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Abstract—This work analyses and classifies strategies for 

sampling results of concurrent error detection (CED) schemes in 

transient fault scenarios. It shows that dealing with results – 

indicating the occurrence of transient faults in circuits – can 

require additional mechanisms to make the error indication 

useful for system’s recovery procedures. The paper highlights 

that not all error indications are noticed by certain strategies of 

varied costs, and therefore their efficiencies in sampling results as 

well as the performance, power, and area overheads added to the 

CED schemes must be considered. The work then finishes 

presenting a qualitative comparison between existing strategies in 

function of design goals.  

 
Index Terms—Circuit and system radiation hardening and 

mitigation, concurrent error detection schemes, fault attacks, soft 

errors, transient faults 

 

I. INTRODUCTION 

N the past, reliability was an issue only for safety-critical 

systems. Nowadays, device size reduction, power supply 

restriction, increased operating frequency, and high circuit 

density have made it a design challenge for any integrated 

circuit. Hence, modern systems demand higher resilience 

against many new issues like radiation-induced particles, aging 

problems, and environmental and device parameter variations. 

Alpha particles and cosmic neutrons, for instance, are able to 

generate transient voltage variations even at ground level – the 

so-called transient faults (TFs) that can provoke soft errors 

(SEs) by inverting stored results of circuit operations. Another 

today‟s related topic is the growing need for secure systems – 

like smartcards – where TFs can be intentionally induced as a 

form of fault-based attack to bypass security mechanisms and 

retrieve confidential information such as stored secret keys. 

Related researches until early 2000‟s were focused 

essentially on protecting systems against TFs affecting 

memory elements, which were considered the system‟s most 

vulnerable circuits. Hence, many concurrent error detection 

and/or correction mechanisms were proposed to mitigate 
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direct SEs – the errors induced by TFs originated in memory 

cells. Nevertheless, in the last decade, more sensitive deeper-

submicron technologies as well as new manners of performing 

fault injection-based attacks – e.g. [1][2] – have also pushed 

for countermeasures against indirect SEs originated from TFs 

starting in system‟s combinational logic circuits. 

Although today‟s ground-level systems have to be more and 

more TF robust, most of them certainly require more moderate 

levels of robustness than space applications, for instance, 

which are located in much more hostile environments. Hence, 

nowadays low-cost mitigation solutions have been optimized 

towards the target products and their required minimum 

immunity levels. Non-safety-critical systems have been thus 

protected with techniques of reduced redundancy and lower 

error detection efficiency. However, they ensure, at reasonable 

cost, satisfactory error coverage of the system‟s most recurrent 

operations. 

Another today‟s trend in low-cost efficient solutions is 

applying protection techniques at different abstraction levels of 

the design [3][4][5][6]. Concurrent error detection (CED) 

mechanisms are designed at lower abstraction levels while 

system‟s recovery procedures (SRP) at higher levels. This 

strategy takes advantage of recovery circuits that are already 

present in modern microprocessors to recompute instructions 

in case of branch misprediction [5][6]. Then, only CED 

mechanisms need to be implemented, and as they are 

optimized at lower levels, they can monitor circuit‟s fault-

prone nodes much closer than higher level schemes could. 

Hence the detection can be done early, as soon as the fault 

happens, preventing more critical failure scenarios such as the 

induction and propagation of multiple errors to other clock 

cycles, stages, or parts of the system. This approach, therefore, 

allows adding higher detection capability to the system at the 

expense essentially of a CED circuitry. Penalties of extra clock 

cycles to perform SRP occur only in faulty scenarios when the 

recomputation of cycles is required to correct the errors. 

Classic CED solutions to face TF effects are adding spatial, 

information, or time redundancy to the circuit. So if for 

instance a circuit‟s original part fails, another redundant copy 

permits detecting produced errors by comparing both parts. 

The result of such a comparison reports thus an indication of 

error. 

 

How to Sample Results of 

Concurrent Error Detection Schemes in 

Transient Fault Scenarios? 

Rodrigo P. Bastos, Giorgio Di Natale, Marie-Lise Flottes, and Bruno Rouzeyre, Members, IEEE 

I 



RADECS 2011 Proceedings –  
 

2 

This paper focuses essentially on CED circuitries that have 

ability to detect TFs started in logic blocks. We highlight that 

the error indications of such schemes can have behaviours as 

transient as the TFs which give rise to them. The error 

information is thus sensitive to be lost if it is not registered, 

and so no high-level safety reaction could be taken for 

protecting the system. We point out, therefore, the importance 

of a strategy for sampling CED‟s results (see Fig. 1) in order to 

properly ensure the activation of SRP, like clock cycle‟s 

recomputation, or other safety measure (e.g. system‟s restart or 

block of the data flow). 

 
It is relevant to stand, to the best of our knowledge, that no 

work has yet analyzed comparatively the different types of 

strategies that make possible the communication between CED 

circuitries and system‟s reaction procedures like SRP. In 

section II of this paper we innovatively define two types of 

CED schemes. It helps us in section III and IV to analyze and 

classify the existing strategies for sampling CED‟s results. 

Furthermore, it allows us, in section V, estimating the system‟s 

recovery resources required by the different types of CED 

schemes. Finally, in section VI we notice that these strategies 

can impose varied overheads and different efficiencies in 

sampling results. We note thus that the choice of a strategy can

 considerably reduce inherent overheads determined by CED 

schemes, and it is then an important point to be also evaluated 

in new CED propositions. 

II. TYPES OF CED SCHEMES 

Every CED technique employed to cope with TFs makes 

use of some form of redundancy such as: 

1) Spatial redundancy by which the target circuit is, for 

instance, duplicated and an another additional module is used 

to identify the presence of an error; 

2) Redundancy of information in which the application of 

error detection codes replaces the duplication of the target 

circuit, thus reducing surface and power consumption 

overheads at the cost of smaller error detection capability; and 

3) Time redundancy at which circuit‟s operations are 

evaluated twice with the same data and a comparison of the 

results can allow identifying non-permanent faults. It attempts 

to reduce the amount of extra hardware at the expense of 

additional time. 

These three approaches can be implemented at different 

abstraction levels of the design. Fig. 2, for instance, illustrates 

basic schemes of them at micro-architectural level. They 

essentially compare two redundant results of which at least one 

must be safe to permit the detection of errors. If for instance 

one result fails, the comparison provides an error flag, such as 

an error signal “OCom” at logical level “1”. It would indicate 

the occurrence of a TF in the circuit during a certain Clock 

Cycle that we define as CC-Start-TF in Fig. 3. Note that such 

an error flag, as a CED‟s result, needs to remain at a steady 

state enough time to be correctly dealt during a Clock Cycle 

Posterior to CC-Start-TF labeled as CC-Post-TF. It is a 

necessary timing condition that recovery circuits need to 

prepare properly, for instance, SRP until the end of CC-Post-

TF. Then, the system can recompute CC-Start-TF in the 

following fault-free cycle that we name as CC-SRP. 

 

Figure 2. Basic examples of CEDS-PA-DR and CEDS-PB-DR in which OCom is the error signal 

 

Figure 1. A target circuit protected by a CED and SRP 
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In this paper we focus on CED schemes to mitigate TFs by 

using redundancy at micro-architectural, logical, or electrical 

level, and we even classify them in two types: 

(1) CED Schemes Positioned After Data Register (CEDS-

PA-DR), like in [7][8][9][10][11] and Fig. 2‟s first row, are 

classic CED approaches that compare their redundant parts 

after the data register. Therefore, they inherently guarantee 

their error signals “OCom” in steady conditions during all CC-

Post-TF illustrated in Fig. 3. The mechanisms for sampling 

such CED‟s results are indeed parts of the CED scheme, and 

then no extra block is required to activate SRP or any other 

measure; 

 
(2) CED Schemes Positioned Before Data Register (CEDS-

PB-DR), like in [12][13][14][15][16][17] and Fig. 2‟s second 

row, have to consider the transient features of their error 

signals “OCom”. In fact, such CED‟s results are outputs of 

system‟s combinational logic circuits, and so they are 

reproduced according to the TF characteristics, see Fig. 4‟s 

example. Hence, this type of CED scheme must include 

another extra register, as Fig. 2 shows, dedicated only to 

sample their error signals “OCom”, and so ensuring results at 

steady state during a minimum time required by SRP or other 

measure. 

 
Note that among Fig. 2‟s basic examples, CEDS-PB-DR are 

less efficient than CEDS-PA-DR since they are not able to 

generate an error flag when a TF arises in a register provoking 

a direct SE. Nevertheless, CEDS-PA-DR are more expensive 

in terms of area and power consumption because they require, 

in addition, a number N of flip-flops for Copy Register or C 

for Prediction Register. 

III. CLASSIC STRATEGY FOR SAMPLING RESULTS OF CED 

SCHEMES POSITIONED AFTER DATA REGISTER 

The classic strategy for sampling results of CEDS-PA-DR is 

taking advantage of the fact that this type of CED scheme 

keeps its error signals at steady state during CC-Post-TF, see 

Fig. 3. Then, in case of an error flag, system‟s reaction 

procedures, like SRP, have sufficient time to be configured 

before the end of CC-Post-TF. However, if by option or other 

reason the error flags are not dealt in CC-Post-TF to activate 

these procedures in CC-SRP, another extra register is required 

to just memorize CED‟s results, and so allowing later, in 

subsequent clock cycles, to proceed with such activation. 

In fact, CEDS-PA-DR detect, during CC-Post-TF, direct or 

indirect SEs due to single TFs started in CC-Start-TF. As the 

assumption is the occurrence of a single fault in CC-Start-TF, 

there is no chance of unstable error signals at the end of CC-

Post-TF since it is considered a fault-free cycle. Therefore, 

CEDS-PA-DR ensure stable error signals in CC-Post-TF after 

the comparison that is done between two redundant signals at 

steady state (e.g. OReg with OCReg or OCode with OPReg in Fig. 2‟s 

first row). 

This stable condition of error signals like OCom in Fig. 2‟s 

first row guarantees a high efficiency in sampling error flags 

whether system reaction procedures are prepared in CC-Post-

TF. Then, in case of single fault scenarios, classic strategy 

allows the sampling of any error flag issued from Comparator 

during CC-Post-TF. On the other hand, one could perhaps 

argue that any eventual single TF – arisen in Fig. 2‟s Code or 

Comparator blocks during a certain CC-Start-TF – could make 

CEDS-PA-DR not properly operating. However, such a 

scenario, in the worst case, would produce just a false-positive 

error flag (FPEF), i.e. system‟s reaction procedures like SRP 

could be activated even if Data Register was not affected by 

SE. 

IV. STRATEGIES FOR SAMPLING RESULTS OF CED SCHEMES 

POSITIONED BEFORE DATA REGISTER 

In order to deal properly with results of CEDS-PB-DR, 

extra mechanisms for sampling their error signals must be 

implemented. Otherwise the error flags are lost and more 

critical failure scenarios may happen, such as the induction and 

propagation of multiple errors to other clock cycles, stages, or 

parts of the system. There are three different basic strategies 

for sampling results that can derive other ones depending on 

the particularities of the CED scheme. Next subsections 

discuss these options initially illustrated in Fig. 5. 

 

Figure 5. Strategies for sampling results (OCom) of CEDS-PB-DR 

 

Figure 4. Signals of CEDS-PB-DR indicating an error flag due to a TF 

Figure 3. Signals of CEDS-PA-DR indicating an error flag due to a TF 
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A. Error Signal feeding Data Input of a Flip-flop (EDF) 

The simplest design way for sampling CED‟s results is to 

use a flip-flop. The error signal of the CED scheme, such as 

OCom in Fig. 2 and Fig. 5, feeds the data input of a flip-flop that 

samples it by using the circuit‟s global clock. No special reset 

is required during the operation since the error flag is normally 

cleaned, like in Classic strategy, by the data flow after TF 

vanishing. 

This EDF strategy however is not able to sample error flags 

of some indirect-SE scenarios in which single TFs start very 

late in CC-Start-TF [18]. Fig. 6‟s example scenario illustrates 

this issue by assuming the code-based scheme of Fig. 2‟s 

second row. DCode and DCom are respectively the Code block‟s 

delay and Comparator block‟s delay. TSet-up and THold are the 

set-up and hold times required by registers‟ flip-flops. The 

single TF, which starts on Logic Block‟s 1-bit output node 

OLogic, covers TSet-up and THold. Then, a wrong data value is 

registered – i.e. an indirect SE happens as illustrated on Data 

Register‟s OReg, which stores logic value “1” instead of “0”. 

On the other hand, Code Prediction block provides on its 

output OPredi the correct code that should be expected from the 

ideal value at the output OLogic under a fault-free scenario. This 

prediction is then compared with the code on OCode, which is 

computed from the actual value at the output OLogic under a 

fault scenario. If OCode and OPredi do not match, Comparator 

block‟s OCom results in “1”. Fig. 6‟s example therefore shows 

that the TF on OLogic arises too late in the clock cycle, and so 

Code and Comparator blocks are not able to generate an Error 

Flag (i.e. error signal “OCom” at “1”) on time to detect the 

indirect SE on OReg. In fact, as detailed in the figure, the Error 

Flag on OCom rises later than THold, and so it is not registered 

on Error Signal Register‟s OFlag. As this flag on OCom does not 

have a steady condition during CC-Post-TF, the recovery 

circuit is not able to deal with. And as this error information is 

not registered to be dealt in the next clock cycles, the CED 

scheme fails in detecting the indirect SE. 

EDF strategy is therefore not so efficient for some indirect-

SE scenarios, and so its efficiency in sampling CED‟s results is 

defined as moderate in relation to other strategy alternatives. 

 

B. Error Signal feeding Clock Input of a Latch (ECL) 

Another simple manner of sampling CED‟s results is to use 

a latch. The error signal of the CED scheme, such as OCom in 

Fig. 2 and Fig. 5, feeds the clock input of a latch that 

memorizes its data input “1” (see Fig. 5) only when the error 

signal goes to logical level “1” (i.e. an error flag is made). The 

latch must be reset during the system start-up and before CC-

SRP otherwise the error flag stays raised forever. 

The problem of this ECL strategy is the very hard timing 

assumptions required for properly sampling only fault-induced 

error flags. In fact, all circuit paths arriving at comparator‟s 

inputs must have the same delay “Dpaths=” in order to avoid the 

generation of glitches related to logic‟s delay difference (such 

as Fig. 7 shows for Fig. 2‟s code-based CEDS-PB-DR 

approach). Otherwise, these logic-related glitches would be 

considered as FPEFs, and the latch, which works such as the 

Error Signal Register in Fig. 2, would indicate a SE occurrence 

even in an error-free scenario. 

This problem is even more critical because logic-related 

glitches are very common in every clock cycle of synchronous 

circuit, and today‟s fabrication process variability on circuit 

paths as well as complex wire distributions further induce 

these static hazard events. Therefore, CED‟s results could 

indicate systematically FPEFs, such as in every clock cycle, 

even in fault-free scenarios. In reality, as this ECL strategy is 

not able to distinguish a logic-related glitch from a fault-

induced error flag, the system would be continuously alarmed 

with an error flag, and so it would not run appropriately its 

data. Moreover, even so in a remote case the hard timing 

assumptions of all paths with the same delays were 

successfully met, there would be always an imminent risk of 

glitches due to the process variability on such delays. This 

ECL strategy is thus not recommended since its efficiency in 

properly sampling real CED‟s results of CEDS-PB-DR is very 

low. 

 
Nevertheless, similar strategy – without requiring timing 

assumptions – can provide high efficiency in sampling error 

flags whether particular CEDS-PB-DR like Bulk Built-In 

Figure 7. CEDS-PB-DR: signals of code-based scheme with ECL strategy 

Figure 6. CEDS-PB-DR: signals of code-based scheme with EDF strategy 
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Current Sensors (BBICS) [6][17] are used instead of Fig. 2‟s 

schemes or their derived ones. The error signals in BBICS-

based approaches come from the activity of bulk nodes instead 

of data nodes, and so there is no chance of logic-related 

glitches being considered as FPEFs. 

C. Error Signal and Extra Clock feeding Clock Input of a 

Latch (EECCL) 

Previous ECL strategy can become highly efficient for 

sampling results of comparator-based CEDS-PB-DR whether 

an extra clock CKExtra is used as Fig. 5 and Fig. 8 illustrate. 

The latch thus would memorize its data input “1” (Fig. 5) just 

if error signal “OCom” and CKExtra are “1”. CKExtra would do the 

latch sampling the error signal “OCom” only during an interval 

PWckEx on which the conditions of no legal transaction events 

and no logic-related glitches are ensured by adding extra 

timing assumptions to the system design. Then, any event “1” 

on error signal “OCom” during PWckEx is certainly a fault-

induced error flag and not a legal transaction event or a logic-

related glitch. 

This EECCL strategy derived from [15] is clearly the most 

complex in terms of IC design since it requires several extra 

timing assumptions that are also difficult to meet. 

The first timing assumptions are related to CKExtra, which 

needs of an extra clock-tree implementation and has to be 

delayed by a time “DckEx” from the global clock‟s rising edge, 

such as Fig. 8 shows. DckEx is given in function of the latch‟s 

minimum pulse width “TMinPW”; the set-up time “TSet-up” 

required by registers‟ flip-flops; and the CED‟s delay “DCED” 

that is equal to DCode + DCom for Code scheme and DCom for 

DWC or TR scheme: 

 MinPWupSetCEDckEx TTDD    

 In fact, (1) is expressed by using the time “DCED” between 

the TF‟s first possible edge that is able to violate TSet-up and its 

consequent error flag‟s falling edge. DCED must be even 

reduced by TSet-up to make as reference the global clock‟s edge. 

And a margin “TMinPW” must be used to ensure the sampling of 

such a consequent error flag from the TF‟s first possible edge. 

Moreover, a minimum slack “TMinPW” is added to clock period 

for preventing that legal transaction events cause 

systematically FPEFs. Therefore, the circuit‟s minimum clock 

period “PMinClock” is defined in function of Logic Block‟s 

longest delay “DLogic”, TMinPW, TSet-up, THold, and a TMinCk„s 

additional time margin “TMargin” for variations in clock 

operations (jitter and skew), and manufacturing and 

environmental variabilities: 

 inMupSetMinPWLogicHoldMinClock TTTDTP arg  

Differently, note in Fig. 2 that PMinClock for CEDS-PA-DR 

and CEDS-PB-DR using EDF strategy is probably longer, 

since DCED is normally greater than TMinPW: 

 inMupSetCEDLogicHoldMinClock TTDDTP arg   

Another option, instead of using (1) as a timing assumption 

for EECCL strategy, would be setting DckEx equal to zero. 

Then, a greater slack “DCED – TSet-up” would be required to 

avoid that legal events generate FPEFs. It would most likely 

impose worse performance penalty than (2) but better than (3): 

 inMCEDLogicHoldMinClock TDDTP arg  

Furthermore, as EECCL as ECL strategy requires timing 

assumptions related to the circuit paths‟ shortest delay “DMin”: 

 MinPWCEDHoldMin TDTD   

It ensures – during an initial period “DMin” in CC-Post-TF – 

that there are no results from new values at Logic Block‟s 

inputs which could suppress error flags. Assumption (5) is 

indeed the necessary minimum time to properly identify the 

error flag from the TF‟s last possible edge that is able to 

violate THold. It therefore guarantees that error flags are 

conserved during enough time in CC-Post-TF to detect TFs 

which potentially would cause indirect SEs at the end of CC-

Start-TF. 

Finally, if (2) is used, PWckEx is defined reducing (5) by (1). 

Then, the range from the TF‟s first possible edge to the last 

one that is able to violate the flip-flop‟s latching window (TSet-

up + THold) is taken into account: 

 MinPWHoldupSetckEx TTTPW   2  

On the other hand, if (4) is used, PWckEx is derived only 

from (5) because DckEx is equal to zero: 

 MinPWCEDHoldckEx TDTPW   

 

Figure 8. CEDS-PB-DR: signals of code-based scheme with EECCL 

strategy 
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V. SYSTEM‟S RECOVERY RESOURCES REQUIRED BY 

PROTECTION TECHNIQUES BASED ON CED  AND SRP 

Protection techniques based on CED and SRP require 

recovery circuits to save input status of CC-Start-TF as well as 

to reload them, after TF vanishing, at beginning of CC-SRP. 

Thus, during such a recovery cycle “CC-SRP”, the faulty cycle 

“CC-Start-TF” can be reproduced without the fault that 

generated the error flag.  

Fig. 9 and Fig. 10 illustrate the two types of CED schemes 

(defined in section II) interacting with a recovery circuit to 

protect logic blocks and registers. Note that the 

communication between CED circuitries and recovery circuits 

are slightly different. More precisely, the type of CED scheme 

and the strategy for sampling its results determine which 

minimum recovery resources are necessary to properly protect 

the system. 

 

 
CEDS-PA-DR require at least a recovery circuit similar to 

Fig. 11‟s illustration to efficiently activate SRP. This machine 

saves input status (logic_inputs) in each clock cycle by using a 

file with N latches. Then, such as Fig. 3‟s example, if CED 

circuitry indicates in CC-Post-TF an error flag at error_signal, 

the recovery circuit is able to restore in CC-SRP saved input 

status (saved_logic_inputs) of state executed one clock cycle 

ago the instant at which the error flag is set (i.e. CC-Start-TF). 

 
CEDS-PB-DR using EDF strategy also demand recovery 

circuits like the schematic in Fig. 11, but OFlag is connected to 

multiplexers instead of error_signal. However, CEDS-PB-DR 

with ECL or EECCL strategy require a more elaborate 

recovery architecture such as Fig. 12 shows. Otherwise, this 

machine saves logic_inputs of two clock cycles by using two 

files with N latches each one. Thereby, if CED circuitry 

indicates an error flag at error_signal (OFlag at “1” as Fig. 13 

illustrates), the recovery circuit is able to restore in CC-SRP 

saved input status (saved_logic_inputs) of a state executed two 

clock cycles ago the instant at which the error flag is identified 

and registered at recomputing_signal (i.e. CC-Start-TF). 

CEDS-PB-DR with ECL or EECCL strategy require more 

recovery resources than the other approaches essentially 

because their error signals act as a recovery circuit‟s 

asynchronous primary input. In fact, as the error signals can 

have the same transient features like the natural behavior of the 

TFs, they can happen with any duration and at any instant as 

an asynchronous event. Then, another flip-flop, as illustrated 

in Fig. 12, is mandatory to accurately synchronize the error 

signals with the recovery circuit. Even so the error signals are 

already in steady state due to ECL or EECCL strategy, they 

require Fig. 12‟s flip-flop to prevent metastability problems. 

This flip-flop also ensures enough time to reset Error Signal 

Register as well as it deals with cases in which the response 

time “RT” is longer than clock‟s high pulse width. 

CEDS-PB-DR with ECL or EECCL strategy also demand a 

multiplexer, as Fig. 12 shows, to reset their latches used as 

Error Signal Register. Moreover, they necessarily need at least 

two files with N latches to save input status of two clock 

Figure 11. Recovery circuit for CEDS-PA-DR and CEDS-PB-DR with 

EDF strategy in which error_signal is replaced by OFlag 

Figure 10. Logic blocks and registers protected by technique based on 

CEDS-PB-DR and SRP 

 

Figure 9. Logic blocks and registers protected by technique based on 

CEDS-PA-DR and SRP 
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cycles. As Fig. 13 highlights, there are chances of TFs starting 

in Cycle 1 not to raise recomputing_signal in Cycle 2, and then 

the input status of Cycle 1 must be saved and available in 

Cycle 3. Furthermore, if RT defined by DCED + Error Signal 

Register‟s delay “DFlag” is greater than the clock period (e.g. 

[6]‟s BBICS), more than two file are required. Therefore, the 

slower the RT the greater is the number of required files. The 

major problem is when the recovery circuit has no a minimum 

number of files to properly accomplish SRP. 

 

 
Finally, note in Fig. 11 and 12 that the area overheads 

related with recovery circuits are minimal whether the target 

circuit‟s architecture has already a machine to repeat 

operations in branch-misprediction situations. The highlighted 

blocks in Fig. 11 and 12 are resources that might be already 

present in certain modern architectures. Furthermore, 

performance costs through extra clock cycle executions to 

recompute occur only when a fault is detected, and so the 

circuit can operate with negligible penalty in fault-free 

scenarios. 

VI. ANALYSIS OF STRATEGIES FOR SAMPLING CED‟S RESULTS 

AND MAJOR CONCLUSIONS 

In this paper we have classified and compared the strategies 

for sampling results of CED schemes. Section III‟s classic 

strategy is highly efficient in sampling error flags originated 

from single TFs because CEDS-PA-DR ensure their error 

signals in steady condition during a fault-free cycle (CC-Post-

TF). However, this condition is satisfied only by using a 

number N or C of flip-flops before the Comparator, as 

illustrated in Fig. 2‟s first row. On the contrary, sampling 

results of CEDS-PB-DR requires an extra 1-bit register to 

make their error signals stable, and then EDF, ECL, or EECCL 

strategy must be used. 

EDF strategy uses only one flip-flop as Error Signal 

Register but it is not as efficient as the classic one since some 

scenarios of single TFs that cause indirect SEs can occur out 

of the Error Signal Register‟s sample window. On the other 

hand, ECL approach is indeed not applicable to comparator-

based CEDS-PB-DR although similar strategy works very 

efficiently in BBICS-like CED solutions [6], which monitor 

bulk nodes instead of logic-related glitch prone data nodes. 

Otherwise EECCL strategy – at the expense of an AND gate 

and an extra clock tree – has a high efficiency in sampling 

results of comparator-based CEDS-PB-DR. Both ECL and 

EECCL strategies use only one latch for sampling error flags 

and, as explained in section IV.C, the timing assumption of 

DMin need to be implemented by using additional logic gates. 

Hence, these strategies have further area costs “CDmin>” to meet 

such an assumption. ECL strategy also induces area costs 

“CDpaths=” for approaching circuit paths‟ delays to Dpaths=, 

which is defined in section IV.B. 

Table I summarizes the analysis done in this paper such as 

the area overheads and efficiencies of classic, EDF, ECL, and 

EECCL strategies. We can conclude that classic and EECCL 

strategies are the most efficient and the most expensive 

options, while EDF strategy is the cheapest alternative at the 

price of sacrificing its efficiency. Furthermore, Classic and 

EDF are the strategies that require less recovery resources. 

And EECCL makes much more complex the IC design due to 

the extra clock tree and its hard timing assumptions. Therefore, 

EDF is the strategy for implementations that aim low area with 

low design efforts, while the classic one is useful when the 

target is high efficiency with low design efforts. On the other 

hand, EECCL strategy is interesting in terms of area and 

efficiency for combinational logic circuits with several output 

bits, small CDmin>, and if recovery circuit contains 2 files. 

REFERENCES 

[1] C.N. Chen, and S.M. Yen, “Differential Fault Analysis on AES Key 

Schedule and Some Countermeasures,” in Proc. ACISP, vol. 2727 of 

LNCS, 2003, pp 118-129. 

[2] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on 

A.E.S,” in Proc. ACNS, vol. 2846 of LNCS, 2003, pp 293-306. 

[3] C. Lisboa, M. Erigson, and L. Carro, “System level approaches for 

mitigation of long duration transient faults in future technologies,” in 

Proc. ETS, IEEE, 2007, pp. 165-170. 

Figure 13. Signals of CEDS-PB-DR with ECL or EECCL strategy 

interacting with a recovery circuit 

Figure 12. Recovery circuit for CEDS-PB-DR using ECL or EECCL 

strategy 



RADECS 2011 Proceedings –  
 

8 

[4] C. Albrecht et al., “Towards a Flexible Fault-Tolerant System-on-Chip,” 

in Proc. ARC, VDE Verlag GMBH, 2009, pp. 83-90. 

[5] S. Z. Shazli, M. B. Tahoori, “Transient Error Detection and Recovery in 

Processor Pipelines,” in Proc. DFT, IEEE, 2009, pp. 304-312. 

[6] C. Lisboa et al., “Using Built-in Sensors to Cope with Long Duration 

Transient Faults in Future Technologies,” in Proc. ITC, IEEE, 2007, pp. 

1-10. 

[7] S. Mitra and E. McCluskey, “Which concurrent error detection scheme 

to choose?,” in Proc. ITC, IEEE, 2000, pp. 985–994. 

[8] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue 

nanometer technologies,” in Proc. VTS, IEEE, 1999, pp. 86-94. 

[9] Anghel, L., and M. Nicolaidis, “Cost Reduction and Evaluation of a 

Temporary Faults Detecting Technique,” in Proc. DATE, IEEE, 2000, 

pp. 591-598.  

[10] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level 

timing speculation,” in Proc. MICRO, IEEE/ACM, 2003, pp. 7-18. 

[11] K. Bowman et al., “Energy-efficient and metastability-immune resilient 

circuits for dynamic variation tolerance,” IEEE JSSC, v. 44, n. 1, pp. 

49–63, Jan. 2009. 

[12] S. Das et al., “RazorII: In situ error detection and correction for PVT and 

SER Tolerance,” IEEE JSSC, vol. 44, no. 1, pp. 32–48, Jan. 2009. 

[13] M. M. Kermani, A. R. Masoleh, “Parity-Based Fault Detection 

Architecture of S-box for Advanced Encryption Standard,” in Proc. 

DFT', IEEE, 2006, pp. 572-580. 

[14] C. Lisboa, and L. Carro, “XOR-based low cost checkers for 

combinational logic,” in Proc. DFT, IEEE, 2008, pp. 281-289. 

[15] D. Rossi, M. Omanã, and C. Metra, “Transient fault and soft error on-

die monitoring scheme,” in Proc. DFT, IEEE, 2010, pp. 391–398. 

[16] D. J. Palframan, N. S. Kim, M. H. Lipasti, “Time Redundant Parity for 

Low-Cost Transient Error Detection,” in Proc. DATE, IEEE, 2011. 

[17] E. H. Neto et al., “Using Bulk Built-in Current Sensors to Detect Soft 

Errors,” IEEE Micro, vol. 26, no. 5, pp. 10–18, Sep. 2006. 

[18] R. P. Bastos et al., “Timing Issues for an Efficient Use of Concurrent 

Error Detection Codes,” in Proc. LATW, IEEE, 2011. 

 

TABLE I  

 
CED 

Scheme 

Strategy for Sampling CED‟s Results 

Classic EDF ECL EECCL (DckEx > 0) EECCL (DckEx = 0) 

Paper‟s Section II III IV.A IV.B IV.C 

Estimated Area 

Overhead due to 

the CED 

scheme 

DWC 

Copy of Logic Block + 

N·Flip-Flop(s) 

+ Comparator 

Copy of Logic Block + 

1·Flip-Flop(s) 

+ Comparator 

Copy of Logic Block + 

1·Latch +CDpaths=+ CDmin> 

+ Comparator 

Copy of Logic Block + 

1·Latch + 1·AND + Extra Clock Tree + CDmin> 

+ Comparator 

Code 

Code Prediction + 

C·Flip-Flop(s) 

+ Code + Comparator 

Code Prediction + 

1·Flip-Flop(s) 

+ Code + Comparator 

Code Prediction + 

1·Latch +CDpaths=+ CDmin> 

+ Code + Comparator 

Code Prediction + 

1·Latch + 1·AND + Extra Clock Tree + CDmin> 

+ Code + Comparator 

TR 

Delay + 

N·Flip-Flop(s) 

+ Comparator 

Delay + 

1·Flip-Flop(s) 

+ Comparator 

Delay + 

1·Latch +CDpaths=+ CDmin> 

+ Comparator 

Delay + 

1·Latch + 1·AND + Extra Clock Tree + CDmin> 

+ Comparator 

Estimated Area 

Overhead due to 

the Strategy  

DWC N·Flip-Flop(s) 

1·Flip-Flop 1·Latch +CDpaths=+ CDmin> 1·Latch + 1·AND + Extra Clock Tree + CDmin> Code C·Flip-Flop(s) 

TR N·Flip-Flop(s) 

Mitigation of 

Direct SEs? 

DWC 

Yes No Code 

TR 

BBICS n/a Yes n/a 

Mitigation of 

Indirect SEs? 

DWC 

Yes Code 

TR 

BBICS n/a Yes n/a 

Efficiency in 

Sampling 

Error Flags due 

to Single TFs 

DWC 

High Moderate Very Low High Code 

TR 

BBICS n/a High n/a 

Extra Timing 

Assumptions? 

DWC 
No Dpaths=; DMin DMin; DckEx; PWckEx; Extra Slack 

Code 

TR DDelay_Block DDelay_Block DDelay_Block; Dpaths=; DMin DDelay_Block; DMin; DckEx; PWckEx; Extra Slack 

BBICS n/a Calibrating RT n/a 

Penalty in 

Performance 

(Fault-Free 

Scenarios)? 

DWC 
No 

DCom DCom TMinPW DCom – TSet-up 

Code DCode + DCom DCode + DCom TMinPW DCode + DCom – TSet-up 

TR DDelay_Block DDelay_Block + DCom DCom TMinPW DCom – TSet-up 

BBICS n/a No n/a 

Penalty in 

Performance 

(Short-Duration 

TF Scenarios)? 

DWC 

2 Extra Clock Cycles 2 or 3 

Extra Clock Cycles 

2 or 3 Extra Clock Cycles Code 

TR 

BBICS n/a n/a 

Recovery 

Resources in 

Short-Duration 

TF Scenarios 

DWC 

2·Multiplexers +1·File 
1·Flip-Flop + 

3·Multiplexers + 

2·Files 

1·Flip-Flop + 3·Multiplexer + 2·Files Code 

TR 

BBICS n/a n/a 

Strategies in 

Function of 

Design Goals 

VI 

High efficiency; 

Low design efforts; 

Small recovery circuit; 

If DWC or Code: 

High performance. 

Low area; 

Low design efforts; 

Small recovery circuit. 

If BBICS and 

2 available files: 

Low area; 

High efficiency. 

If several logic outputs, small CDmin>, and 

 2 available files: 

Low area; 

High efficiency. 


