
RADECS 2011 Proceedings –

1

Abstract—This work analyses and classifies strategies for

sampling results of concurrent error detection (CED) schemes in

transient fault scenarios. It shows that dealing with results –

indicating the occurrence of transient faults in circuits – can

require additional mechanisms to make the error indication

useful for system’s recovery procedures. The paper highlights

that not all error indications are noticed by certain strategies of

varied costs, and therefore their efficiencies in sampling results as

well as the performance, power, and area overheads added to the

CED schemes must be considered. The work then finishes

presenting a qualitative comparison between existing strategies in

function of design goals.

Index Terms—Circuit and system radiation hardening and

mitigation, concurrent error detection schemes, fault attacks, soft

errors, transient faults

I. INTRODUCTION

N the past, reliability was an issue only for safety-critical

systems. Nowadays, device size reduction, power supply

restriction, increased operating frequency, and high circuit

density have made it a design challenge for any integrated

circuit. Hence, modern systems demand higher resilience

against many new issues like radiation-induced particles, aging

problems, and environmental and device parameter variations.

Alpha particles and cosmic neutrons, for instance, are able to

generate transient voltage variations even at ground level – the

so-called transient faults (TFs) that can provoke soft errors

(SEs) by inverting stored results of circuit operations. Another

today‟s related topic is the growing need for secure systems –

like smartcards – where TFs can be intentionally induced as a

form of fault-based attack to bypass security mechanisms and

retrieve confidential information such as stored secret keys.

Related researches until early 2000‟s were focused

essentially on protecting systems against TFs affecting

memory elements, which were considered the system‟s most

vulnerable circuits. Hence, many concurrent error detection

and/or correction mechanisms were proposed to mitigate

Manuscript received September 16, 2011.

R. P. Bastos, G. Di Natale, M. L. Flottes, B. Rouzeyre are with LIRMM

(Université Montpellier II / CNRS UMR 5506), 161 rue Ada, 34095

Montpellier Cedex 5, France (phone: +33 4 67 41 86 35; fax: +33 4 67 41 85

00; e-mail: {possamaiba, dinatale, flottes, rouzeyre}@lirmm.fr).

direct SEs – the errors induced by TFs originated in memory

cells. Nevertheless, in the last decade, more sensitive deeper-

submicron technologies as well as new manners of performing

fault injection-based attacks – e.g. [1][2] – have also pushed

for countermeasures against indirect SEs originated from TFs

starting in system‟s combinational logic circuits.

Although today‟s ground-level systems have to be more and

more TF robust, most of them certainly require more moderate

levels of robustness than space applications, for instance,

which are located in much more hostile environments. Hence,

nowadays low-cost mitigation solutions have been optimized

towards the target products and their required minimum

immunity levels. Non-safety-critical systems have been thus

protected with techniques of reduced redundancy and lower

error detection efficiency. However, they ensure, at reasonable

cost, satisfactory error coverage of the system‟s most recurrent

operations.

Another today‟s trend in low-cost efficient solutions is

applying protection techniques at different abstraction levels of

the design [3][4][5][6]. Concurrent error detection (CED)

mechanisms are designed at lower abstraction levels while

system‟s recovery procedures (SRP) at higher levels. This

strategy takes advantage of recovery circuits that are already

present in modern microprocessors to recompute instructions

in case of branch misprediction [5][6]. Then, only CED

mechanisms need to be implemented, and as they are

optimized at lower levels, they can monitor circuit‟s fault-

prone nodes much closer than higher level schemes could.

Hence the detection can be done early, as soon as the fault

happens, preventing more critical failure scenarios such as the

induction and propagation of multiple errors to other clock

cycles, stages, or parts of the system. This approach, therefore,

allows adding higher detection capability to the system at the

expense essentially of a CED circuitry. Penalties of extra clock

cycles to perform SRP occur only in faulty scenarios when the

recomputation of cycles is required to correct the errors.

Classic CED solutions to face TF effects are adding spatial,

information, or time redundancy to the circuit. So if for

instance a circuit‟s original part fails, another redundant copy

permits detecting produced errors by comparing both parts.

The result of such a comparison reports thus an indication of

error.

How to Sample Results of

Concurrent Error Detection Schemes in

Transient Fault Scenarios?

Rodrigo P. Bastos, Giorgio Di Natale, Marie-Lise Flottes, and Bruno Rouzeyre, Members, IEEE

I

RADECS 2011 Proceedings –

2

This paper focuses essentially on CED circuitries that have

ability to detect TFs started in logic blocks. We highlight that

the error indications of such schemes can have behaviours as

transient as the TFs which give rise to them. The error

information is thus sensitive to be lost if it is not registered,

and so no high-level safety reaction could be taken for

protecting the system. We point out, therefore, the importance

of a strategy for sampling CED‟s results (see Fig. 1) in order to

properly ensure the activation of SRP, like clock cycle‟s

recomputation, or other safety measure (e.g. system‟s restart or

block of the data flow).

It is relevant to stand, to the best of our knowledge, that no

work has yet analyzed comparatively the different types of

strategies that make possible the communication between CED

circuitries and system‟s reaction procedures like SRP. In

section II of this paper we innovatively define two types of

CED schemes. It helps us in section III and IV to analyze and

classify the existing strategies for sampling CED‟s results.

Furthermore, it allows us, in section V, estimating the system‟s

recovery resources required by the different types of CED

schemes. Finally, in section VI we notice that these strategies

can impose varied overheads and different efficiencies in

sampling results. We note thus that the choice of a strategy can

 considerably reduce inherent overheads determined by CED

schemes, and it is then an important point to be also evaluated

in new CED propositions.

II. TYPES OF CED SCHEMES

Every CED technique employed to cope with TFs makes

use of some form of redundancy such as:

1) Spatial redundancy by which the target circuit is, for

instance, duplicated and an another additional module is used

to identify the presence of an error;

2) Redundancy of information in which the application of

error detection codes replaces the duplication of the target

circuit, thus reducing surface and power consumption

overheads at the cost of smaller error detection capability; and

3) Time redundancy at which circuit‟s operations are

evaluated twice with the same data and a comparison of the

results can allow identifying non-permanent faults. It attempts

to reduce the amount of extra hardware at the expense of

additional time.

These three approaches can be implemented at different

abstraction levels of the design. Fig. 2, for instance, illustrates

basic schemes of them at micro-architectural level. They

essentially compare two redundant results of which at least one

must be safe to permit the detection of errors. If for instance

one result fails, the comparison provides an error flag, such as

an error signal “OCom” at logical level “1”. It would indicate

the occurrence of a TF in the circuit during a certain Clock

Cycle that we define as CC-Start-TF in Fig. 3. Note that such

an error flag, as a CED‟s result, needs to remain at a steady

state enough time to be correctly dealt during a Clock Cycle

Posterior to CC-Start-TF labeled as CC-Post-TF. It is a

necessary timing condition that recovery circuits need to

prepare properly, for instance, SRP until the end of CC-Post-

TF. Then, the system can recompute CC-Start-TF in the

following fault-free cycle that we name as CC-SRP.

Figure 2. Basic examples of CEDS-PA-DR and CEDS-PB-DR in which OCom is the error signal

Figure 1. A target circuit protected by a CED and SRP

RADECS 2011 Proceedings –

3

In this paper we focus on CED schemes to mitigate TFs by

using redundancy at micro-architectural, logical, or electrical

level, and we even classify them in two types:

(1) CED Schemes Positioned After Data Register (CEDS-

PA-DR), like in [7][8][9][10][11] and Fig. 2‟s first row, are

classic CED approaches that compare their redundant parts

after the data register. Therefore, they inherently guarantee

their error signals “OCom” in steady conditions during all CC-

Post-TF illustrated in Fig. 3. The mechanisms for sampling

such CED‟s results are indeed parts of the CED scheme, and

then no extra block is required to activate SRP or any other

measure;

(2) CED Schemes Positioned Before Data Register (CEDS-

PB-DR), like in [12][13][14][15][16][17] and Fig. 2‟s second

row, have to consider the transient features of their error

signals “OCom”. In fact, such CED‟s results are outputs of

system‟s combinational logic circuits, and so they are

reproduced according to the TF characteristics, see Fig. 4‟s

example. Hence, this type of CED scheme must include

another extra register, as Fig. 2 shows, dedicated only to

sample their error signals “OCom”, and so ensuring results at

steady state during a minimum time required by SRP or other

measure.

Note that among Fig. 2‟s basic examples, CEDS-PB-DR are

less efficient than CEDS-PA-DR since they are not able to

generate an error flag when a TF arises in a register provoking

a direct SE. Nevertheless, CEDS-PA-DR are more expensive

in terms of area and power consumption because they require,

in addition, a number N of flip-flops for Copy Register or C

for Prediction Register.

III. CLASSIC STRATEGY FOR SAMPLING RESULTS OF CED

SCHEMES POSITIONED AFTER DATA REGISTER

The classic strategy for sampling results of CEDS-PA-DR is

taking advantage of the fact that this type of CED scheme

keeps its error signals at steady state during CC-Post-TF, see

Fig. 3. Then, in case of an error flag, system‟s reaction

procedures, like SRP, have sufficient time to be configured

before the end of CC-Post-TF. However, if by option or other

reason the error flags are not dealt in CC-Post-TF to activate

these procedures in CC-SRP, another extra register is required

to just memorize CED‟s results, and so allowing later, in

subsequent clock cycles, to proceed with such activation.

In fact, CEDS-PA-DR detect, during CC-Post-TF, direct or

indirect SEs due to single TFs started in CC-Start-TF. As the

assumption is the occurrence of a single fault in CC-Start-TF,

there is no chance of unstable error signals at the end of CC-

Post-TF since it is considered a fault-free cycle. Therefore,

CEDS-PA-DR ensure stable error signals in CC-Post-TF after

the comparison that is done between two redundant signals at

steady state (e.g. OReg with OCReg or OCode with OPReg in Fig. 2‟s

first row).

This stable condition of error signals like OCom in Fig. 2‟s

first row guarantees a high efficiency in sampling error flags

whether system reaction procedures are prepared in CC-Post-

TF. Then, in case of single fault scenarios, classic strategy

allows the sampling of any error flag issued from Comparator

during CC-Post-TF. On the other hand, one could perhaps

argue that any eventual single TF – arisen in Fig. 2‟s Code or

Comparator blocks during a certain CC-Start-TF – could make

CEDS-PA-DR not properly operating. However, such a

scenario, in the worst case, would produce just a false-positive

error flag (FPEF), i.e. system‟s reaction procedures like SRP

could be activated even if Data Register was not affected by

SE.

IV. STRATEGIES FOR SAMPLING RESULTS OF CED SCHEMES

POSITIONED BEFORE DATA REGISTER

In order to deal properly with results of CEDS-PB-DR,

extra mechanisms for sampling their error signals must be

implemented. Otherwise the error flags are lost and more

critical failure scenarios may happen, such as the induction and

propagation of multiple errors to other clock cycles, stages, or

parts of the system. There are three different basic strategies

for sampling results that can derive other ones depending on

the particularities of the CED scheme. Next subsections

discuss these options initially illustrated in Fig. 5.

Figure 5. Strategies for sampling results (OCom) of CEDS-PB-DR

Figure 4. Signals of CEDS-PB-DR indicating an error flag due to a TF

Figure 3. Signals of CEDS-PA-DR indicating an error flag due to a TF

RADECS 2011 Proceedings –

4

A. Error Signal feeding Data Input of a Flip-flop (EDF)

The simplest design way for sampling CED‟s results is to

use a flip-flop. The error signal of the CED scheme, such as

OCom in Fig. 2 and Fig. 5, feeds the data input of a flip-flop that

samples it by using the circuit‟s global clock. No special reset

is required during the operation since the error flag is normally

cleaned, like in Classic strategy, by the data flow after TF

vanishing.

This EDF strategy however is not able to sample error flags

of some indirect-SE scenarios in which single TFs start very

late in CC-Start-TF [18]. Fig. 6‟s example scenario illustrates

this issue by assuming the code-based scheme of Fig. 2‟s

second row. DCode and DCom are respectively the Code block‟s

delay and Comparator block‟s delay. TSet-up and THold are the

set-up and hold times required by registers‟ flip-flops. The

single TF, which starts on Logic Block‟s 1-bit output node

OLogic, covers TSet-up and THold. Then, a wrong data value is

registered – i.e. an indirect SE happens as illustrated on Data

Register‟s OReg, which stores logic value “1” instead of “0”.

On the other hand, Code Prediction block provides on its

output OPredi the correct code that should be expected from the

ideal value at the output OLogic under a fault-free scenario. This

prediction is then compared with the code on OCode, which is

computed from the actual value at the output OLogic under a

fault scenario. If OCode and OPredi do not match, Comparator

block‟s OCom results in “1”. Fig. 6‟s example therefore shows

that the TF on OLogic arises too late in the clock cycle, and so

Code and Comparator blocks are not able to generate an Error

Flag (i.e. error signal “OCom” at “1”) on time to detect the

indirect SE on OReg. In fact, as detailed in the figure, the Error

Flag on OCom rises later than THold, and so it is not registered

on Error Signal Register‟s OFlag. As this flag on OCom does not

have a steady condition during CC-Post-TF, the recovery

circuit is not able to deal with. And as this error information is

not registered to be dealt in the next clock cycles, the CED

scheme fails in detecting the indirect SE.

EDF strategy is therefore not so efficient for some indirect-

SE scenarios, and so its efficiency in sampling CED‟s results is

defined as moderate in relation to other strategy alternatives.

B. Error Signal feeding Clock Input of a Latch (ECL)

Another simple manner of sampling CED‟s results is to use

a latch. The error signal of the CED scheme, such as OCom in

Fig. 2 and Fig. 5, feeds the clock input of a latch that

memorizes its data input “1” (see Fig. 5) only when the error

signal goes to logical level “1” (i.e. an error flag is made). The

latch must be reset during the system start-up and before CC-

SRP otherwise the error flag stays raised forever.

The problem of this ECL strategy is the very hard timing

assumptions required for properly sampling only fault-induced

error flags. In fact, all circuit paths arriving at comparator‟s

inputs must have the same delay “Dpaths=” in order to avoid the

generation of glitches related to logic‟s delay difference (such

as Fig. 7 shows for Fig. 2‟s code-based CEDS-PB-DR

approach). Otherwise, these logic-related glitches would be

considered as FPEFs, and the latch, which works such as the

Error Signal Register in Fig. 2, would indicate a SE occurrence

even in an error-free scenario.

This problem is even more critical because logic-related

glitches are very common in every clock cycle of synchronous

circuit, and today‟s fabrication process variability on circuit

paths as well as complex wire distributions further induce

these static hazard events. Therefore, CED‟s results could

indicate systematically FPEFs, such as in every clock cycle,

even in fault-free scenarios. In reality, as this ECL strategy is

not able to distinguish a logic-related glitch from a fault-

induced error flag, the system would be continuously alarmed

with an error flag, and so it would not run appropriately its

data. Moreover, even so in a remote case the hard timing

assumptions of all paths with the same delays were

successfully met, there would be always an imminent risk of

glitches due to the process variability on such delays. This

ECL strategy is thus not recommended since its efficiency in

properly sampling real CED‟s results of CEDS-PB-DR is very

low.

Nevertheless, similar strategy – without requiring timing

assumptions – can provide high efficiency in sampling error

flags whether particular CEDS-PB-DR like Bulk Built-In

Figure 7. CEDS-PB-DR: signals of code-based scheme with ECL strategy

Figure 6. CEDS-PB-DR: signals of code-based scheme with EDF strategy

RADECS 2011 Proceedings –

5

Current Sensors (BBICS) [6][17] are used instead of Fig. 2‟s

schemes or their derived ones. The error signals in BBICS-

based approaches come from the activity of bulk nodes instead

of data nodes, and so there is no chance of logic-related

glitches being considered as FPEFs.

C. Error Signal and Extra Clock feeding Clock Input of a

Latch (EECCL)

Previous ECL strategy can become highly efficient for

sampling results of comparator-based CEDS-PB-DR whether

an extra clock CKExtra is used as Fig. 5 and Fig. 8 illustrate.

The latch thus would memorize its data input “1” (Fig. 5) just

if error signal “OCom” and CKExtra are “1”. CKExtra would do the

latch sampling the error signal “OCom” only during an interval

PWckEx on which the conditions of no legal transaction events

and no logic-related glitches are ensured by adding extra

timing assumptions to the system design. Then, any event “1”

on error signal “OCom” during PWckEx is certainly a fault-

induced error flag and not a legal transaction event or a logic-

related glitch.

This EECCL strategy derived from [15] is clearly the most

complex in terms of IC design since it requires several extra

timing assumptions that are also difficult to meet.

The first timing assumptions are related to CKExtra, which

needs of an extra clock-tree implementation and has to be

delayed by a time “DckEx” from the global clock‟s rising edge,

such as Fig. 8 shows. DckEx is given in function of the latch‟s

minimum pulse width “TMinPW”; the set-up time “TSet-up”

required by registers‟ flip-flops; and the CED‟s delay “DCED”

that is equal to DCode + DCom for Code scheme and DCom for

DWC or TR scheme:

 MinPWupSetCEDckEx TTDD

 In fact, (1) is expressed by using the time “DCED” between

the TF‟s first possible edge that is able to violate TSet-up and its

consequent error flag‟s falling edge. DCED must be even

reduced by TSet-up to make as reference the global clock‟s edge.

And a margin “TMinPW” must be used to ensure the sampling of

such a consequent error flag from the TF‟s first possible edge.

Moreover, a minimum slack “TMinPW” is added to clock period

for preventing that legal transaction events cause

systematically FPEFs. Therefore, the circuit‟s minimum clock

period “PMinClock” is defined in function of Logic Block‟s

longest delay “DLogic”, TMinPW, TSet-up, THold, and a TMinCk„s

additional time margin “TMargin” for variations in clock

operations (jitter and skew), and manufacturing and

environmental variabilities:

 inMupSetMinPWLogicHoldMinClock TTTDTP arg

Differently, note in Fig. 2 that PMinClock for CEDS-PA-DR

and CEDS-PB-DR using EDF strategy is probably longer,

since DCED is normally greater than TMinPW:

 inMupSetCEDLogicHoldMinClock TTDDTP arg

Another option, instead of using (1) as a timing assumption

for EECCL strategy, would be setting DckEx equal to zero.

Then, a greater slack “DCED – TSet-up” would be required to

avoid that legal events generate FPEFs. It would most likely

impose worse performance penalty than (2) but better than (3):

 inMCEDLogicHoldMinClock TDDTP arg

Furthermore, as EECCL as ECL strategy requires timing

assumptions related to the circuit paths‟ shortest delay “DMin”:

 MinPWCEDHoldMin TDTD

It ensures – during an initial period “DMin” in CC-Post-TF –

that there are no results from new values at Logic Block‟s

inputs which could suppress error flags. Assumption (5) is

indeed the necessary minimum time to properly identify the

error flag from the TF‟s last possible edge that is able to

violate THold. It therefore guarantees that error flags are

conserved during enough time in CC-Post-TF to detect TFs

which potentially would cause indirect SEs at the end of CC-

Start-TF.

Finally, if (2) is used, PWckEx is defined reducing (5) by (1).

Then, the range from the TF‟s first possible edge to the last

one that is able to violate the flip-flop‟s latching window (TSet-

up + THold) is taken into account:

 MinPWHoldupSetckEx TTTPW 2

On the other hand, if (4) is used, PWckEx is derived only

from (5) because DckEx is equal to zero:

 MinPWCEDHoldckEx TDTPW

Figure 8. CEDS-PB-DR: signals of code-based scheme with EECCL

strategy

RADECS 2011 Proceedings –

6

V. SYSTEM‟S RECOVERY RESOURCES REQUIRED BY

PROTECTION TECHNIQUES BASED ON CED AND SRP

Protection techniques based on CED and SRP require

recovery circuits to save input status of CC-Start-TF as well as

to reload them, after TF vanishing, at beginning of CC-SRP.

Thus, during such a recovery cycle “CC-SRP”, the faulty cycle

“CC-Start-TF” can be reproduced without the fault that

generated the error flag.

Fig. 9 and Fig. 10 illustrate the two types of CED schemes

(defined in section II) interacting with a recovery circuit to

protect logic blocks and registers. Note that the

communication between CED circuitries and recovery circuits

are slightly different. More precisely, the type of CED scheme

and the strategy for sampling its results determine which

minimum recovery resources are necessary to properly protect

the system.

CEDS-PA-DR require at least a recovery circuit similar to

Fig. 11‟s illustration to efficiently activate SRP. This machine

saves input status (logic_inputs) in each clock cycle by using a

file with N latches. Then, such as Fig. 3‟s example, if CED

circuitry indicates in CC-Post-TF an error flag at error_signal,

the recovery circuit is able to restore in CC-SRP saved input

status (saved_logic_inputs) of state executed one clock cycle

ago the instant at which the error flag is set (i.e. CC-Start-TF).

CEDS-PB-DR using EDF strategy also demand recovery

circuits like the schematic in Fig. 11, but OFlag is connected to

multiplexers instead of error_signal. However, CEDS-PB-DR

with ECL or EECCL strategy require a more elaborate

recovery architecture such as Fig. 12 shows. Otherwise, this

machine saves logic_inputs of two clock cycles by using two

files with N latches each one. Thereby, if CED circuitry

indicates an error flag at error_signal (OFlag at “1” as Fig. 13

illustrates), the recovery circuit is able to restore in CC-SRP

saved input status (saved_logic_inputs) of a state executed two

clock cycles ago the instant at which the error flag is identified

and registered at recomputing_signal (i.e. CC-Start-TF).

CEDS-PB-DR with ECL or EECCL strategy require more

recovery resources than the other approaches essentially

because their error signals act as a recovery circuit‟s

asynchronous primary input. In fact, as the error signals can

have the same transient features like the natural behavior of the

TFs, they can happen with any duration and at any instant as

an asynchronous event. Then, another flip-flop, as illustrated

in Fig. 12, is mandatory to accurately synchronize the error

signals with the recovery circuit. Even so the error signals are

already in steady state due to ECL or EECCL strategy, they

require Fig. 12‟s flip-flop to prevent metastability problems.

This flip-flop also ensures enough time to reset Error Signal

Register as well as it deals with cases in which the response

time “RT” is longer than clock‟s high pulse width.

CEDS-PB-DR with ECL or EECCL strategy also demand a

multiplexer, as Fig. 12 shows, to reset their latches used as

Error Signal Register. Moreover, they necessarily need at least

two files with N latches to save input status of two clock

Figure 11. Recovery circuit for CEDS-PA-DR and CEDS-PB-DR with

EDF strategy in which error_signal is replaced by OFlag

Figure 10. Logic blocks and registers protected by technique based on

CEDS-PB-DR and SRP

Figure 9. Logic blocks and registers protected by technique based on

CEDS-PA-DR and SRP

RADECS 2011 Proceedings –

7

cycles. As Fig. 13 highlights, there are chances of TFs starting

in Cycle 1 not to raise recomputing_signal in Cycle 2, and then

the input status of Cycle 1 must be saved and available in

Cycle 3. Furthermore, if RT defined by DCED + Error Signal

Register‟s delay “DFlag” is greater than the clock period (e.g.

[6]‟s BBICS), more than two file are required. Therefore, the

slower the RT the greater is the number of required files. The

major problem is when the recovery circuit has no a minimum

number of files to properly accomplish SRP.

Finally, note in Fig. 11 and 12 that the area overheads

related with recovery circuits are minimal whether the target

circuit‟s architecture has already a machine to repeat

operations in branch-misprediction situations. The highlighted

blocks in Fig. 11 and 12 are resources that might be already

present in certain modern architectures. Furthermore,

performance costs through extra clock cycle executions to

recompute occur only when a fault is detected, and so the

circuit can operate with negligible penalty in fault-free

scenarios.

VI. ANALYSIS OF STRATEGIES FOR SAMPLING CED‟S RESULTS

AND MAJOR CONCLUSIONS

In this paper we have classified and compared the strategies

for sampling results of CED schemes. Section III‟s classic

strategy is highly efficient in sampling error flags originated

from single TFs because CEDS-PA-DR ensure their error

signals in steady condition during a fault-free cycle (CC-Post-

TF). However, this condition is satisfied only by using a

number N or C of flip-flops before the Comparator, as

illustrated in Fig. 2‟s first row. On the contrary, sampling

results of CEDS-PB-DR requires an extra 1-bit register to

make their error signals stable, and then EDF, ECL, or EECCL

strategy must be used.

EDF strategy uses only one flip-flop as Error Signal

Register but it is not as efficient as the classic one since some

scenarios of single TFs that cause indirect SEs can occur out

of the Error Signal Register‟s sample window. On the other

hand, ECL approach is indeed not applicable to comparator-

based CEDS-PB-DR although similar strategy works very

efficiently in BBICS-like CED solutions [6], which monitor

bulk nodes instead of logic-related glitch prone data nodes.

Otherwise EECCL strategy – at the expense of an AND gate

and an extra clock tree – has a high efficiency in sampling

results of comparator-based CEDS-PB-DR. Both ECL and

EECCL strategies use only one latch for sampling error flags

and, as explained in section IV.C, the timing assumption of

DMin need to be implemented by using additional logic gates.

Hence, these strategies have further area costs “CDmin>” to meet

such an assumption. ECL strategy also induces area costs

“CDpaths=” for approaching circuit paths‟ delays to Dpaths=,

which is defined in section IV.B.

Table I summarizes the analysis done in this paper such as

the area overheads and efficiencies of classic, EDF, ECL, and

EECCL strategies. We can conclude that classic and EECCL

strategies are the most efficient and the most expensive

options, while EDF strategy is the cheapest alternative at the

price of sacrificing its efficiency. Furthermore, Classic and

EDF are the strategies that require less recovery resources.

And EECCL makes much more complex the IC design due to

the extra clock tree and its hard timing assumptions. Therefore,

EDF is the strategy for implementations that aim low area with

low design efforts, while the classic one is useful when the

target is high efficiency with low design efforts. On the other

hand, EECCL strategy is interesting in terms of area and

efficiency for combinational logic circuits with several output

bits, small CDmin>, and if recovery circuit contains 2 files.

REFERENCES

[1] C.N. Chen, and S.M. Yen, “Differential Fault Analysis on AES Key

Schedule and Some Countermeasures,” in Proc. ACISP, vol. 2727 of

LNCS, 2003, pp 118-129.

[2] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on

A.E.S,” in Proc. ACNS, vol. 2846 of LNCS, 2003, pp 293-306.

[3] C. Lisboa, M. Erigson, and L. Carro, “System level approaches for

mitigation of long duration transient faults in future technologies,” in

Proc. ETS, IEEE, 2007, pp. 165-170.

Figure 13. Signals of CEDS-PB-DR with ECL or EECCL strategy

interacting with a recovery circuit

Figure 12. Recovery circuit for CEDS-PB-DR using ECL or EECCL

strategy

RADECS 2011 Proceedings –

8

[4] C. Albrecht et al., “Towards a Flexible Fault-Tolerant System-on-Chip,”

in Proc. ARC, VDE Verlag GMBH, 2009, pp. 83-90.

[5] S. Z. Shazli, M. B. Tahoori, “Transient Error Detection and Recovery in

Processor Pipelines,” in Proc. DFT, IEEE, 2009, pp. 304-312.

[6] C. Lisboa et al., “Using Built-in Sensors to Cope with Long Duration

Transient Faults in Future Technologies,” in Proc. ITC, IEEE, 2007, pp.

1-10.

[7] S. Mitra and E. McCluskey, “Which concurrent error detection scheme

to choose?,” in Proc. ITC, IEEE, 2000, pp. 985–994.

[8] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue

nanometer technologies,” in Proc. VTS, IEEE, 1999, pp. 86-94.

[9] Anghel, L., and M. Nicolaidis, “Cost Reduction and Evaluation of a

Temporary Faults Detecting Technique,” in Proc. DATE, IEEE, 2000,

pp. 591-598.

[10] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level

timing speculation,” in Proc. MICRO, IEEE/ACM, 2003, pp. 7-18.

[11] K. Bowman et al., “Energy-efficient and metastability-immune resilient

circuits for dynamic variation tolerance,” IEEE JSSC, v. 44, n. 1, pp.

49–63, Jan. 2009.

[12] S. Das et al., “RazorII: In situ error detection and correction for PVT and

SER Tolerance,” IEEE JSSC, vol. 44, no. 1, pp. 32–48, Jan. 2009.

[13] M. M. Kermani, A. R. Masoleh, “Parity-Based Fault Detection

Architecture of S-box for Advanced Encryption Standard,” in Proc.

DFT', IEEE, 2006, pp. 572-580.

[14] C. Lisboa, and L. Carro, “XOR-based low cost checkers for

combinational logic,” in Proc. DFT, IEEE, 2008, pp. 281-289.

[15] D. Rossi, M. Omanã, and C. Metra, “Transient fault and soft error on-

die monitoring scheme,” in Proc. DFT, IEEE, 2010, pp. 391–398.

[16] D. J. Palframan, N. S. Kim, M. H. Lipasti, “Time Redundant Parity for

Low-Cost Transient Error Detection,” in Proc. DATE, IEEE, 2011.

[17] E. H. Neto et al., “Using Bulk Built-in Current Sensors to Detect Soft

Errors,” IEEE Micro, vol. 26, no. 5, pp. 10–18, Sep. 2006.

[18] R. P. Bastos et al., “Timing Issues for an Efficient Use of Concurrent

Error Detection Codes,” in Proc. LATW, IEEE, 2011.

TABLE I

CED

Scheme

Strategy for Sampling CED‟s Results

Classic EDF ECL EECCL (DckEx > 0) EECCL (DckEx = 0)

Paper‟s Section II III IV.A IV.B IV.C

Estimated Area

Overhead due to

the CED

scheme

DWC

Copy of Logic Block +

N·Flip-Flop(s)

+ Comparator

Copy of Logic Block +

1·Flip-Flop(s)

+ Comparator

Copy of Logic Block +

1·Latch +CDpaths=+ CDmin>

+ Comparator

Copy of Logic Block +

1·Latch + 1·AND + Extra Clock Tree + CDmin>

+ Comparator

Code

Code Prediction +

C·Flip-Flop(s)

+ Code + Comparator

Code Prediction +

1·Flip-Flop(s)

+ Code + Comparator

Code Prediction +

1·Latch +CDpaths=+ CDmin>

+ Code + Comparator

Code Prediction +

1·Latch + 1·AND + Extra Clock Tree + CDmin>

+ Code + Comparator

TR

Delay +

N·Flip-Flop(s)

+ Comparator

Delay +

1·Flip-Flop(s)

+ Comparator

Delay +

1·Latch +CDpaths=+ CDmin>

+ Comparator

Delay +

1·Latch + 1·AND + Extra Clock Tree + CDmin>

+ Comparator

Estimated Area

Overhead due to

the Strategy

DWC N·Flip-Flop(s)

1·Flip-Flop 1·Latch +CDpaths=+ CDmin> 1·Latch + 1·AND + Extra Clock Tree + CDmin> Code C·Flip-Flop(s)

TR N·Flip-Flop(s)

Mitigation of

Direct SEs?

DWC

Yes No Code

TR

BBICS n/a Yes n/a

Mitigation of

Indirect SEs?

DWC

Yes Code

TR

BBICS n/a Yes n/a

Efficiency in

Sampling

Error Flags due

to Single TFs

DWC

High Moderate Very Low High Code

TR

BBICS n/a High n/a

Extra Timing

Assumptions?

DWC
No Dpaths=; DMin DMin; DckEx; PWckEx; Extra Slack

Code

TR DDelay_Block DDelay_Block DDelay_Block; Dpaths=; DMin DDelay_Block; DMin; DckEx; PWckEx; Extra Slack

BBICS n/a Calibrating RT n/a

Penalty in

Performance

(Fault-Free

Scenarios)?

DWC
No

DCom DCom TMinPW DCom – TSet-up

Code DCode + DCom DCode + DCom TMinPW DCode + DCom – TSet-up

TR DDelay_Block DDelay_Block + DCom DCom TMinPW DCom – TSet-up

BBICS n/a No n/a

Penalty in

Performance

(Short-Duration

TF Scenarios)?

DWC

2 Extra Clock Cycles 2 or 3

Extra Clock Cycles

2 or 3 Extra Clock Cycles Code

TR

BBICS n/a n/a

Recovery

Resources in

Short-Duration

TF Scenarios

DWC

2·Multiplexers +1·File
1·Flip-Flop +

3·Multiplexers +

2·Files

1·Flip-Flop + 3·Multiplexer + 2·Files Code

TR

BBICS n/a n/a

Strategies in

Function of

Design Goals

VI

High efficiency;

Low design efforts;

Small recovery circuit;

If DWC or Code:

High performance.

Low area;

Low design efforts;

Small recovery circuit.

If BBICS and

2 available files:

Low area;

High efficiency.

If several logic outputs, small CDmin>, and

 2 available files:

Low area;

High efficiency.

