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Abstract

Bayesian estimation of divergence times from molecular sequences relies on sophisticated Markov chain Monte Carlo tech-
niques, and Metropolis–Hastings (MH) samplers have been successfully used in that context. This approach involves heavy
computational burdens that can hinder the analysis of large phylogenomic data sets. Reliable estimation of divergence times
can also be extremely time consuming, if not impossible, for sequence alignments that convey weak or conflicting phyloge-
netic signals, emphasizing the need for more efficient samplingmethods. This article describes a new approach that estimates
the posterior density of substitution rates and node times. The prior distribution of rates accounts for their potential auto-
correlation along lineages, whereas priors on node ages are modeled with uniform densities. Also, the likelihood function is
approximated by a multivariate normal density. The combination of these components leads to convenient mathematical
simplifications, allowing the posterior distribution of rates and times to be estimated using a Gibbs sampling algorithm. The
analysis of four real-world data sets shows that this sampler outperforms the standard MH approach and demonstrates the
suitability of this newmethod for analyzing large and/or difficult data sets.
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Introduction
Using biological sequences to date past evolutionary events
was first proposed more than 40 years ago by the late
AllanWilson (1934–1991). In a pioneering study, Sarich and
Wilson (1967) indirectly estimated the number of amino
acid differences between homologous proteins in different
species and used these measurements to date the diver-
gence between humans and African apes. The conclusion
that the earliest protohominids arose 5 Mya—as opposed
to the then classical 25 Mya estimate obtained from fos-
sil data—initiated a long series of controversies opposing
molecular evolutionists to anthropologists.

A central assumption to Sarich andWilson’s work is that
of a “molecular clock.” This hypothesis, first proposed by
Zuckerkandl and Pauling (1962), states that substitutions
accumulate at constant pace over time and throughout
lineages. Hence, given a set of homologous sequences
and information on the age of the most recent common
ancestor for a set of taxa, it is possible to estimate the
rate at which the molecular clock ticks. Expected numbers
of substitutions can then be translated into standard
time units. Unfortunately, ample evidence suggests that
the molecular clock is not unique (e.g., Gaut et al. 1992).
Indeed, the substitution rates vary drastically across lin-
eages for most sets of taxa and genetic markers. Hence,
rather than a single clock, multiple clocks ticking at dif-
ferent rates seem to underlie molecular evolution. The
sources of variability of substitution rates over time and
lineages are multiple. Variations of the intensity of natural
selection in a changing environment, fluctuation of pop-
ulation sizes, and/or generation times are the usual suspects.

Two options are then available to estimate dates of
past evolutionary events using biological sequences. The
first is to test the hypothesis of a single molecular clock.
If this hypothesis cannot be rejected, then divergence
times can be estimated using the standard approach men-
tioned above. Considerable efforts have therefore been
devoted to test for the constancy of rates along phyloge-
netic trees (e.g., Wu and Li 1985; Li and Bousquet 1992;
Robinson et al. 1998). The second and more recent op-
tion is to explicitly account for the variations of substitu-
tion rates along branches of the phylogeny in a statistical
framework.

In such context, Sanderson (1997) proposed a nonpara-
metric approach to estimate rates and times concomitantly.
This method considers the branch lengths as the data from
which rates and times are to be estimated. As there is an in-
finite number of combinations of rates and times leading
to the same branch length estimates, a natural approach
is to choose values of node times that minimize the vari-
ance of rates along the tree. Indeed, although substitution
rates vary over time, it seems reasonable to assume that
they are autocorrelated. Sanderson (2002) later reformu-
lated this approach in amaximum likelihood framework, re-
placing the nonparametric rate smoothing technique by a
term in the likelihood function that penalizes large changes
of rates across ancestral and descendant lineages. The com-
puter program “r8s” that implements this approach is very
popular.

At the same period, Thorne et al. (1998) proposed a
Bayesian approach to the same problem. This pioneer-
ingwork inspired a large number of subsequent studies (e.g.,
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Huelsenbeck et al. 2000; Aris-Brosou and Yang 2002; Yang
and Rannala 2006; Drummond et al. 2006; Rannala and
Yang 2007; Lepage et al. 2007), and the software “multi-
divtime” developed by J. Thorne is widely used nowadays.
The Bayesian approach aims at estimating the joint pos-
terior density of rates and times (plus other parameters
considered as nuisance parameters) given an alignment of
homologous sequences and, in most cases, the topology of
a phylogenetic tree (but see Drummond et al. 2006). Such
posterior densities are the product of the likelihoodand the
prior density of model parameters. Getting accurate time
estimates essentially depends on the validity of the model
that specifies such prior densities. In practice, the model
is divided in two parts. The first describes the evolution of
rates along the tree given some specifiedvalues for the node
times. The second describes the distribution of node times,
with no reference to the othermodel parameters. This latter
aspect of the model is the least problematic. If sequences
come from population-level data, a coalescent prior
(Kingman 1982) seems to be the most reasonable choice.
If they come from species-level data, a birth–death prior
(see, e.g., Yang and Rannala 2006) can be used. Other priors,
such as a Dirichlet distribution (Kishino et al. 2001), have
also been proposed.

The part of the model dealing with the evolution of
the rate of evolution along the phylogeny given the cur-
rent node time estimates plays a central role. The first
difficulty here is to clearly identify what feature is to be
modeled. Some approaches focus on rate trajectories: they
model the evolution of the substitution rate across succes-
sive time points. The compound Poisson process proposed
by Huelsenbeck et al. (2000) is an example of this approach.
Othermethods focus on the substitution rate averaged over
individual edges. The original model of Thorne et al. (1998),
later modified by Kishino et al. (2001), belongs to this cat-
egory. Note that some of the “average” models can be in-
terpreted in terms of “trajectory” ones: Kitazoe et al. (2007)
showed that in the “average” model of Kishino et al.
(2001), the rate trajectory undergoes Brownianmotion. An-
other important distinction between models concerns the
autocorrelation of rates across lineages. Most models ex-
plicitly account for autocorrelation of rates. The models de-
scribed by Drummond et al. (2006) and implemented in
the software package “BEAST” (Drummond and Rambaut
2007) are a notable exception. These models are well suited
to analyzing very fast-evolving organisms, such as viruses
(Drummond et al. 2006), for which there is no strong evi-
dence of rate autocorrelation. In most cases, however, rates
of evolution show clear signs of autocorrelation. Indeed, the
analysis of three real-world data sets by Lepage et al. (2007)
showed that autocorrelation of rates is a strong feature of
molecular evolution and generally needs to be accounted
for.

A common characteristic of the Bayesian approaches
aforementioned is the heavy computational burden in-
volved. There are mainly two reasons to this. The first is
the likelihood calculation. Thanks to Felsenstein’s pruning
algorithm (1981), the number of operations involved in

likelihood calculation reduces to a polynomial function of
the number of taxa rather than an exponential function. De-
spite this very significant advance plus other “tricks,” such
as site pattern aliasing, calculating the likelihood involves
a large number of sum–product operations. Thorne et al.
(1998) were the first to propose an alternative to this issue.
They assumed that, given a fixed tree topology, the likeli-
hood function can be approximated by a multivariate nor-
mal density. This approximation relies on a second-order
Taylor series approximation of the likelihood function (see
Material andMethods). The parameters of the normal den-
sity are the expected branch lengths and the corresponding
covariance matrix, which are both obtained using standard
numerical methods.

The second factor responsible for the heavy computa-
tional burden is more practical. Estimating model param-
eters in a Bayesian framework often relies on sophisticated
Markov chain Monte Carlo (MCMC) methods. These tech-
niques are used to build a Markov chain which stationary
distribution is the posterior density of interest.Metropolis–
Hasting (MH) sampling algorithms (Metropolis et al. 1953)
are generally used to construct such Markov chain. This it-
erative approach consists of proposing a new state of the
Markov chain given the current state and accept it with
a probability proportional to its posterior density. In prac-
tice, the parameters of the MCMC are tuned such that
the acceptance-to-rejection ratio is between 0.2 and 0.5
(Gamerman and Lopes 2006), which means that the ma-
jority of the calculations are used to evaluate least proba-
ble solutions. However, the MH algorithm can be replaced
by a Gibbs sampler (Geman S and Geman D 1984) in par-
ticular situations. This approach is a special case of the
MH algorithm for which new states are proposed with an
acceptance-to-rejection ratio equal to 1, which makes this
method potentially much faster than the standard MH
technique.

The Gibbs algorithm is preferred over MH when full
conditional densities of each model parameter are easy to
sample from. Such distributions generally do not arise in
phylogenetics, mostly because of the complex structure of
the whole model (i.e., a tree combined to a stochastic pro-
cess running alongedges of this graph). A notable exception
though was recently introduced by Lartillot (2006). Using
data augmentation andappropriate priors, Lartillotwas able
to design a very efficient Gibbs sampling algorithm that
clearly outperformed the standardMHapproach in estimat-
ing phylogenies. The present study is very much inspired by
Lartillot’s ideas. Amultivariate normal approximation to the
likelihood is combined here to conjugate priors on rates and
times. These three components define a Gibbs sampler that
outperforms the traditional MH approach. I first introduce
the method and then apply this new sampler to four real-
world amino acid and nucleotide data sets. The divergence
time estimates obtained with this new approach are virtu-
ally identical to those inferred with the MH algorithm, with
the estimation process being significantly faster, making this
new approach well suited to the analysis of large and
difficult data sets.
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Material and Methods
Notations are introduced, and the basics of Bayesian estima-
tion of divergence times are described first. The approxima-
tion of the likelihood function using a multivariate normal
is then justified, and the model of variations of rates along
lineages and divergence times is introduced. The combina-
tion of this model to the likelihood function, giving rise to
a Gibbs sampler, is explained next. The validation method
and the data sets analyzed in this study are presented in the
remaining sections.

Notations
Let D be the data, that is, an alignment of homologous nu-
cleotide or amino acid sequences.Φ = {τ ,Q , T ,R , θ, ν} is
the phylogeneticmodel that describes howD arose. τ is the
tree topology. In this study, τ is given a priori and considered
as fixed. It is a rooted binary tree with 2n − 1 nodes, n be-
ing the number of taxa. Q is the generator of the Markov
model of substitution. The same Q matrix is used through-
out the tree, which makes the substitutionmodel homoge-
neous and stationary. Additional constraints onQmake the
substitution process reversible (for a review on substitution
models, see Bryant et al. 2005). T = {Ti} is a vector of node
times. By convention, the time is set to zero at the most re-
cent node(s) in the phylogeny and all other node ages have
negative values. R = {Ri} is a vector of relative substitution
rates along edges. Ri is the rate along the branch that has
node i at its “distal” extremity, that is, i is the node that is the
most distant from the root among the two nodes at the two
ends of the edge of interest. The model introduced in this
study considers Ri as the relative rate on edge i rather than
the relative rate at a specific location in the tree. Relative
rates are assumed to be constant along the corresponding
edges and changes of rates occur at the nodes only. θ is the
absolute substitution rate averaged over the branches of the
phylogeny. The length of branch i , denoted as Li , is therefore
equal to θRi (Ti − Tanc(i )), where anc(i ) denotes the direct
ancestor of node i in the tree, that is, the first node encoun-
tered when going from node i to the root of the tree. The
last parameter of the phylogenetic model, ν , describes the
autocorrelation of substitution rates across adjacent edges.

Bayesian Estimation of Divergence Times and
Substitution Rates
Estimatingrates and times in a Bayesian framework relies on
the joint posterior density of the model parameters:

p(T ,R , θ, ν|D )

=
p(D |T , R , θ, ν)p(T ,R , θ, ν)∫

T

∫
R

∫
θ

∫
ν
p(D |T ,R , θ, ν)p(T ,R , θ, ν)dT dR dθ dν

,

(1)

which displays the two components divergence time esti-
mation relies on (i.e., likelihood and prior on times, rates,
and nuisance parameters). Once this density is estimated,
it becomes possible to calculate various functions of the

posteriordensities of node times and substitution rates (e.g.,
posterior medians or means, credible intervals).

Estimating the joint posterior density defined in equation
(1) is a difficult problem. Indeed, evaluating the integral in
the denominator of equation (1) appears like a daunting
task. MCMC methods provide computationally tractable
solutions to overcome this limitation and the Gibbs sampler
described in this study is one of them. Another limita-
tion comes from the calculation of the likelihood. The next
section describes an approximation that dramatically de-
creases the computational burden involved here.

Approximation of the Likelihood Function
Thorne et al. (1998) used a multivariate normal density
to approximate the likelihood function. This approxima-
tion can be justified formally. Let D be the data and X the
vector of parameters of interest. X̂ denotes the maximum
likelihood estimate of X . The second-order Taylor series ap-
proximation to the log likelihood around X̂ is therefore as
follows:

log p(D |X ) � log p(D |X̂) + (X − X̂ )T(∂log p)X̂

+
1

2
(X − X̂ )T (∂2 log p)X̂ (X − X̂ ),

where (∂logp)X̂ is the gradient of logp(D |X ) evaluated at
X̂ and (∂2 log p)X̂ is the Hessianmatrix. The gradient being
equal to zero when evaluated at X̂ , we have

log p(D |X ) � log p(D |X̂)

+
1

2
(X − X̂ )T (∂2 log p)X̂ (X − X̂ ).

The likelihood is therefore expressed as

p(D |X ) � p(D |X̂) exp
(
1

2
(X − X̂ )T (∂2lnP )X̂ (X − X̂ )

)
,

which can be rewritten as

p(D |X ) � p(D |X̂) exp
(
−1

2
(X − X̂ )T Σ̂−1(X − X̂ )

)

∝ exp
(
−1

2
(X − X̂ )T Σ̂−1(X − X̂ )

)
,

where Σ̂ = −(∂2lnP ) −1
X̂

. Hence, a normal density with

mean vector X̂ and covariancematrix Σ̂ provides a second-
order approximation to the likelihood function.

In the context of phylogenetic inference, for a fixed tree
topology, X corresponds to the set of branch lengths and
the parameters of the Markov model of character sub-
stitutions (e.g., transition/transversion ratio, gamma shape
parameter). The maximum likelihood estimates and covari-
ances between them are derived using standard numerical
techniques. Once such precalculations are done, evaluating
the likelihood comes at a low computational cost as cal-
culating the density of a multivariate normal can be done
efficiently.
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Priors on Rates and Times
Defining priors on the model parameters is at the heart of
all Bayesian analysis. In the context of molecular dating, we
need to define priors on rates and times. In order to do so,
the Bayesian methods proposed so far model the distribu-
tion of the random variablesR |T andT (the variablesν and
θ do not show here for the sake of clarity of the argument).
Typically, sampling from the posterior density of a given rate
Ri relies on the following expression:

p(Ri |R−i , T ,D ) ∝ p(R , T ,D ) (2)

∝ p(D |R ,T )p(R |T )p(T ), (3)

where R−i is the set of all rates except Ri . The very same
three components (i.e., p(D |R ,T ), p(R |T ), p(T )) are also
used to sample from the posterior density of a given node
time Ti as p(Ti |T−i , R ,D ) ∝ p(R ,T ,D ). Hence, when con-
sidering prior densities only, updating rates and times exclu-
sively rely on the conditional density of all rates given every
node times (R |T ) and the marginal density of node times
(T ). However, equation (3) is not the only solution to eval-
uating the posterior densities of interest. For instance, in or-
der to sample from the posterior density of Ri , one can use
the following expression:

p(Ri |R−i , T ,D ) ∝ p(D |R ,T )p(Ri |R−i , T ). (4)

Also, the posterior density of Ti can be expressed as

p(Ti |T−i , R ,D ) ∝ p(D |R ,T )p(Ti |T−i , R ). (5)

The present study precisely relies on equations (4) and (5) to
evaluate the posterior densities of rates and times. To sum
up, regarding priors on rates and times, instead of modeling
the distribution of R |T and T , we focus on the distributions
of the random variables Ri |R−i , T , and Ti |T−i , R .

Borrowing on the ideas of Thorne et al. (1998), our model
assumes that the prior distribution of the relative substitu-
tion rate on a given edge is a normal density centered on
the relative rate of the ancestral lineage, with variance pro-
portional to the time elapsed along this edge. Because sub-
stitution rates cannot be negative quantities, the normal
distribution is truncated to nonnegative values. For exam-
ple, taking the tree in figure 1 as reference, we have

R3|R1, T1, T3, ν ∼ N+(R1, ν(T3 − T1)),

where ν is the autocorrelation of rates parameter. Its value is
estimated from the data. The superscript “+” indicates that
the normal distribution is truncated to nonnegative values.
More generally, we write

Ri |Ranc(i ), Ti , Tanc(i ), ν ∼ N+(Ranc(i ), ν(Ti − Tanc(i ))). (6)

From this premise, it is possible to derive the distribu-
tion of the random variable Xi ≡ Ri |R−i , T ,ν , θ. To do so,
one notes that the conditional distribution of the rate on
an internal branch does only depend on the rates on three
edges connected to the branch of interest. For instance,
the distribution of X1 only depends on R0, R2, and R3 (see
fig. 1). Indeed,R1 andR4 are conditionally independentgiven

FIG. 1. Three-taxon rooted tree. R values are relative rates. R0 is the
relative rate on the edge above the root node. Its value is set to 1.0. T
are time points. For this tree T4 = T2 = T3 > T1 > T0.

R0. Also, given R2 (respectively R3), knowing the rates on
lineages below node 2 (respectively node 3) does not add
any information about the distribution of X1. Hence, we
have

p(X1) ∝ p(R1|R0, T ,ν) × p(R2|R1, T , ν)× p(R3|R1, T ,ν)

∝
exp

[
− 1

2

(
R1−R0
σ1

)2]
Pr(R1 > 0|R0,σ1) ×

exp

[
− 1

2

(
R2−R1
σ2

)2]
Pr(R2 > 0|R1,σ2)

×
exp

[
− 1

2

(
R3−R1
σ3

)2]
Pr(R3 > 0|R1,σ3) ,

where σ21 = ν(T1 − T0), σ22 = ν(T2 − T1), and σ23 =
ν(T3− T1). After a little algebra, the previous equation can
be factorized as

p(X1) ∝
exp

[
− 1

2

(
R1−μ∗1
σ∗1

)2]
Pr(R+1 )Pr(R

+
2 )Pr(R

+
3 )

,

where Pr(R+1 ) = Pr(R1 > 0|R0,σ1), Pr(R+2 ) = Pr(R2 >
0|R1,σ2), and Pr(R+3 ) = Pr(R3 > 0|R1,σ3). The parame-
ters σ∗1 and μ

∗
1 are defined as follows:

σ∗1
2 =

1
1
σ21
+ 1
σ22
+ 1
σ23

and

μ∗1 = σ
∗
1
2

(
R0
σ21
+

R2
σ22
+

R3
σ23

)
.

If R1 is the rate on an external edge, we have

p(X1) ∝
exp

[
− 1

2

(
R1−R0
σ1

)2]
Pr(R+1 )

,
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FIG. 2. Prior expectation of the descendant rate R1 given the ancestral rate R0 for various values ofσ1. R1 and σ1 are the rate and standard deviation
of the relative rate on a given edge. R0 is the ancestral rate. See figure 1 and text for precise definitions.

making the distribution of X1 a normal density with
mean R0, standard deviation σ1, and truncated to positive
values.

Lepage et al. (2006) provide a relevant list of criteria that
any model of evolution of the rate of evolution should sat-
isfy. First, such model should be computational tractable:
evaluating priors on rates should involve a “reasonable”
number of operations. Themodel introduced here performs
well regarding this criterion as evaluating normal densities is
very fast. More importantly, a good model of rate evolution
should have a well-defined stationary distribution, that is,
when the process is run over a long period of time, rates
should converge to a sensible distribution of values. The
Ornstein–Uhlenbeckmodel of Aris-Brosou andYang (2002)
and the Cox Ingersol Ross (CIR) model introduced in phylo-
genetics by Lepage et al. (2006) both satisfy this constraint.
Our model also fares well here, as demonstrated in figure 2.
The abscissa gives the value of R0, whereas the ordinates dis-
play the expected value of R1 for various values of standard
deviation of the rate on edge 1 (corresponding to varying
values of the product ν(T1 − T0), see fig. 1). For small stan-
dard deviation values, E (R1) � R0 for all values R0 can take,
matching the intuition that substitution rates generally do
not undergo drastic changes over short periods of time. For

larger standard deviation values, E (R1) > R0 if R0 < 1 and
E (R1) < R0 if R0 > 1, corresponding to a balancing effect:
slow ancestral rates tend to increase in descendant lineages
and fast ancestral rates tend to decrease. In the limit, when
the standard deviation reaches very large values, the station-
ary distribution of R1 is uniform between 0.0 and 2.0. It does
no longer depends on the value of R0. Note that such ap-
propriate behavior comes at a price: the maximum value a
relative rate can take cannot be greater than 2.0. Hence, our
model is probably notwell suited to data sets forwhich very
strong variations of rates across edges are likely. Fortunately,
it is possible to detect problematic cases by visually inspect-
ing the posterior distribution of rates and assess whether
removing the left truncation would affect these.

Priors on node times are defined in a very straight-
forward manner. The distribution of the random vari-
able Yi ≡ Ti |T−i , R ,ν , θ is chosen as uniform in the
[Tanc(i ),min(Tleft(i ), Tright(i ))] interval, where left(i ) and
right(i ) are the first nodes encountered when going from
node i toward the tips through the left and right of node
i , respectively. For instance, Y1 is uniformly distributed in
the [T0,min(T2, T3)] interval (see fig. 1). Note that just be-
cause the prior on a given node time is not a function of
the relative rates does not mean that times and rates are
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considered as independent from each other. Indeed, we
have

p(Ti , T−i |R ) = p(Ti |T−i )p(T−i , R )
p(R )

and p(T−i , R ) = p(R |T−i)p(T−i ) �= p(R )p(T−i), so that
p(Ti , T−i |R ) = p(T |R ) �= p(T ).

Also, note that the prior on node ages does not depend
on the absolute substitution rate (parameter θ). This fea-
ture of the model is convenient. Indeed, phylogenomic data
sets often display data partitions, generally corresponding
to distinct genes. Some partitions may, on average, evolve
faster than others. A model in which the prior distribution
of times is affectedby the absolute rateswouldbedifficult to
specify. Indeed, whereas the absolute rates may vary across
genes, the divergence times are the same across partitions.
Hence, the independence of divergence times and absolute
substitution rates is a requirement if one wants to analyze
multigene data sets.

Full Conditional Distributions
The previous section focused on the distributions of Xi ≡
Ri |R−i , T , θ, ν and Yi ≡ Ti |T−i , R , θ, ν . It is now possible
to define the full conditionals, that is, the distributions of
the random variables X ′i ≡ Ri |R−i , T , θ, ν , D and Y ′i ≡
Ti |T−i , R , θ, ν ,D .

For ourproblem, the likelihood is approximatedbyamul-
tivariate normal density withmean vector L̂ and covariance
matrix Σ̂ (see eq. 2). Given a multivariate normal distribu-
tion of a randomvector L , the conditional densities of Li |L−i
are also normally distributed. The mean L̂i and variance ς̂ 2i
of the randomvariable Li |L−i can be easily determined from
L̂ and Σ̂ (see Gamerman and Lopes 2006, p. 22, for instance).
Therefore, when considering Li as the only random compo-
nent of the vector L , the likelihood is

p(D |Li , L−i ) ∝ exp
[
−1

2

(
Li − L̂i
ς̂i

)2
]
,

which can also be expressed as a function of rates, times, and
autocorrelation parameter:

p(D |Ri , R−i , T , θ, ν) ∝ exp
[
−1

2

(
Ri − μ̂i
σ̂i

)2
]
, (7)

where μ̂i =
L̂i

θ(Ti−Tanc(i)) and σ̂i =
ς̂i

θ(Ti−Tanc(i)) .
As for the prior, we have

p(Ri |R−i , T , θ, ν) ∝
exp

[
− 1

2

(
Ri−μ∗i
σ∗i

)2]
Pr(R+i )Pr(R

+
left(i ))Pr(R

+
right(i ))

. (8)

The parameters σ∗i and μ
∗
i are defined as follows:

σ∗i
2 =

1
1
σ2i
+ 1
σ2
left(i)
+ 1
σ2
right(i)

,

μ∗i = σ∗i
2

(
Ranc(i )
σ2i
+

Rleft(i )
σ2left(i )

+
Rright(i )
σ2right(i )

)
.

The posterior density of rate i can then be obtained by
combining equations (7) and (8). We have

p(Ri |R−i , T , θ, ν , D ) ∝
exp

[
− 1

2

(
Ri−μ′i
σ′i

)2]
Pr(R+i )Pr(R

+
left(i ))Pr(R

+
right(i ))

, (9)

where the expressionsof the parametersμ′i andσ
′
i are given

below as

μ′i =
1

1
σ̂2i
+ 1
σ∗i

2

(
μ̂i
σ̂2i
+
μ∗i
σ∗i

2

)
,

σ′i
2
=

1
1
σ̂2i
+ 1
σ∗i

2

.

Ignoring the denominator in equation (9), the full
conditional distribution of Ri is a normal density with
parameters μ′i and σ′i . Sampling from this distribution
is straightforward. However, for positive values of Ri ,
the actual distribution is distinct from a normal when
Pr(R+left(i ))Pr(R

+
right(i )) < 1. This product of probabilities is

generally very close to 1.0 in practice though. Hence, the full
conditional distribution of Ri is indeed well approximated
by a normal density. Therefore, sampling from the actual
posterior density of Ri can be done efficiently by using a
MH step with a proposal density determined by the nor-
mal density aforementioned.With the four real-world data
sets analyzed in this study (see Results), the acceptance rate
of such move is systematically above 97%. Such high ac-
ceptance rate indicates that new rate values proposed ac-
cording to the relevant normal are almost always accepted,
making this MH step virtually identical to a Gibbs sampling
step.

The full conditional of any given node time, Ti , is propor-
tional to the product of the likelihoodwhen considering Ti
as random, whereas T−i , R , θ, and ν are fixed, by the prior
density for Ti . The prior distribution of Yi ≡ Ti |T−i , R , θ, ν
is uniform (see Section Priors on Rates and Times). Hence,
the full conditional is of the form:

p(Ti |T−i , R , θ, ν ,D ) ∝ p(D |Ti , T−i , R , θ),
that is, a multivariate truncated normal density, which is
easy to sample from. The difficulty here lies in the fact that
the likelihood is defined as a function of branch lengths, not
node times. Or, sampling an internal node age is equivalent
to sampling three branch lengths under some constraints.
For instance, if the value of T1 changes in the tree of figure 1,
the lengths of the edges 1, 2, and 3 are also modified. More-
over, these three branch length modifications are not ap-
plied independently as the three lengths are all functions of
T1. The problem therefore needs to be defined in terms of
sampling three edge lengths from truncated normal distri-
butions under specific constraints.We have

L1 = θR1(T1 − T0),

L2 = θR2(T2 − T1),

L3 = θR3(T3 − T1),

1773

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/27/8/1768/988796 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 15 June 2021



Guindon · doi:10.1093/molbev/msq060 MBE

and therefore

T1 = T0 +
L1
θR1

= T2 − L2
θR2

= T3 − L3
θR3

.

We then define two new random variables, Z2 and Z3

Z2 =

(
T0 +

L1
θR1

)
−
(
T2 − L2

θR2

)
,

Z3 =

(
T0 +

L1
θR1

)
−
(
T3 − L3

θR3

)
.

Hence, jointly sampling L1, L2, and L3, such that
(
T0+

L1
θR1

)
=(

T2 − L2
θR2

)
=
(
T3 − L3

θR3

)
, is equivalent to sampling L1

given that Z2 = 0 and Z3 = 0. As Z2 and Z3 are linear
combinations of the normally distributed variables L1, L2,
and L3, the joint distribution of L1, Z2, and Z3 is multivariate
normal too (with truncation). The conditional mean and
variance for L1, L2, and L3, as well as the corresponding co-
variances, are obtained from L̂ , and Σ̂. It is then straight-
forward to express the mean, variances, and covariances for
L1, Z2, and Z3. Randomly sampling from the conditional dis-
tribution of L1|Z2 = 0, Z3 = 0, with the additional con-
straint that L1 � 0, is done using an inversion method
identical to the one used for sampling rates (see previous
section).

There is no need to introduce new variables for the spe-
cial case of the root node. Indeed, changing the time at that
node modifies the length of only one branch (the edge on
which the root node lies). Hence, no specific constraint ap-
plies here. In practice, the distribution of T0 (see fig. 1) given
T−0, R , ν , and θ is chosen as uniform in the [B ,min(T1, T4)]
range, where B is set by the user. The use of this prior makes
the posterior a truncated normal which bounds are func-
tions of B andmin(T1, T4). Here again, sampling from this
distribution is straightforward.

Bayesian inference also requires samples from the poste-
rior distributions of the nuisanceparameters. In the context
of this study, the absolute rate of substitution, θ, and the
autocorrelationof rates parameter,ν , are considered as nui-
sance parameters. The full conditional for θ is

p(θ|T ,R , ν ,D ) ∝ p(D |T ,R , θ)p(θ).

The prior distribution of θ is chosen as uniform in the
[1× 10−8, 1.0] range. The posterior density of θ is therefore

a truncated normal. However, here again, a particular con-
straint needs to be accounted for. Indeed, changing the
value of θmodifies the values of everybranch length, but the
ratio of lengths between pairs of edges remains unchanged.
In other words, we want to sample Li (i = 0, . . . , 2n − 2)
under the constraint Li /Ri (Ti − Tanc(i )) = θ, with R and
T being considered as fixed at that stage. We then define a
new variable, Ui , such that

Ui =
L0

R0(T0 − Tanc(0))
− Li

Ri (Ti − Tanc(i ))
,

where branch 0 is any edge distinct from the edge on which
lies the root node. For this particular branch, the differ-
ence (Ti − Tanc(i )) is replaced by the length of the path
between the first descendant of the root node on the left-
hand side and the first descendant of the root node on the
right-hand side, measured in time units. The random vari-
able L0|Ui=0,...,2n−4 = 0 then satisfies the constraint on
relative edge lengths. As the Ui ’s are linear combinations of
normally distributed variables, it is easy to determine the
mean and variance of the variable L0|Ui=0,...,2n−4 = 0. A
sample of θ from the corresponding full conditional is then
given by u/R0(T0 − Tanc(0)), where u is a realization of the
random variable L0|Ui=0,...,2n−4 = 0.

As for the autocorrelation parameter ν , the posterior
density is given below:

p(ν|T , R , θ, D ) ∝ p(D |T ,R , θ)p(R |T ,ν)p(T )p(ν)
∝ p(R |T ,ν)p(ν).

The prior distribution on ν is chosen as a uniform dis-
tribution on [1 × 10−5, 1.0]. Such prior is not conjugate
to the density of R |T ,ν . Hence, the full conditional is no
longer a standard distribution that can easily be sampled
from.

Gibbs Sampling Scheme
Gibbs sampling is a stochastic simulation approach that
aims at estimating the joint density of model parame-
ters from their full conditional densities (see, for instance,
Gamerman and Lopes 2006, p. 142). The current study
focuses on the joint posterior density of the model param-
eters, namely p(T , R , θ, ν|D ), or, using the extended no-
tation,p(T0, . . . , T2n−1, R0, . . . , R2n−2, θ, ν|D ). This density
is estimated by successive generations from the full condi-
tional distributions. The algorithm can be described in the
followingway:

1. Initialize the iteration counter j = 1 and set
the initial values of the parameters, that is, T (0) =
(T (0)0 , . . . , T (0)2n−1), R

(0) = (R (0)0 , . . . , R (0)2n−2), θ
(0) , and

ν(0) .
2. Obtain new values T (j ), R (j ), θ(j ) , and ν(j ) from T (j−1),
R (j−1), θ(j ), and ν(j ) by sampling successively from the
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following full conditional densities:

R (j )0 ∼ p(R0|R (j−1)−0 , T (j−1), θ(j−1), ν(j−1),D ),
...

T (j )0 ∼ p(T0|R (j ), T (j−1)−0 , θ(j−1), ν(j−1),D ),
...

θ(j ) ∼ p(θ|R (j ), T (j ), ν(j−1) ,D ),
ν(j ) ∼ p(ν|R (j ), T (j ), θ(j ) ,D ).

3. Increment counter from j to j + 1 and return to step 2
until convergence is reached.

The four full conditional densities involved in the Gibbs
sampler have been defined previously. Updating the values
of the relative rates, times, and absolute rates of substitution
relies on sampling from the appropriate truncated normal
distributions. As the full conditional density for the autocor-
relation parameter does not correspond to a standard dis-
tribution, we rely on a MH step. Only one step of the MH
algorithm is required here to ensure convergence of the
MCMC to the stationary distribution (see Gilks et al. 1995,
p. 84). Such Metropolis-within-Gibbs approach is a com-
mon alternativewhen the full conditionaldensityof amodel
parameter does not correspond to a distribution that can
be easily sampled from (for a similar example, see Lartillot
2006).

Implementation and Validation
Implementing stochastic techniques such as those de-
scribed in this study can be tricky. Hence, validation pro-
cedures were designed in order to limit errors as much as
possible. An MH sampler that estimates the parameters of
the very same model as the one described above was there-
fore implemented in parallel. As the models are identical,
both the Gibbs and theMH samplers should asymptotically
return the same posterior distributions of parameters.

The MH algorithm relies on proposing new values of the
model parameters and comparing the newposteriordensity
to that of the current solution. The functions used toupdate
the parameter values are essentially identical to those de-
scribed in Thorne et al. (1998). Both the MH and the Gibbs
sampler were implemented in the C language as part of the
PhyML package (Guindon and Gascuel 2003). The sources
are available from http://code.google.com/p/phyml.

Data
Four real-world alignments were considered in this study.
The first consists of nucleotide sequences fromCaviomorph
rodents and Platyrrhine primates previously analyzed by
Poux et al. (2006). Sixty-two homologous sequences from
three nuclear genes and a total of 3,768 sites are consid-
ered here. Nine calibration points, including prior informa-
tion on the time at the root node, are available. The second
data set was recently studied by Rutschmann et al. (2007).
It is made of 74 Myrtales sequences, 5,124 nucleotide long,
spanning three plastid, and two nuclear genes. Seven cali-
bration nodes, including the root node, are available. These

Table 1. Difference of Node Time Estimates Obtained with the
Exact and the Multivariate Normal Approximate Likelihood Calcula-
tion. Each Posterior Mean Node Time Estimate was First Expressed
as a Percentage of the Largest Average Node Time Estimate for Each
Data Set. Δ Corresponds to the Differences of Rescaled Node Time
Estimates Obtained Using the Gibbs and MH Methods Introduced in
This Study. The Table Displays the Quantiles ofΔ.

Quantiles ofΔ (%%%)

Data sets 0 25 50 75 100

Poux et al. (2006) −−−0.63 0.00 0.39 0.65 1.14
Rutschmann et al. (2007) −−−4.57 −−−1.04 −−−0.17 0.18 1.85
Wahlberg (2006) −−−2.24 −−−1.19 −−−0.58 0.04 0.43

vertices are chosen according to the assignment of fossils
to calibration nodes described in Rutschmann et al. (2007).
The third data set is the one analyzed by Douzery et al.
(2004). It consists of a concatenation of 129 proteins from
36 eukaryotes and a total of 30,399 positions. Information
on seven calibration points, including the root node, is avail-
able. The fourth data sets was put together and analyzed
by Wahlberg (2006). It is made of 59 nucleotide sequences,
2,936 character long, consisting of one mitochondrial gene
and two nuclear genes. Four calibration points were avail-
able for this data set. These four alignments and the
corresponding tree topologieswere retrieved fromTreebase
(Sanderson et al. 1994). The branch lengths of the phylo-
genies were estimated using PhyML under the HKY model
(Hasegawa et al. 1985) for nucleotide sequences and the LG
model (Le and Gascuel 2008) for amino acid sequences.

Results
The validity of the multivariate normal approximation of
the likelihood function was assessed first. Three of the four
data sets included in this study were analyzed and the pos-
terior distribution of node ages were estimated using two
MH samplers. One sampler implements the exact likelihood
function,whereas the other implements the approximation.
For each analysis, the first 106 samples were discarded and
the next 5 × 105 samples were considered. Model param-
eter values were collected every 103 samples. Ten repeats
of this experiment were run in parallel, each starting from
randomly chosen values for the model parameters. Poste-
rior mean of node ages were first rescaled so as to corre-
spond to percentages of the oldest time estimate (i.e., the
root age). Such transformationmakes the different data sets
comparable. Table 1 gives the quantiles of the differences
of scaled node time estimates obtained with the two sam-
plers. The data set of Douzery et al. (2004)was not processed
here due to heavy computational burdens. The median dif-
ference of node age estimates obtained with the exact and
the approximate likelihood is between+0.39%and−0.58%.
Also, the most important difference between node age esti-
mates obtainedwith the two approaches is 4.57%. The mul-
tivariate normal approximationof the likelihood function is
therefore extremely accurate. Moreover, the gain in terms of
computing times is dramatic: on average, the approximate
approach is between�500and�1,500 times faster than the
exact one (results not shown).
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Table 2. Difference of Node Time Estimates Obtained with the MH
and the Gibbs Samplers. 108 Samples were Collected in Total. Model
Parameter Values were Recorded Every 104 Sample. See Caption of
Table 1 for Details about the Calculation ofΔ values.

Quantiles ofΔΔΔ (%%%)

Data sets 0 25 50 75 100

Poux et al. (2006) −−−0.07 0.01 0.04 0.08 0.15
Rutschmann et al. (2007) −−−0.56 −−−0.03 0.31 0.95 1.79
Douzery et al. (2004) −−−0.24 −−−0.07 0.02 0.05 0.10
Wahlberg (2006) −−−0.15 0.06 0.10 0.19 0.31

Each data set was then analyzed using the Gibbs sam-
pler introduced in this study and the equivalent MH sam-
pler. For each analysis, the first 106 samples were discarded
and the next 108 samples were considered. Model parame-
ter values were collected every 104 samples. Thirty repeats
of this experiment were run in parallel, each starting from
randomly chosen values of the model parameters. The va-
lidity of the implementationof both the Gibbs and the MH
samplers was first assessed by comparing the node time esti-
mates returned by these two approaches. Table 2 gives the
quantiles of the differences of scaled node time estimates
obtained with the two samplers. For the first data set, the
median difference is 0.04%. Roughly similar figures are ob-
tained for the other three data sets and the most important
difference between node age estimates obtained with the
two approaches is only 1.79%. We also checked that both
samplers converged to nearly identical average likelihoods
(i.e., p(D |T ,R , θ)) and prior densities of relative rates (i.e.,
p(R |T ,θ, ν)) (results not shown). Altogether, these results
indicate that both approaches returned virtually identical
model parameter estimates.

Specific node times estimates were then compared with
those reported in other studies so as to further check the
validity of our results. These studies used the computer
program “multidivtime”, which implements Thorne et al.
(1998) and Kishino et al. (2001) Bayesian approaches to es-
timate divergence times. For the data of Poux et al. (2006)
(fig. 3), our 95% credibility interval for the age of the Catar-
rhini/Platyrrhini divergence (node 1) is 40±6 Mya, which
includes the estimate proposed by the authors (37 Mya).
Our estimate of the earliest diversification of the extant
platyrrhines (node 2) is 19±5 Mya, whereas the estimate of
Poux et al. for the age of this node is 16.8 Mya. The earli-
est radiation of extant caviomorphs (node 3) is estimated
to be within a 37±5 Mya interval according to us, which is
very similar to the 36.7Mya estimate proposed by Poux et al.
As for the data set examined by Rutschmann et al. (2007),
our estimate for the split of the Southeast Asian Cryptero-
niaceae from their West Gondwanan sister clade (node 1 in
fig. 4) is 68±8 Mya, only slightly above the ∼79 Mya ad-
vanced by the authors. Turning to the data set of Douzery
et al. (2004), our estimate of the diversification of eukaryotic
kingdoms (node 1 in fig. 5) is 1,125±75 Mya, as opposed to
1,104Mya. According to us, the divergence between animals
and choanoflagellates (node 2) is 1,050±100 Mya, whereas
the estimate of Douzery is 984 Mya. The most recent com-
mon ancestor of the subfamily Nymphalinae (node 1 in

Table 3. Average Computing Times. Each Data Set was Analyzed 30
Times withDifferent Starting Points. The Table Displays theAverage
Time Duration Needed to Collect 108 Samples.

Average time (s)

Data sets Gibbs MH

Poux et al. (2006) 1,118 6,779
Rutschmann et al. (2007) 1,282 8,419
Douzery et al. (2004) 837 3,566
Wahlberg (2006) 1,078 6,430

fig. 6) is estimated to have existed between 105 and 60 Mya
according toWahlberg (2006). Our estimate is 120±25Mya,
that is, slightly older than Wahlberg’s proposed age even
though the two proposed time intervals overlap.Wahlberg’s
estimated age of the Melitaeini clade (node 2) is in the
range of 24–71 Mya, whereas our estimate is 70±15 Mya.
Our analysis relied on a prior node age for the root of the
tree that corresponds to the oldest prior estimates used by
Wahlberg (2006), which could explain the slight differences
between the two sets of estimates.

The durations required to process each data set with
both the Gibbs and the MH samplers were then compared.
Table 3 lists the computing times averaged over the 30 re-
peats of the same experiment for each data set. The aver-
age times needed to collect the 108 samples using the Gibbs
sampler is about four to six times less than the time required
by the MH sampler. This difference of computing times is
largely explained by the fact that the Gibbs sampler does
not require updating the likelihood function when chang-
ing the values of the model parameters, as opposed to the
MH algorithm. Note, however, that these results rely on a
rather crude implementation of the MH sampler and re-
duced computing times for this method could probably be
obtained.

Both the Gibbs and the MH techniques draw noninde-
pendent samples froma target distribution (the joint poste-
rior density of the model parameters). The effective sample
size is the size of the sample that would be obtained if the
draws were completely independent. It generally amounts
to a fraction of the actual sample size (108 here). Effective
sample sizes can be measured for every parameter of the
model. Large effective sample size indicate good “mixing”
properties. The effective sample sizes were calculated as de-
scribed by Gelman in Gilks et al. (1995, p. 137). Table 4 dis-
plays the distribution of the ratio of effective sample sizes

Table 4.Quantiles of the Ratios of Effective Population Sizes for Node
Time Estimates. Effective Population Sizes Were Calculated for Each
Internal Node and Each Method (Gibbs and MH). The Ratio K of the
Effective Population Sizes Obtained with the Gibbs Sampler Divided
by the Size Obtained with theMH Sampler Were Then Calculated for
Each Node. This Table Displays the Quantiles of K .

Quantiles of K (%%%)

Data sets 0 25 50 75 100

Poux et al. (2006) 0.66 1.39 2.13 2.90 5.18
Rutschmann et al. (2007) 1.13 2.76 4.28 8.57 23.91
Douzery et al. (2004) 0.79 2.17 4.69 9.10 20.10
Wahlberg (2006) 0.71 2.75 3.73 5.58 12.20
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FIG. 3. Poux et al. tree. The node bars give the 95% credible intervals obtained with the method introduced in this study. Numbers below internal
nodes denotes clades of particular interest.

measured for node time estimates obtained with the two
approaches. Themedian effective sample size obtainedwith
the Gibbs sampler is between 2.1 and 4.7 times higher with
the Gibbs sampler compared with the MH one. The ratio
attains 23.9 for one specific node and data set while it is sel-
dom smaller than 1, confirming the clear advantage of the
Gibbs sampler over MH.

Discussion
The present study describes a new approach to estimate
divergence times from molecular data. This method re-
lies on the approximation of the likelihood function by a

multivariate normal density and conjugate priors on substi-
tution rates. The combination of these two features leads
to a Gibbs sampling algorithm thatmakes the estimation of
the posterior density of rates and times faster than with the
classicalMH approach. This method is therefore well suited
to analyze large data sets, which are now commonplace in
phylogenomics.

An unusual feature of the approach presented here lies
in the specification of priors on divergence times and rates.
The estimation of model parameters relies exclusively on
conditional densities of rates given times and times given
rates. This contrasts with the standard approach that mod-
els the conditional distribution of rates given times and the
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FIG. 4.Rutschmann et al. tree. See caption of figure 3.

marginal distribution of node times. To illustrate the poten-
tial benefits of this approach, I borrow an example given by
Arnold et al. (2001). If one wishes to model the joint den-
sity of body weight and height, then modeling the distribu-
tion of weights given heights and the distribution of heights
givenweights is certainly easier than specifying amodel that
involves marginal distributions of weights or heights. Thus,
in certain circumstances, models based on conditional dis-
tributions of parameters are relevant. However, no matter
which variable is to be modeled, one must make sure that
the joint posterior density of all the variables in the model
actually exists. In the model presented here, the joint pos-
terior density of the model parameters can be expressed as
a product of the conditional densities of individual relative
rates. These conditional densities being truncated normals,

the joint posterior density of all model parameters can be
evaluated for any value of the model parameters.

From a biological and statistical modeling perspective,
it is important to make sure that rates converge to a sen-
sible stationary distribution when the evolution process is
run over a long period of time. The Ornstein–Uhlenbeck
andCIRmodels introduced in phylogenetics by Aris-Brosou
and Yang (2002) and Lepage et al. (2006), respectively, both
have a normal density as stationary distribution. The sta-
tionary distribution for the model introduced in this study
is uniform. When the product of the time interval on a
given branch and the autocorrelation parameter tends to
infinity, the distribution of the relative rate is indeed uni-
form between 0.0 and 2.0. Although a sensible stationary
distribution is a boon to the proposed model, limiting the
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FIG. 5.Douzery et al. tree. See caption of figure 3.

maximum value a relative rate can take to 2.0 can be per-
ceived as a drawback. Hence, our approach is not well suited
to cases where sudden and large increases of substitution
rates are suspected. Note that it is relatively straightforward
to detect such situations by visually inspecting the poste-
rior distribution of rates after fitting our model to the data.
It then becomes possible to remove the very fast evolv-
ing taxa or to increase the taxon sampling intensity such
that very fast lineages are broken into shorter time intervals
showingmoderate and gradual increases of the substitution
rate.

Froma biological perspective, othermodels of rate evolu-
tion are more realistic than the one introduced here. For in-
stance, the compound Poisson process of Huelsenbeck et al.
(2000) is likely to provide a more relevant description of the

correlation of rates across lineages. Despite this, node age
estimates obtained with the two methods will probably be
fairly similar (see Lepage et al. 2007 for a comparison ofmod-
els with respect to node age estimates). Therefore, the Gibbs
sampling algorithm presented in this article could be used
to “guide” the estimation process under a variety of more
sophisticated models. More precisely, our algorithm could
define an importance sampling function and save consid-
erable amounts of time to the estimation under sophisti-
catedmodels. The same argument is valid for priors on node
ages. In the approach presented here, these priors are mod-
eled using uniform distributions. The coalescent or a birth–
death process could also be used in an importance sampling
framework where the uniformdensitieswould guide the es-
timation process under the more realistic priors. Flexible
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FIG. 6. Wahlberg tree. See caption of figure 3.

priors on calibration times, including soft bounds as pro-
posed by Yang and Rannala (2006), could also be handled
using the same importance sampling technique.

Another further development to the present study is in-
spired by the shape of the marginal posterior distributions
of rates and times. Such distributions are generally roughly
symmetrical and bell shaped. Hence, insteadof approximat-
ing the likelihood function with a multivariate normal, it
seems relevant to directly approximate the joint posterior
density of rates and times using the same family of distribu-
tions. It is possible to apply numerical methods to estimate
the first twomoments of suchdistribution, just like it is done
here with the likelihood function. This approach would be
extremely fast as it would not involve any MCMC steps.

Note that such method is actually very similar to maximiz-
ing a penalized likelihood function (Sanderson 2002), with
the penalty term corresponding to the prior on rates and
times. The proposed approach would therefore be valuable
in providing confidence intervals on node time estimates for
maximum likelihood–basedmethods.
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