
HAL Id: lirmm-00700340
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00700340

Submitted on 22 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migrating Component-Based Web Applications to Web
Services: Towards Considering a ”Web Interface as a

Service”
Chouki Tibermacine, Mohamed Lamine Kerdoudi

To cite this version:
Chouki Tibermacine, Mohamed Lamine Kerdoudi. Migrating Component-Based Web Applications
to Web Services: Towards Considering a ”Web Interface as a Service”. ICWS’12: 10th International
Conference on Web Services, Jun 2012, United States. pp.8. �lirmm-00700340�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00700340
https://hal.archives-ouvertes.fr


Migrating Component-based Web Applications to Web Services:

towards considering a ”Web Interface as a Service”

Chouki Tibermacine

LIRMM, CNRS and

Montpellier II University, France

Chouki.Tibermacine@lirmm.fr

Mohamed Lamine Kerdoudi

Computer Science Department

University of Biskra, Algeria

lamine.kerdoudi@gmail.com

Abstract—Web component-based development is a challeng-
ing development paradigm, whose attraction to practitioners
is increasing more and more. One of the main advantages
of this paradigm is the ability to build customizable and
composable web application modules as independent units of
development, and to share them with other developers by
publishing them in libraries as COTS (Commercial Off The
Shelf) or free components. In parallel, since many years, Web
services confirmed their status of one of the most pertinent
solutions for a service provider, like Google or Amazon, to
open its solutions for third party development. In this paper,
we present an approach to migrate existing web component-
based applications to a set of primitive and composite Web
services and deploy them on a web service provider. This
transformation helps server-side web application developers
in transforming their ”user interface”-based web components
into a set of web services intended for remote code extensions.
We implemented our solution on a collection of Java-related
technologies. Java EE components are the input of the proposed
implementation, and a set of Java Web services with their
WSDL interfaces, choreographies and orchestrations of these
services are provided at output.

Keywords-Web Component, Web Service, Code Migration
and Java EE

I. INTRODUCTION: CONTEXT AND MOTIVATION

Since the end of the nineties, Web component-based

development has emerged as a new solution which aims at

decoupling Web application code modules, and making them

reusable and customizable software entities. Indeed, a step

has been taken forward in modularizing Web applications

and thus separating business logic code, from view, data

model and operational control one. One of the technologies

leading this field is Java EE and its numerous frameworks

like Struts or JSF. Web modules in such technologies are

entities that can be used and reused in different applications

and customized according to the application requirements.

Many libraries in the Internet provide access to Web COTS

(Commercial Off The Shelf) like ComponentSource R©1

or free Web components like RichFaces from JBoss or

Apache’s MyFaces.

These technologies are currently one of the most interest-

ing solutions for developing large and complex applications

1ComponentSource Website: http://www.componentsource.com/index.html

with highly critical requirements on maintainability and

portability. However, after deploying a Web component-

based application within an application server, there is no

means to directly publish some services of the application

for third party development. Even if stubs can be generated

and provided for client applications, these stubs are gen-

erally language-dependent (only Java clients can use stubs

generated for EJBs) and cannot be published, as they are,

in libraries of services. Recently, the EJB 3.x specification

introduced some annotations to enable developers to publish

some methods in a bean as services. However, this is pos-

sible only for individual methods, and not for compositions

of them which we found in real-world business logic. In

addition, this solution is well suited for new software, but not

for legacy one, whose source code is not always accessible.

The same observations can be made on Eclipse tools (WTP

project), which allow to generate Web services starting from

individual methods in Java classes.

Besides, since many years, Web services have confirmed

their status of one of the most pertinent solutions for a given

service provider, like eBay (auction and shopping), Amazon

(retail) or FedEx (logistics), to open their solutions for third

party software development. Web services are functionalities

based on standards which are ”programming language”-

and ”execution platform”-independent, like WSDL or SOAP.

New applications with thin or thick clients can be built

and can access these functionalities, by simply formulating

requests, which embed XML-based (SOAP) messages, to the

chosen Web service providers. The same kind of messages

are returned back to these applications, containing the results

(answers to their requests). Upon these results, more actions

can be performed by these new applications in order to

implement some new business-logic.

In this paper, we present an approach (Section III) to build

Web service-oriented architectures starting from existing

Web component-based applications and deploy them on

a Web service provider. In this way, developers of Web

components can offer the opportunity to other developers to

build extensions of the services provided by their artifacts.

This transformation goes through several steps, starting from

the parsing of Web components’ contents and formatting



Web interfaces as operations embedded in services, and

compositions of these services, and ending by deploying and

indexing the generated services.

We implemented our solution (Section IV) on a collection

of Java-related technologies. Java EE components are the

input artifacts of the proposed implementation, and a set

of Java Web services and choreographies/orchestrations of

these services are provided at output. We illustrate this

approach on a simple example of a simulated version of a

real-world Web application (Section V). Before concluding

and presenting the ongoing and future work at the end of this

paper, we make a summary of the related work (Section VI).

In the next section, we introduce a simple example of a

Web component that is used in the remaining of the paper

to illustrate our proposals.

II. ILLUSTRATIVE EXAMPLE

We consider here a simple Web component, which is

composed of the following subcomponents:

• a BMI_Calculator calculates the Body Mass Index

(BMI) starting from the values entered by the user

via the Web interface implemented in this component.

These values are the mass and the height of the person2.

• a DietaryAdvisor asks the user to enter her/his

age and gender, and to check some boxes representing

the dietary habits and the eating disorders of the per-

son (excessive meat eating, mid-night hungers, ...). It

provides a summary of the dietary guidelines.

• an EMailer asks the user to enter her/his e-mail

address and sends her/him an e-mail with a detailed

list of dietary guidelines.

The Web component in this example is a Java EE EAR

(Enterprise ARchive) which contains some Web and EJB

modules. The Web modules are implemented using the

JSF (JavaServer Faces) framework, which binds the input

values got from the HTML forms (rendered by some JSF

components) to JavaBeans. The EJB modules connect to a

database via JPA (Java Persistence API) to get the stored

information about the dietary guidelines. They also use

javax.mail to send e-mails via an SMTP server.

Suppose now that a third-tier developer would like to

implement a more sophisticated application based on the

component services introduced above. This developer would

like to provide a solution to sell diet nutrition and di-

etary recipes. She/he wants to use the output given by

the DietatyAdvisor to advertise her/his products before

sending the e-mail to the user.

In order to implement this solution, the third-tier de-

veloper should either: i) re-develop the business logic im-

plemented in the Web components introduced above, ii)

ask the provider of these components for the binaries (or

2
BMI =

mass(kg)

height2(m2)

source packages of these components) and deploy them on

the same name space of her/his solutions, iii) or ask for

a remote access to these components. It is evident that

the first alternative is not realistic for this developer (a

time consuming task). The other two alternatives are not

good choices neither. The original developers of the Web

components would certainly not give access to their software

artifacts (binaries or sources) for many technical reasons

(security, data inconsistency, etc.).

One of the best solutions for this third-party development

is to transform the previous Web component-based archi-

tecture to obtain a set of Web services which are described

below3:

• DietaryAdvising: a Web service composed of

three operations :

– calculateBMI which receives as input two

messages of type Integer (the height in centimeters

and the mass in grams) and returns a float value

which represents the BMI.

– getBMI_Category which receives as input the

BMI value and returns the BMI category: Under-

weight, Normal Weight, Overweight, or Obesity.

– provideSummaryDG which receives as input

four messages: a message of type integer for the

age, a boolean message for the gender, a float

one for the BMI and a complex XML schema

type for the dietary habits. This operation returns

a summary of the dietary guidelines.

• MailSending: a Web service with a single operation

for sending an e-mail. This operation declares four

messages: three input strings for the e-mail address,

the subject and the body of the message, and a boolean

output message which represents the message sending

success or failure.

As stated in the introduction, since many years Web ser-

vices have confirmed their status of highly secure, portable

and flexible solutions for distributed service computing.

In this way, the application extension scenario introduced

above can easily be implemented by remotely invoking

the Web service operations. The extension of the Healthy

Diet application can be built as a BPEL (Business Pro-

cess Execution Language) process invoking successively

the three operations of the first service. It then adds the

corresponding advertisement information, and at last invokes

the MailSending service.

The transformation process which allows the generation

of the Web services above is presented in detail in the next

section. We explain, among other issues, how the different

operations in Web components are extracted and grouped

in Web services. In addition, we show how elements in

Web interfaces are formatted as SOAP messages, and how

3This is not an exhaustive list. Some other generated operations will be
introduced in the following section.



Operation Extraction

Input and Output
Message Identification

Operations Distribution

Composite Service
Creation

Web Service
Deployment & Indexing

Application
Server

Web service
Search Engine

Web Component
Developer

or Deployer

is involved in

Set of operations

Set of operations
with messages

Reduced set
of operations

Set of Web 
services
(primitive

& composite)

is involved in

Operation Filtering

Reorganized set
of operations

Figure 1. The Transformation Process

operations are created for representing these Web interfaces,

and included in the published Web services.

III. PROPOSED APPROACH

The transformation of Web components into Web services

is a six-step process. This is illustrated in Figure 1 and each

step is detailed in the following subsections.

A. Operation Extraction

First, a recursive parsing of the different Web component

elements is performed to extract the potential set of Web

services. All operations in classes and other structured code

elements are saved. In addition, the code present in programs

executed at the server side (JSP pages, for example) is

grouped within new operations and formatted to be exe-

cuted as stand-alone code. For example, all code present

in scriptlets of JSP pages is grouped and formated within

a single operation. In the next subsection, we explain how

this formatting is performed.

B. Input and Output Message Identification

The input and output messages related to each operation in

Web services are extracted starting from the parsed elements

in the Web components. For operations in classes and other

structured code elements, the parameters and the returned

values are formatted as (respectively, input and output)

SOAP messages. The code present in the other programs

(like JSP pages) is parsed to extract the input values received

in the HTTP requests (by identifying statements getting

values from HTTP requests). Their types are deduced from

the parsed code by analyzing type casts and other conversion

statements. The contents produced by theses programs,

which are viewed at the client side (like JSP expressions or

out.println(...) statments), are considered as returned values.

The types of these values are extracted from the code and

defined in the generated SOAP messages.

For example, in the BMI_Calculator component of

the previous section, two messages are defined starting from

the request.getParameter(...) statements in the

JSP file. They correspond to the mass and height of a person.

At the beginning, these inputs are defined as variables of

type String. But, after parsing the JSP (Java) code that

extracts these values, we deduce the final data type, which

is int (integer). Nevertheless, the conversion, the cast and

the request.getParameter(...) statements will be

deleted from the new code. The returned value is the result

calculated by a JavaBean method getBMI() bound to the

Web interface using a JSP expression. This is used to create

an output SOAP double message.

C. Operation Filtering

After that, the non-pertinent operations of the Web ser-

vices are eliminated from the starting set according to

a collection of filtering constraints. These constraints are

boolean expressions which are represented by OCL (Object

Constraint Language [14]) expressions that can be added,

modified or removed by developers. The OCL expressions

are limited to invariants. They navigate in a simple MOF [13]

metamodel, which is a simplified excerpt of the UML

metamodel (related to operations) extended with some basic

features. All expressions have, as a context, an instance of

the Operation metaclass. OCL has been chosen because of

its simplicity [3] and the existence of a good tool support

(OCL Toolkit [4], Eclipse MDT/OCL [6], ...).

An example of a filtering constraint is given below. This

OCL constraint states that operations which use the session

standard script variable must not be selected.

not (self.body.usedType ->includes(t |

t.name=’HTTPSession’))

At the end of this step, the developer is asked to choose

among the selected operations those which are not pertinent

as parts of the published Web services.

D. Operation Distribution

The extracted operations are distributed on multiple Web

services based on the following criteria:

1) Spreading Criterion: Similar extracted operations are

spread out in different Web services. This ensures some

level of reliability and correctness in the published Web

services. On the one hand, if a Web service does not provide

correct quality requirements (like availability or efficiency)

for users of an operation within this service, another service

containing a similar operation can be found (reliability). On

the other hand, a service should not conceptually (from a

correctness perspective in the description of a Web service)

provide two or more similar operations (operations that

provide the same functionality).

Similar operations are identified following some similarity

measures. In the current implementation, a solution based



on operation signatures has been defined. It compares the

operations’ names, returned type and parameters.

2) Grouping Criterion: In this step, the highly coupled

operations are grouped together in a single Web service.

This grouping increases at the same time the performance

and helps developers in the evolution and maintenance of the

generated services. In order to group operations into a single

Web service, we measure the coupling between operations

by analyzing the static invocations between operations.

E. Composite Web Service Creation

In this step, the potential dependencies between the dif-

ferent selected operations in the Web services are identified.

There are two kinds of dependencies between operations:

operation invocation dependencies and Web navigation re-

lationships. The first kind of dependencies gives rise to

Web service choreographies and the second to Web service

orchestrations. These are detailed below:

1) Web Service Choreography Creation.: All calls be-

tween operations in the code are captured. If the called

operations are published in the same Web service of the

caller operation, nothing is done, the calls are left as method

invocations. If the called operations are present in the other

published Web services, we check if these services are

deployed remotely or in the same server, and if they run in

the same virtual machine, as the caller service. If the services

run in the same execution context, method invocations are

left as they are. Otherwise, these operation dependencies are

replaced by Web service requests.

In this way, we build composite Web services as code-

level choreographies.

In the example presented in Section II, the op-

eration calculateBMI() calls some other opera-

tions to make arithmetic calculations. These operations

(power(n,m), division(x,y), mass and height con-

version) are extracted and assembled in two different Web

services: calculationWS and conversionWS. The

calculateBMI() operation starts first by invoking the

mass conversion operation of the conversionWS to trans-

form grams into kilograms. This is done through the call to

the division operation of calculationWS. Then the cen-

timeters are transformed into meters using the height conver-

sion operation (based on the same calculation operation). At

last the operations power(...) and division(...)

are called to get the BMI’s value. This is a simple but

illustrative example of a choreography created starting from

the BMI_Calculator Web component.

2) Web Service Orchestration Creation.: Navigation doc-

uments such as JSF faces-config files and their nav-

igation rules are parsed. This allows the identification of

the different relationships between Web pages, and potential

collaborations of the different Web services extracted from

these pages. This task is implemented according to the

following algorithm:

(01) algorithm WebNavigationParsing {

(02) let process := ProcessFactory.newInstance();

(03) for-each(navigRule in WebNavigDocument){

(04) let opFrom := parseSourceView(navigRule

.sourceView);

(05) if(opFrom isNotPreviouslyInvokedInProcess

process) {

(06) let op1 :=process.createInvocationTo(opFrom);

(07) op1.setParameters(variables of process);

(08) let returnedVal1 := op1.invoke();

(09) process.store(opFrom,returnedVal1);

(10) }

(11) else {

(12) let returnedVal1 := getStoredReturnedValBy(

opFrom);

(13) }

(14) let exp := navigRule.executionCondition

.expression;

(15) let op := process.createInvocationTo(exp);

(16) let returnedValue := op.invoke();

(17) if(returnedValue = navigRule

.executionCondition.value) {

(18) let var :=process.createVariable(returnedVal1);

(19) let opTo :=parseDestinationView(navigRule

.destinationView);

(20) let op2 := process.createInvocationTo(opTo);

(21) op2.setParameters(variables in process +var);

(22) let returnedVal2 := op2.invoke();

(23) process.store(opTo,returnedVal2);

(24) }

(25) }

(26)}

In this algorithm, we first create a process, and for each

navigation rule in the Web navigation document of the

parsed Web component, we identify the source operation

(Line (04)). The source operation corresponds to the oper-

ation that has been generated starting from the navigation’s

source Web page. The same thing is done for the destination

Web page (Line (19)).

As specified in the algorithm, a navigation rule contains

three elements: i) a source view (Line (04)), which repre-

sents the Web page(s) from which the navigation started

(e.g., the page presenting the form for calculating the BMI

in the example introduced previously: bmi.jsp); ii) a

destination view (Line (19)) that corresponds to the Web

page(s) to which the user will be automatically directed

(e.g., the Web page presenting the interface of the Web

component DietaryAdvisor: diet.jsp); and iii) an

execution condition (Lines (14) and (17)) which contains an

expression and a value (e.g., the expression is the call to

the JavaBean operation for getting the BMI category in the

Web component: #{diet.getBMI_Category}, and the

value is ”Obesity”).

For each navigation rule, we first test if the source

operation has already been called in the process while

parsing another navigation rule (Line (05)). This ensures that

operation invocations are not duplicated. In the case of an

operation which has already been invoked in the process, we

just get the returned value (Line (12)). This kind of values

are stored after each operation invocation (see Lines (09) and

(23)). Then, we compare the value obtained after invoking



the operation defined in the expression of the condition

and the value of this condition (lines (16) and (17)). If

the two values are equal, then we invoke the corresponding

destination operation (Lines (19) to (22)).

In the example presented in Section II, we generate a

BPEL (Business Process Execution Language [12]) process

(HealthyDietProcess). In its description, the process

first invokes the calculateBMI operation of the first

service. Then, it stores the result into a variable and invokes

the second operation of the same service to get the BMI

category, using the content of the variable as a message. If

the returned value, stored in a second variable, is different

from ”Normal Weight” (is equal to the other three possible

BMI categories), the third operation is invoked, using the

stored BMI category and other information (dietary habits

and eating disorders), to get the corresponding dietary guide-

line. At last, it invokes the sendMail operation with the

necessary data.

In orchestration creation, before each operation invocation

(see Line (21) in the algorithm above), we prepare the

list of parameters. A matching of the variables’ names in

the orchestration and the arguments of the operation to be

invoked is performed. This ensures that arguments are passed

in the correct order.

At last, the two Web services, together with the BPEL

process, which is exported as a Web service, are deployed

in a server and indexed in the Seekda Web service search

engine4.

F. Web Service Deployment and Indexing

All the generated Web services are made available for

other developers on the Internet. The validated set of Web

services (composite and primitive ones) are deployed on an

application server chosen by the developer/administrator of

the Web component-based application. All system configu-

ration parameters should be specified in order to perform

this activity. This can be fully supported by the prototype

tool we developed. The next task in this step is an assistance

activity where the developer is asked to log in or sign up

for a new account in the Seekda search engine. The services

are then indexed in Seekda Web server.

IV. TOOL-SUPPORT FOR THE PROPOSED APPROACH

We implemented the proposed solution as a prototype tool

called WSGen: Web Service Generator. The components

parsed by WSGen are Java Enterprise archives: EARs (Java

Enterprise Archives), JARs (Java Archives) and WARs (Web

Archives). JSPs, Servlets, JavaBeans, Enterprise JavaBeans

and traditional Java classes in these archives are extracted.

These files are analyzed to identify the different meth-

ods which will represent the potential future operations

of the generated Web services. A particular processing is

4Seekda Website: http://webservices.seekda.com/

performed on JSPs and servlets to generate new oper-

ations. Starting from request.getParameter(...)

statements, input parameters are generated, and starting from

out.print(...) and JSP scriptlet expressions, output

parameters are created. All tasks related to the parsing and

code generation have been implemented upon the JaxMe

Java Source5, HTML Parser6 and JspC7 tools. Be-

sides, MDT OCL has been used for OCL interpretation. OCL

constraints are checked on an Ecore instance (representing

the metamodel defined for operations) created starting from

the parsed operations’ code.

Finally WGen uses a Tomcat server associated with the

Apache implementation support for Web services, Axis.

Using the generated deployment files WSGen deploys the

desired Web services.

V. WSGEN BY EXAMPLE

This section illustrates the application of the approach

on a larger example. We explain how to create a Web

service-oriented solution starting from a simulated version

of a real-world Web application. The later represents the

Web service search engine Seekda, which indexes a large

set of public Web services in the Internet. In its simulated

version, this application is considered as a set of interacting

Web components. Each one gives a different view on the

application.

• The login component: allows client’s authentication.

It asks a user via a form to enter an email and a

password.

• The new_account component: allows a new user to

register in the application. The user is asked to enter

an email, a password and re-type the password for

validation.

• The password_recovery component: asks the user

to enter the email address that she/he used to register

in Seekda, and a new password. This component sends

then an email that allows the user to activate the new

password.

• The web_services_search component: asks the

user to enter keywords for searching Web services. This

component provides as a result a list of Web services.

Each service is described by the following information:

country name, provider name, WSDL URL, WSDL

Cache, monitoring date, server name, availability, doc-

umentation, tags and user rating.

• The advanced_web_services_search compo-

nent: allows the user to enter search keywords and other

search criteria such as: country name, provider name,

some specific tags, the number and order of results.

5Apache Website: http://ws.apache.org/jaxme/js/index.html
6HTML Parser at SourceForge: http://htmlparser.sourceforge.net/
7Apache Website: http://tomcat.apache.org/download-70.cgi



A. Generated Primitive Web services

The transformation of this Web component generates the

following set of primitive Web services 8:

• AccountService: a Web service composed of the

following operations:

– The _service_login operation: receives as

input two messages of type String (the email and

the password of the user). This operation performs

the authentification action.

– The _service_new_account operation: re-

ceives as input three messages of type String

(the email, the password and the repeated pass-

word). This operation performs the creation of new

client’s account.

– The _service_password_recovery opera-

tion: has three messages of type String (the email,

the new password, the repeated password). It re-

turns a message that indicates to the client that

she/he will receive an email containing a link to

activate the new password.

• SearchingService: a Web service composed of

the following operations:

– The _service_BasicSearch operation: re-

ceives a message of type String (search keyword).

This operation is used to search web services.

– The _service_AdvancedSearch operation:

is used for an advanced search. It receives as input

a message of complex type, the elements of this

complex type are of type String (search keyword,

country name, provider name, some specific tags).

– The _searchResult operation: returns to the

client a message of complex type composed of

elements of String type. These elements represent

the information about the searched Web service

(country name, provider name, etc.).

B. Generated Composite Web service

Figure 2 depicts the navigation rules between the dif-

ferent views of the Seekda Web application. These rela-

tions between Web views are converted to orchestrations

of the previous Web services. First, all navigation paths

are calculated from the web navigation document. As il-

lustrated in Figure 2 there are sixteen9 navigation paths

for the seekda web application. For each navigation path,

a BPEL process is generated using the previous algorithm.

Figure 3 shows an excerpt of a generated BPEL process

from the navigation path : WelcomeSeekda → new account

→ advancedSearch → searchResult. This process represents

an orchestration of the corresponding generated services.

The interface of the new BPEL composite Web service uses

8This is not an exhaustive list. Some other generated operations will be
introduced in the following subsection.

9Some of them are duplicated and have different sources.

Figure 2. Navigation Rules in the simulated Seekda Web Application

a set of port types, through which it provides operations

to clients. The tool generates first, the WSDL file for this

interface and their port types. As depicted in Figure 3, the

partner link at the left side represents a client of the service

provided by the BPEL process. The partner links at the

right side represent the Web services (AccountService

and SearchingService) that participate in the BPEL

process. We start the process with a ”receive” activity

to receive requests from external clients. These clients

represent others applications or Web services that consume

the service provided by the BPEL process. We have then an

”invoke” activity to call the _service_new_account

operation of the AccountService. After invoking this

operation, we have in the process another ”invoke” activity

to thenewAccountAction operation, which performs the

creation of a new account in Seekda web application.

This returns one of two values "newAccountPass" or

"newAccountFail", which represent respectively, suc-

cess or failure of the registration. After that, we have an

”if” activity, in which, we test whether the returned value

is equal to the value newAccountPass or not. This value

as depicted in Figure 2 represents the value of the condition

in the navigation rule. Based on this test, the process

invokes the _service_AdvancedSearch operation or

not. Before invoking this operation,there is a ”receive”

activity which gets from the client the search keywords

and other search criteria such as: country and provider

names. The next activity in this process is an invoke to

the advancedSearchAction operation. We have then,

an ”if” activity in which, we compare the returned value

of the operation with "searchPass" value. If they are

equal, the process invokes the _searchResult operation.

Finally, the returned message from this operation is sent to

the client using the ”reply” activity.

In this way, developers can directly use the services

generated from the Seekda search engine application, either

for creating new accounts or for searching Web services.



Figure 3. Excerpt of the generated BPEL Process

They can build extensions of these services to provide more

sophisticated solutions. For example, in the tools imple-

mented by our team [1], we classify hierarchically the result

set of Web services obtained from Seekda, in order to make

search and browsing easier. The set of Web services returned

by the Seekda application consists of HTML pages. Instead

of building an HTML parser ”from scratch” to analyze each

HTML page, we can consider here these tools as extensions

to the functionalities provided by the Web interfaces of

Seekda application accessed through our generated Web

services. In this way, these tools can simply send requests

to the Web service SearchingService and based on the

obtained result, they classify Web services.

VI. RELATED WORK

In [10], Roger Lee et al. developed an approach for con-

verting functionalities implemented in software components

into Web services. [11] adopt an extensible mechanism to

transform components implemented in different program-

ming languages. These two works allow to a client to specify

a request for searching a given functionality in components

developed with different programming languages (C++ or

Java) and deployed in a Web server or located in repository.

As an answer to this request, services are generated auto-

matically for the desired functionalities. Compared to these

reactive systems, WSGen is proactive. It does not react to

a client request, but it allows a web application engineer

during the deployment of her/his component-based system

to anticipate the export of some functionalities to third party

developers as Web services. In addition, in WSGen we deal

with Web interface conversion into stateless Web services.

However in [10] and [11], only business functionalities

implemented in software components are transformed.

Wike [8] generates virtual Web services by the extraction

of information from Web pages. Users can define patterns

which are used to extract partial information from Web

pages. The extraction function can be used to generate a

Web service that returns the result of the extraction process.

Content-based Web pages are not the main concern in our

approach. Indeed in our process, Web components including

Web interfaces and business logic implementation are the

artifacts concerned by Web service generation. Wike is how-

ever a complementary solution to our work. Web services

that are generated using our approach starting from Web

components, which produce to users during execution a large

quantity of content, can be enhanced with new operations

that return only partial information (texts, images, ...) using

Wike. Invocations to these new operations can be added to

the orchestrations generated by WSGen.

Many works in the literature proposed some model-driven

techniques to generate Web service-oriented applications.

Bauer and Müller [2] applied MDA10 to provide a mapping

of elements from UML2 sequence diagrams (considered as

PlMs – Platform Independent Models) to a representation of

compositions of Web services using BPEL (considered as

PSMs – Platform Specific Models). This approach aims in

particular at reducing the complexity of building BPEL spec-

ifications manually. [7] proposed a model-driven process for

building Web service compositions. This process transforms

WSDL descriptions into UML models. These models are

integrated by the developer to form composite Web services,

which contain interface and workflow descriptions. Interface

models are described using stereotyped UML class diagrams

and workflow models are represented by stereotyped activity

diagrams. The resulting composite services are exported at

10OMG’s Website: http://www.omg.org/mda/specs.htm



last as WSDL descriptions. This work provides means for

making forward engineering (UML to WSDL and BPEL)

and reverse engineering (WSDL to UML) by specifying

bidirectional transformation rules. Another model-driven

approach for creating service-oriented solutions has been

proposed in [9]. In this work, a UML profile has been

defined for service-oriented applications.

All these works are complementary to our approach.

In our work the transformations are made from PSM to

PSM. Web components, which are models specific to a

given platform (in the current implementation, Java EE),

are converted into Web services, which are considered as

another platform-specific model (WSDL, Java and BPEL, in

the actual version of WSGen). The UML profile presented

in [9] can be used to define high-level models of the

generated Web services. The other approaches can be used

to make a reverse engineering of the generated Web services

or orchestrations and obtain more understandable models

(compared to code). In addition, all these related works focus

on UML modeling and generating new Web services starting

from models of a high level of abstraction. In our approach,

we worked on the transformation of existing Web code.

VII. CONCLUSION AND FUTURE WORK

Recent research in software and information systems

engineering emphasizes the need for the proposition of new

languages, methods, and tools for building systems by shift-

ing from a product-centric to a service-oriented view [5].

In this paper, we present a process for the transformation

of Web component-based applications into Web service-

oriented ones. Web components are seen here as software

artifacts embedding business logic code and exporting Web

interfaces. This kind of modules are analyzed, the differ-

ent elements that compose them are extracted to identify

different Web services and possible collaborations of these

services. All of the resulting services are deployed on

the Internet in order to allow third party development. In

our work, we consider these deployed artifacts (embedding

Web interfaces) as remote APIs (as services) that offer

the opportunity for developers to extend the functionality

provided by these services and exploit the resources used

by them.

Some enhancements will be made on the transformation

process implemented in WSGen. We are now working on

the implementation of more sophisticated techniques for

grouping complementary operations in Web services, based

on “text-mining” of Web components’ documentation. At the

conceptual level, we plan to study the formalization of the

performed transformation as a set of high level declarative

rules. We then define such rules in a MOF/QVT-compliant

language [15] and thus integrate our solution in a Model-

Driven Engineering process. At the tool level, we plan

to work on the generation of high-level specifications of

choreographies in ”WS-CDL”-compliant languages starting

from collaborations of the generated Web services’ opera-

tions. Experimenting in depth our approach by measuring

its scalability and performance on large Web applications is

another perspective of our work.

REFERENCES

[1] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha and
C. Tibermacine. Selection of Composable Web Services
Driven by User Requirements. In Proc. of ICWS, 2011.

[2] B. Bauer and J. P. Müller. Mda applied: From sequence
diagrams to web service choreography. In Proc. of ICWE’04,
pages 132–136. Springer-Verlag, 2004.

[3] L. C. Briand, Y. Labiche, M. Di Penta, and H. D. Yan-
Bondoc. An experimental investigation of formality in uml-
based development. IEEE TSE, 31(10), 2005.

[4] T. U. Dresden. Ocl compiler web site. http://dresden-
ocl.sourceforge.net/, 2009.

[5] A. Finkelstein and J. Kramer. Software engineering: a
roadmap. In Proc. of ICSE’00, pages 3–22. ACM, 2000.

[6] Eclipse Foundation. Model development tools website.
http://www.eclipse.org/modeling/mdt/?project=ocl, 2009.

[7] R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik. Model-
driven web services development. International Jounal of
Web services Research, 1(4), 2004.

[8] H. Han and T. Tokuda. Wike: A web information/knowledge
extraction system for web service generation. In Proc. of
ICWE’08, pages 354–357. IEEE CS, 2008.

[9] S. K. Johnson and A. W. Brown. A model-driven development
approach to creating service-oriented solutions. In Proc. of
ICSOC’06, pages 624–636. Springer, 2006.

[10] R. Lee, A. Harikumar, C.-C. Chiang, H.-S. Yang, H.-K. Kim,
and B. Kang. A framework for dynamically converting
components to web services. In Proc. of SERA’05, 2005.

[11] A. Marinho, L. Murta , and C. Werner Extending a
Software Component Repository to Provide Services. In Proc.
of ICSR’09. Falls Church, USA, pp. 258-268, 2009.

[12] OASIS. Oasis consortium website. Web Services BPEL Ver-
sion 2.0: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html, 2007.

[13] OMG. Meta object facility (mof) 2.0 core specification, doc-
ument ptc/04-10-15. OMG Website: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-15.pdf, 2004.

[14] OMG. Object constraint language specification, ver-
sion 2.0, document formal/2006-05-01. OMG Website:
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

[15] OMG. Meta object facility (mof) 2.0 query/view/ transforma-
tion specification, version 1.0, document formal/2008-04-03.
OMG Website: http://www.omg.org/spec/QVT/1.0/PDF/

[16] W3C. Web services choreography description language
version 1.0, w3c candidate recommendation. W3C Website:
http://www.w3.org/TR/ws-cdl-10/, 2005.


