ·+ ttl ∗ P (ttl)

≤ ttl ∗ [P (1) + P (2) + · · ·+ P (ttl)]

n′′asap ≤ ttl ∗ (n− 1).

To summarize, the number of answer messages sent by ASAP is such that:

n− 1 ≤ nasap ≤ ttl ∗ (n− 1)

Now let k be the number of results request by the user and z be the size in bytes of each element
of a result set. In the best case the volume of transferred data over the network is equal to
k ∗ z. In the worst case, since the number of answer messages is ttl ∗ (n − 1), the volume of
transferred data over the network is equal to k ∗ z ∗ ttl ∗ (n − 1). The volume of transferred
data over the network in case of ASAP, denoted by vasap, is:

z ∗ k ≤ vasap ≤ k ∗ z ∗ ttl ∗ (n− 1)

To summarize, the communication cost of ASAP in term of number of answer messages is
O(n) and the volume of transferred data over the network is O(n ∗ k).

7 Performance Evaluation

In this section, we evaluate the performance of ASAP through simulation using the PeerSim
simulator [16]. This section is organized as follows. First, we describe our simulation setup,
the metrics used for performance evaluation. Then, we study the effect of the number of peers
and the number of results on the performance of ASAP, and show how it scales up. Next, we
study the effect of the number of replicas on the performance of ASAP. Finally, we investigate
the effect of peers failures on the correctness of ASAP.

7.1 Simulation Setup

We implemented our simulation using the PeerSim simulator. PeerSim is an open source, Java
based, P2P simulation framework aimed to develop and test any kind of P2P algorithm in a
dynamic environment. It consists of configurable components and it has two types of engines:
cycle-based and event-driven engine. PeerSim provides different modules that manage the
overlay building process and the transport characteristics.

We conducted our experiments on a machine with a 2.4 GHz Intel Pentium 4 processor
and 2GB memory. The simulation parameters are shown in Table 1. We use parameters
values which are typical of P2P systems [12]. The latency between any two peers is a normally
distributed random number with mean of 200 ms. Since users are usually interested in a small
number of top results, we set k = 20 as default value. In our experiments we vary the network
size from 1000 to 10000 peers. In order to simulate high heterogeneity, peers’ capacities are
randomly generated.

In the context of our simulations each peer in the P2P system has a table R(data) in which
attribute data is a real value. The number of rows of R at each peer is a random number
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Parameters Values
Latency Normally distributed random

number, Mean = 200 ms,
V ariance = 100

Number of peers 10,000 peers
Average degree of peers 4
ttl 9
k 20
Number of replicas 1

Table 1: Simulation parameters.

uniformly distributed over all peers greater than 1000 and less than 20000. In our experiments,
we ensure that there is only one copy of each data item (i.e. tuple) in our system. We also
ensure that there are not two different data items with the same score. In all our tests, we use
the following simple query, denoted by qload as workload:
SELECT val FROM R ORDER BY F (R.data, val) STOP AFTER k
The scoring function we use is:

F (x, y) =
1

1 + |x− y|
where (x, y) ∈ R2

In our simulation, we compare ASAP with Fully Distributed (FD) [2], a baseline approach for
top-k query processing in unstructured P2P systems which works as follows. Each peer that
receives the query, executes it locally (i.e. selects the k top scores), and waits for its children’s
results. After receiving all its children score-lists, the peer merges its k local top data items
with those received from its children and selects the k top scores and sends the result to its
parent.

In our experiments, to evaluate the performance of ASAP comparing to FD, we use the
following metrics:

(i) Cumulative quality gap: As defined in Section 3, is the sum of the quality difference
between intermediate top-k result sets received until the stabilization time and the final
top-k result set.

(ii) Stabilization time: We report on the stabilization time, the time of receiving all the
final top-k results.

(iii) Response time: We report on the response time, the time the query initiator has to
wait until the top-k query execution is finished.

(iv) Communication cost: We measure the communication cost in terms of number of
answer messages and volume of data which must be transferred over the network in order
to execute a top-k query.

(v) Accuracy of results: We define the accuracy of results as follows. Given a top-k query
q, let V be the set of the k top results owned by the peers that received q, let V ′ be the
set of top-k results which are returned to the user as the response of the query q. We
denote the accuracy of results by acq and we define it as

acq =
‖V ∩ V ′‖
‖V ‖
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(iv) Total number of results: We measure the total number of results as the number of
results received by the query originator during query execution.

In our experimentation, we perform 30 tests for each experiment by issuing qload at 20
different times and we report the average of their results. Due to space limitations, we only
present the main results of ASAP’s dynamic threshold-based approaches denoted by ASAP-
Dscore and ASAP-Drank. ASAP-Dscore uses a score-based improvement impact and ASAP-
Drank a rank-based improvement impact. ASAP’s dynamic threshold-based approaches have
proved to be better than ASAP’s static threshold-based approaches without being expensive
in communication cost. In our all experiments in the case of ASAP-Dscore approach, we use
H(x) = −0.2x + 0.2 as dynamic threshold function and 0 as peer’s local result set coverage
threshold. In the case Asap-Drank, we use H(x) = −0.5x+ 0.5 as dynamic threshold function
and 0.05 as peer’s local result set coverage threshold.

7.2 Performance Results

7.2.1 Effect of number of peers

We study the effect of the number of peers on the performance of ASAP. For this, we ran ex-
periments to study how cumulative quality gap, stabilization time, number of answer messages,
volume of transferred data, number of intermediate results and response time increase with the
addition of peers. Note that the other simulation parameters are set as in Table 1.

Figure 3(a) and 3(b) show respectively how cumulative quality gap and stabilization time
increase with the number of peers. The results show that the cumulative quality gap of ASAP-
Dscore and ASAP-Drank is always much smaller than that of FD, which means that ASAP
returns quickly high quality results. The results also show that the stabilization time of ASAP-
Dscore is always much smaller that of ASAP-Drank and that of FD. The reason is that ASAP-
Dscore is score sensitive, so the final top-k results are obtained quickly.

Figure 3(c) shows that the total number of results received by the user increases with the
number of peers in the case of ASAP-Dscore and ASAP-Drank while it is still constant in the
case of FD. This is due to the fact that FD does not provide intermediate results to users. The
results also show that the number of results received by the user in case of ASAP-Dscore is
smaller than that of ASAP-Drank. The main reason is that ASAP-Dscore is score sensitive in
contrast to ASAP-Drank.

Figure 3(d) and Figure 3(e) show that the number of answer messages and volume of
transferred data increase with the number of peers. The results show that the number of
answer messages and volume of transferred data of ASAP-Drank are always higher than those
of ASAP-Dscore and FD. The results also show that the differences between ASAP-Dscore and
FD’s number of answer messages and volume of transferred data are not significant. The main
reason is that ASAP-Dscore is score sensitive in contrast to ASAP-Drank. Thus, only high
quality results are bubbled up quickly.

Figure 3(f) shows how response time increases with increasing numbers of peers. The results
show that the difference between ASAP-Dscore and FD response time is not significant. The
results also show that the difference between ASAP-Drank and FD’s response time increases
slightly in favour of ASAP-Drank as the number of peers increases. The reason is that ASAP-
Drank induces more network traffic than ASAP-Dscore and FD.
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(a) Cumulative quality gap vs. Number of peers.
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(b) Stabilization time vs. Number of peers.
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(c) Total number of results vs. Number of peers.
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(f) Response time vs. Number of peers.

Figure 3: Impact of number of peers on ASAP performance

7.2.2 Effect of k

We study the effect of k, i.e. the number of results requested by the user, on the performance
of ASAP. Using our simulator, we studied how cumulative quality gap, stabilization time and
volume of transferred data evolve while increasing k from 20 to 100, with the other simulation
parameters set as in Table 1. The results (see Figure 4(a), Figure 4(b)) show that k has very
slight impact on cumulative quality gap and stabilization time of ASAP-Dscore and ASAP-
Drank. The results (see Figure 4(c)) also show that by increasing k, the volume of transferred
data of ASAP-Dscore and ASAP-Drank increase less than that of FD. This is due to the fact
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(c) Volume of transferred data vs. k.

Figure 4: Impact of k on ASAP performance
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(b) Stabilization time vs. Number of replicas.

Figure 5: Impact of data replication on ASAP performance

that ASAP-Dscore and ASAP-Drank prune more intermediate results when k increases.

7.2.3 Data replication

We study the effect of the number of replicas, which we replicate for each data, on the perfor-
mance of ASAP. Using our simulator, we studied how cumulative quality gap and stabilization
time evolve while increasing the number of replicas, with the other simulation parameters set
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Figure 6: Accuracy of results vs. fail rate

as in Table 1. The results (see Figure 5(a) and Figure 5(b)) show that increasing the number of
replicas for ASAP and FD decrease ASAP-Dscore and ASAP-Drank’s cumulative quality gap
and stabilization time. However, FD’s cumulative quality gap and stabilization time are still
constant. The reason is that ASAP returns quickly the results having high quality in contrast
to FD which returns results only at the end of query execution. Thus, if we increase the number
of replicas, ASAP finds quickly the results having high scores.

7.2.4 Effect of peers failures

In this section, we investigate the effect of peers failures on the accuracy of top-k results of
ASAP. In our tests, we vary the value of fail rate and investigate its effect on the accuracy of
top-k results. Figure 6 shows accuracy of top-k results for ASAP-Dscore, ASAP-Drank and
FD while increasing the fail rate, with the other parameters set as in Table 1. Peers’ failures
have less impact on ASAP-Dscore and ASAP-Drank than FD. The reason is that ASAP-Dscore
and ASAP-Drank return the high-score results to the user as soon as possible. However, when
increasing the fail rate in FD, the accuracy of top-k results decreases significantly because some
score-lists are lost. Indeed, in FD, each peer waits for results of its children so in the case of a
peer failure, all the score-lists received so far by that peer are lost.

8 Related Work

Efficient processing of top-k queries is both an important and hard problem that is still receiving
much attention. Several papers have dealt with top-k query processing in centralized database
management systems [8, 15]. In distributed systems [9, 13, 6], previous work on top-k processing
has focused on vertically distributed data over multiple sources, where each source provides a
ranking over some attributes. The majority of the proposed approaches, such as recently [3], try
to improve some limitations of the Threshold Algorithm (TA) [11]. Following the same concept,
there exist some previous work for top-k queries in P2P over vertically distributed data. In
[7], the authors propose algorithm called “Three-Phase Uniform Threshold” (TPUT) which
aims at reducing communication cost by pruning away intelligible data items and restricting
the number of round-trip messages between the query originator and other nodes. Later,
TPUT was improved by KLEE [17]. KLEE uses the concept of bloom filters to reduce the data
communicated over the network upon processing top-k queries. It brings significant performance
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benefits with small penalties in result precision. However, theses approaches assume that data
is vertically distributed over the nodes whereas we deal with horizontal data distribution.

For horizontally distributed data, there has been little work on P2P top-k processing. In [2],
the authors present FD, a fully distributed approach for top-k query processing in unstructured
P2P systems. We have briefly introduced FD in section 7.1.

PlanetP [10] is the content addressable publish/subscribe service for unstructured P2P
communities up to ten thousand peers. PlanetP uses a gossip protocol to replicate global
compact summaries of content (term-to-peer mappings) which are shared by each peer. The
top-k processing algorithm works as follows. Given a query q, the query originator computes
a relevance ranking (using the global compact summary) of peers with respect to q, contacts
them one by one from top to bottom of ranking and asks them to return a set of their top-
scored document names together with their scores. However, in a large P2P system, keeping
up-to-date the replicated index is a major problem that hurts scalability.

In [5], the authors present an index routing based top-k processing technique for super-peer
networks organized in an HyperCuP topology which tries to minimize the number of transfer
data. The authors use queries statistics to maintain the indexes built on super-peers. However,
the performance of this technique is dependent of query distribution.

In [23], the authors present SPEERTO, a framework that supports top-k query processing
in super-peer networks based on the use of the skyline operator. In SPEERTO, for a maximum
of K, denoting an upper bound on the number of results requested by any top-k query (k ≤ K),
each peer computes its K-skyband as a pre-processing step. Each super peer maintains and
aggregates the K-skyband sets of its peers to answer any incoming top-k query. The main
drawback of this approach is that each join or leave of peer may induce the recomputing of all
super-peers K-skyband. Although these techniques are very good for super-peers systems, it
cannot apply efficiently for unstructured P2P systems, since there may be no peer with higher
reliability and computing power.

Zhao et al. [24] use a result caching techniques to prune network paths and answer queries
without contacting all peers. The performance of this technique depends on the query distri-
bution. They assume acyclic networks, which is restrictive for unstructured P2P systems.

9 Conclusion

This paper is the first attempt to deal with as-soon-as-possible top-k query processing in P2P
systems. We proposed a formal definition for as-soon-as-possible top-k query processing by
introducing two novels notions: stabilization time and cumulative quality gap. We presented
ASAP, a family of algorithms which uses a threshold-based scheme that considers the score and
the rank of intermediate results to return quickly the high quality results to users. We validated
ASAP through implementation and extensive experimentation. The results show that ASAP
significantly outperforms baseline algorithms by returning final top-k result to users in much
better times. Finally, the results demonstrate that in the presence of peers’ failures, ASAP
provides approximative top-k results with good accuracy, unlike baseline algorithms.

We are currently pursuing this work in two main directions. First, we are enhancing ASAP
by allowing it to automatically adapt to the workload as well as to peers’ capacities. Second,
we are studying the use of semantics so as to reduce the stabilization time and the response
time.
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[6] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over web-
accessible databases. In Proceedings of Int. Conf on Data Engineering (ICDE), pages
369–380, 2002.

[7] Pei Cao and Zhe Wan. Efficient top-k query calculation in distributed networks. In
Proceedings of Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 206–215, 2004.

[8] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection queries. In Proceedings
of Int. Conf. on Very Large Databases (VLDB), pages 397–410, 1999.

[9] Surajit Chaudhuri, Luis Gravano, and Amélie Marian. Optimizing top-k selection
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