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Abstract

In phylogenetic analyses of molecular sequence data, partitioning involves estimating independent models of molecular
evolution for different sets of sites in a sequence alignment. Choosing an appropriate partitioning scheme is an important
step in most analyses because it can affect the accuracy of phylogenetic reconstruction. Despite this, partitioning schemes
are often chosen without explicit statistical justification. Here, we describe two new objective methods for the combined
selection of best-fit partitioning schemes and nucleotide substitution models. These methods allow millions of partitioning
schemes to be compared in realistic time frames and so permit the objective selection of partitioning schemes even for
large multilocus DNA data sets. We demonstrate that these methods significantly outperform previous approaches,
including both the ad hoc selection of partitioning schemes (e.g., partitioning by gene or codon position) and a recently
proposed hierarchical clustering method. We have implemented these methods in an open-source program,
PartitionFinder. This program allows users to select partitioning schemes and substitution models using a range of
information-theoretic metrics (e.g., the Bayesian information criterion, akaike information criterion [AIC], and corrected
AIC). We hope that PartitionFinder will encourage the objective selection of partitioning schemes and thus lead to
improvements in phylogenetic analyses. PartitionFinder is written in Python and runs under Mac OSX 10.4 and above. The
program, source code, and a detailed manual are freely available from www.robertlanfear.com/partitionfinder.
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Introduction
Molecular phylogenetics provides a wealth of important in-
formation for evolutionary biologists. However, the accuracy
of molecular phylogenetic inference depends on having an
appropriate model of molecular evolution (Sullivan and
Joyce 2005; Simon et al. 2006). Because of this, there is a great
deal of interest in developing methods to select evolutionary
models and assess their adequacy (Ripplinger and Sullivan
2010; Jayaswal et al. 2011; Nguyen et al. 2011). The goal of
model selection is to identify amodel that is sufficiently com-
plex to capture the evolutionary processes that have
occurred but to avoid models with more parameters than
can be reliably estimated from the available data (overpar-
ameterization). One of the most important aspects of
models of molecular evolution is how they account for
variation in evolutionary processes among the sites of an
alignments, because the failure to correctly account for this
variation can seriously mislead phylogenetic analyses
(Buckley et al. 2001; Telford and Copley 2011).

There are two ways to incorporate the variation in
evolutionary processes among different sites using
currently available phylogenetic methods: mixture models
and partitioning. With mixture models, the likelihood of

each site is calculated under more than one substitution
model (e.g., Le et al. 2008). The parameters of these
substitution models, as well as the probability with which
each model applies to each site, can be determined directly
from the data (Pagel and Meade 2004). With partitioning,
the user first groups together sites that are assumed to have
evolved under similar processes and then estimates inde-
pendent (i.e., unlinked) substitution models for each group
of sites (e.g., Nylander et al. 2004; Brandley et al. 2005;
McGuire et al. 2007). In contrast to mixture models, par-
titioning requires the a priori definition of appropriate
groups of sites. Although mixture models are implemented
in an increasing variety of phylogenetic software (e.g., Pagel
and Meade 2004; Stamatakis 2006; Le et al. 2008), partition-
ing remains by far the most common approach to
incorporating heterogeneity in evolutionary processes
among sites (Blair and Murphy 2011).

Choosing an appropriate partitioning scheme is a central
problem for most phylogenetic analyses (Brandley et al.
2005; Shapiro et al. 2006; McGuire et al. 2007; Li et al.
2008; Blair and Murphy 2011). Typically, phylogeneticists
use their biological intuition to group together similar sites
in an alignment into putatively homogeneous data blocks.
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This often involves defining data blocks on the basis of
genes and codon positions (e.g., Shapiro et al. 2006; Ho
and Lanfear 2010). For example, in an analysis of four
protein-coding genes, one could define 12 data blocks—
one for each codon position in each gene. This
approach is biologically justified because differences be-
tween codon positions and genes are expected to account
for much of the heterogeneity in evolutionary processes
among sites (Shapiro et al. 2006). However, many studies
have shown that this approach can lead to overparamete-
rization, and that phylogenetic reconstruction can be
improved by merging certain data blocks together, thus de-
fining a partitioning scheme that requires the estimation of
fewer independent substitution models (Brandley et al.
2005; Brown and Lemmon 2007; McGuire et al. 2007; Li
et al. 2008). For example, the second codon positions in
two similar nuclear genes may experience similar rates
and patterns of substitution and so might be better ana-
lyzed together rather than independently. Of course, it is
not always straightforward to identify which data blocks
should be merged and which should be analyzed indepen-
dently. One solution to this problem is to compare all
possible partitioning schemes for a given data set. However,
this approach is usually computationally intractable
because the number of possible partitioning schemes is
astronomical even for relatively small numbers of data
blocks (Li et al. 2008). As a result, most researchers either
choose a single partitioning scheme a priori or select the
best-fit scheme from a handful of candidate schemes
(Brandley et al. 2005; McGuire et al. 2007). Thus, despite
significant advances in phylogenetic methods in recent
years, the accuracy of the inferences we can make from
partitioned phylogenetic analyses remains limited by our
ability to select appropriate partitioning schemes.

In this study, we describe two new methods that solve
many of the problems associated with selecting partition-
ing schemes. These methods increase the efficiency of com-
paring partitioning schemes by many orders of magnitude,
allowing many millions of schemes to be compared in re-
alistic time frames. We describe these new methods below
and assess their performance on a range of published data
sets. We show that our methods select significantly better
partitioning schemes than previous approaches—including
the ad hoc selection of partitioning schemes and previously
suggested objective approaches. We have implemented
these methods in an open-source program, PartitionFinder.
This program has flexible options and allows users to effi-
ciently and objectively find best-fit partitioning schemes
and nucleotide substitution models, even for large data
sets. PartitionFinder, its source code, and a detailed manual
are available from www.robertlanfear.com/partitionfinder.

Materials and Methods
We use the following definitions throughout this article.
We define a ‘‘data block’’ as a user-defined set of sites
in an alignment; a ‘‘subset’’ as a set of one or more data
blocks; and a partitioning scheme as a set of subsets that

includes all sites in the alignment once and only once. For
clarity, we avoid the use of the term ‘‘partition,’’ as this has
different and potentially very confusing meanings in the
mathematical and molecular phylogenetics literature (in
the mathematical literature, a partition is equivalent to
our use of ‘‘partitioning scheme’’ here, whereas in the
molecular phylogenetics literature, it is equivalent to our
use of ‘‘subset’’ here). In the majority of cases, users will
specify data blocks based on genes and codon positions—
for example, by defining 12 data blocks for an alignment of
four protein-coding genes. The sites in a data block need
not be contiguous in the alignment, but a single site can be
a member of only one data block. A subset can comprise
a single data block (e.g., first codon sites from a protein-
coding gene) or multiple data blocks (e.g., first and second
codon sites from a protein-coding gene). For example,
consider an alignment of four protein-coding genes for
which the user has defined 12 data blocks, one for each
codon position in each gene. One possible partitioning
scheme for this data set involves treating each codon
position in each gene independently. This partitioning
scheme has 12 subsets, and so 12 unlinked substitution
models would be estimated from the data during the
phylogenetic analysis. Another possible partitioning
scheme involves treating each codon position indepen-
dently but merging the codon positions across genes. This
partitioning scheme has three subsets (one for each codon
position), and so three unlinked substitution models would
be estimated from the data during the phylogenetic anal-
ysis. The challenge is to find the best-fit partitioning
scheme for a given nucleotide alignment, given the prede-
fined set of data blocks.

The number of possible partitioning schemes for a set of
n data blocks is equivalent to the number of ways of
putting n different-colored balls into one or more indistin-
guishable boxes. This relationship is known as a Bell
number (Bell 1934) and can be described by the following
relationship, where Bn is the number of possible partition-
ing schemes given n user-defined data blocks (Li et al.
2008), and the curly brackets define a Stirling number of
the second kind:

Bn 5
Xn
k5 0

f n
k
g:

The number of possible partitioning schemes can be as-
tronomical even for relatively modest data sets. For exam-
ple, in an analysis of four protein-coding genes (4 genes� 3
codons5 12 data blocks), there are B125 4.2� 106 possible
partitioning schemes, and for an analysis of 20 protein-
coding genes (20 genes� 3 codons5 60 data blocks), there
are B60 5 9.8 � 1059 possible partitioning schemes.

The set of partitioning schemes will be made up of
a smaller number of possible subsets because most subsets
will be included in a many different partitioning schemes.
Specifically, the number of possible subsets, Sn, that can be
created from a set of n user-defined data blocks is the
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number of possible nonempty subsets that can be
generated from a set of size n:

Sn 5 2n � 1:

For example, in an analysis of four protein-coding genes
(12 data blocks), there are S125 4,095 possible subsets, and
in an analysis of 20 protein-coding genes (60 data blocks),
there are S60 5 1.2 � 1018 possible subsets.

The PartitionFinder Algorithm
Previous approaches to comparing partitioning schemes
have been both labor-intensive and computationally inten-
sive because they have required a full likelihood or Bayesian
analysis for each partitioning scheme under consideration
(see e.g., McGuire et al. 2007; Li et al. 2008). This has fun-
damentally limited the number of partitioning schemes
that have been compared in most studies, as comparing
large numbers (e.g., hundreds) of partitioning schemes
in this way is simply not feasible for most data sets. This
approach is also highly inefficient because it involves re-
peatedly recalculating the likelihood of every site in the
alignment, despite the fact that the substitution models
applied to those sites will be the same for many partition-
ing schemes. The PartitionFinder algorithm improves the
efficiency of finding best-fit partitioning schemes by calcu-
lating the log likelihood of each subset of sites only once.
The log likelihood of each partitioning scheme is then cal-
culated by summing the log likelihoods of the subsets that
make up that scheme.

An outline of the PartitionFinder algorithm is as follows:

1. Estimate a phylogenetic tree of sequences;
2. Select the best-fit substitution model for each possible

subset;
3. Calculate the log likelihood of each partitioning scheme by

summing the log likelihoods of the subsets that make up
that scheme;

4. Select a partitioning scheme using information-theoretic
metrics.

All likelihood calculations are performed using a modi-
fied version of PhyML 3.0 (Guindon et al. 2010), available
from the authors and as part of the PartitionFinder pro-
gram. Tree estimation (step 1) is performed using the BioNJ
algorithm implemented in PhyML 3.0 (Guindon et al. 2010),
using the combined data from all of the user-defined data
blocks. PartitionFinder also allows the user to specify a tree
topology for step 1. The tree topology from step 1 is then
fixed for the rest of the analysis. This differs from previous
approaches, which coestimate the tree topology and the
likelihood of each partitioning scheme. This is a computa-
tionally intensive method that has limited the number of
partitioning schemes that can be compared (see above).
Using a fixed tree topology allows likelihoods from different
subsets to be combined, which increases the efficiency by
many orders of magnitude and allows many millions of par-
titioning schemes to be compared in a single run. Fixing the
tree topology is unlikely to adversely affect the results of

comparing partitioning schemes, as previous studies have
shown that doing so does not affect the results of model
selection procedures as long as a nonrandom tree topology
is used (Posada and Crandall 2001).

Model selection (step 2) is performed on a user-specified
set of up to 56 substitution models from the general time
reversible (GTR) family, and our approach is similar to
other model selection algorithms (e.g., Keane et al. 2006;
Posada 2008). During model selection, we first calculate
the likelihood of each candidate substitution model,
conditioned on the tree topology from step 1. We then
select the best-fit model according to one of three
user-specified information-theoretic metrics: the akaike
information criterion (AIC), the corrected AIC (AICc), or
the Bayesian information criterion (BIC) (Sullivan and Joyce
2005). PartitionFinder implements almost all of the models
of nucleotide evolution included in the most commonly
used phylogenetic tree estimation programs such as PhyML
(Guindon et al. 2010), RaxML (Stamatakis 2006), MrBayes
(Ronquist and Huelsenbeck 2003), and BEAST (Drummond
and Rambaut 2007). This means that the output from
PartitionFinder can be used to directly set up a phylogenetic
analysis in any of these programs. However, all of these
models and programs assume that the data evolved under
a time-reversible, stationary, and homogeneous process,
and they should not be used if the data violate any of these
assumptions.

PartitionFinder includes an option for either linked or
unlinked branch lengths between subsets. When branch
lengths are linked, step 1 includes the reestimation of
branch lengths on the BioNJ topology using a GTR
substitution model, with a proportion of invariant sites
and gamma distributed rates across sites estimated from
the data. The likelihood of each model for each subset (step
2) is then calculated conditioned on this topology and
these branch lengths, with each model afforded an
independent rate multiplier that can increase or decrease
all branch lengths by the same factor. Thus, linked branch
lengths allow for subset-specific substitution rates, but all
subsets share a single set of relative branch lengths. By
contrast, when branch lengths are unlinked, model selec-
tion (step 2) is conditioned on the topology from step 1,
but all branch lengths are estimated independently for each
model in each subset.

The log likelihood of each partitioning scheme (step 3) is
calculated by summing the log likelihoods of the best-fit
model for each subset in the partitioning scheme. Finally,
the best-fit partitioning scheme is selected (step 4) using
one of three information-theoretic measures: the AIC,
AICc, or BIC.

A Greedy Heuristic Algorithm to Search for
Partitioning Schemes
Even using the algorithm described above, exhaustive
searches on desktop computers are practically limited to
data sets for which 12 or fewer data blocks are defined
(corresponding to data sets with 4.2 million or fewer pos-
sible partitioning schemes). Therefore, heuristic searches
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among partitioning schemes are necessary for larger data
sets, even though they cannot be guaranteed to find the
optimum partitioning scheme (Li et al. 2008).

The heuristic search algorithm we describe below incor-
porates the increases in efficiency described above but
hugely reduces the number of partitioning schemes that
need to be considered for a given data set. Our method
builds on a recently proposed method (Li et al. 2008) that
involves estimating GTRþG model parameters for each
data block and then progressively merging the data blocks
with the most similar parameter estimates using hierarchical
cluster analysis. For a set of n data blocks, the hierarchical
clusteringmethod objectively defines n partitioning schemes
that range from having n subsets (all data blocks treated in-
dependently) to having a single subset (all data blocks
merged together). The optimal scheme is then selected from
this set of n schemes using an information-theoretic metric
(e.g., the AIC, AICc, or BIC).

Because the hierarchical clustering approach combines
data blocks based on model parameter estimates, it relies
on those parameter estimates being accurate. For many
data blocks, there will be limited information available
for estimating many of the GTRþGmodel parameters. This
will result in these estimates being associated with high
variance because the value of the parameters will have
very little effect on the overall likelihood score. Since the
subsequent hierarchical clustering method treats all
parameters as equally important, uncertain parameter es-
timates might limit the ability of the hierarchical clustering
approach to find optimal partitioning schemes. The
algorithm we propose below overcomes this limitation
by merging data blocks based directly on information-
theoretic comparisons between partitioning schemes.
These metrics are calculated directly from the likelihood
so they implicitly incorporate the relative importance
of different model parameters and so avoid problems
associated with error-prone parameter estimates.

In an analysis with n data blocks, our greedy heuristic
algorithm begins by calculating the information-theoretic
score (e.g., AIC, AICc, or BIC) of the partitioning scheme
with n subsets, that is, the scheme in which each data block
is treated independently (Pstart). It then calculates the score
of all partitioning schemes with n � 1 subsets, that is, all
schemes that merge two subsets of Pstart, and selects the
scheme with the best score (Pmerged). If Pmerged has a better
score than Pstart, Pmerged replaces Pstart, and the algorithm
iterates. The algorithm continues until either Pmerged does
not have a better score than Pstart, or until all data blocks
have been merged into one subset. This process results in
a greedy hill-climbing algorithm that optimizes the
information-theoretic score of interest while searching
for partitioning schemes.

We can calculate the maximum number of partitioning
schemes (Pn_greedy) that would need to be examined by
this algorithm as follows. In addition to the starting
scheme, each round of the algorithm involves calculating
the likelihood of k choose two schemes, where k is the
number of subsets in the best scheme from the previous

round. In the worst case, the algorithm has to continue
until k5 2, at which point the partitioning scheme under
consideration has all data blocks merged into one subset.
Thus, in an analysis with n data blocks, the maximum
number of partitioning schemes Pn_greedy considered by
this algorithm is:

Pn greedy 5 1 þ
Xn
k5 2

�
k
2

�
5 1 þ nðn2 � 1Þ=6:

The maximum number of subsets that need to be ex-
amined by this algorithm (Sn_greedy) is smaller than the
maximum number of partitioning schemes because many
subsets are contained in more than one scheme. Sn_greedy
can be calculated as follows. The starting scheme involves
examining n subsets. In the next round of the algorithm, we
examine all n choose two subsets that merge two data
blocks of the starting scheme. In subsequent rounds, we
need only examine the k � 2 novel subsets that can be
created by merging the most recently created subset with
the remaining subsets in the current partitioning scheme.
Thus, the maximum number of subsets that need to be
considered by this algorithm is:

Sn greedy 5 n2 � n þ 1:

The greedy algorithm can be many orders of magnitude
more efficient than an exhaustive search. For instance,
a data set with 60 data blocks requires the analysis of
B60 5 9.77 � 1059 partitioning schemes and S60 5

1.15 � 1018 subsets for an exhaustive search, but at most
P60_greedy 5 35,991 partitioning schemes and S60_greedy 5
3,541 subsets with the heuristic algorithm described here.

Comparing Exhaustive and Heuristic Searches in
PartitionFinder
We tested the ability of our heuristic algorithm to find
optimal partitioning schemes for ten data sets obtained
from Data Dryad (www.datadryad.org) and TreeBase
(www.treebase.org; table 1). The data sets we used range
from 13 to 164 taxa, from 1,896 to 9,005 bp, and from 6
to 12 data blocks (table 1). They include a range of introns,
protein-coding genes, and RNA genes from the mitochon-
drial and nuclear genomes and are typical of the multilocus
data sets routinely used for phylogenetic analyses.

For each nucleotide sequence alignment (table 1), we
excluded sites that had been excluded by the authors of
the original study and then defined data blocks based
on genes and codon positions, treating transfer RNAs
(tRNAs) as a single data block. For some data sets, we ex-
cluded certain genes used in the original studies in order to
limit the size of each data set to a maximum of 12 data
blocks, thus permitting an exhaustive search of partitioning
schemes. To find the optimal partitioning scheme, we used
the algorithm described above, implemented in Partition-
Finder, to perform an exhaustive search of all possible par-
titioning schemes on each data set. We then used
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PartitionFinder to perform a heuristic search on each data
set using the heuristic algorithm described above and asked
whether the heuristic search was able to find the optimal
partitioning scheme for each data set. For all analyses,
branch lengths were linked between subsets, all 56 available
substitution models were considered for each subset, and
substitution model selection and partitioning scheme
selection were carried out using the BIC. All input files
are available from the authors or from www.datadryad.org.

Comparing Partitioning Schemes Selected by
PartitionFinder to Commonly Used A Priori
Partitioning Schemes
For each data set in table 1, we compared the optimal par-
titioning scheme with four commonly used a priori
schemes: 1) no partitioning (i.e., all data treated as a single
subset); 2) data partitioned by gene; 3) data partitioned by
codon position; and 4) data partitioned by gene and codon
position (see table 2).

We used the user-defined search option in Partition-
Finder to calculate the BIC score of each a priori partition-
ing scheme for each data set. When partitioning by codon
position, we treated codon positions of protein-coding
genes from the mitochondrial and nuclear genomes as
independent subsets and partitioned all other data blocks
(e.g., tRNAs, ribosomal RNAs, and introns) by gene. All
other settings in PartitionFinder were as described above.

Larger Data Sets: Comparing Partitioning Schemes
Selected by PartitionFinder with Those Selected by
Hierarchical Clustering
The hierarchical clustering approach described by Li et al.
(2008) is both computationally intensive and labor-
intensive and has to date been applied to only a single data
set. This data set comprises ten nuclear protein-coding
genes (i.e., 30 data blocks) from 72 ray-finned fish, totaling
7,995 bp (Li et al. 2008). The hierarchical clustering method
was applied to this data set to select optimal partitioning
schemes in four different ways (Li et al. 2008): by estimating
the GTRþG parameters using Maximum likelihood (ML)
and selecting a partitioning scheme based on either the
AIC (HCAIC_ML, table 3) or the BIC (HCBIC_ML, table 3);
and by estimating the GTRþG parameters using Bayesian
inference and selecting a partitioning scheme based on the
either the BIC (HCBIC_Bayes, table 3) or the Bayes factors
(HCBF_Bayes).

We used the heuristic algorithm implemented in Parti-
tionFinder to select partitioning schemes for this data set
using both the AIC (PFAIC, table 3) and the BIC (PFBIC, table
3), with other settings as described above. We then com-
pared all six partitioning schemes (four selected using
hierarchical clustering and two using PartitionFinder) by
optimizing the tree topology under each partitioning
scheme using RAxML v7.2.8 with ten independent topol-
ogy search replicates for each partitioning scheme and
a separate GTRþG model applied to each subset

Table 1. Properties of the Ten Data Sets Used to Compare Different Approaches to Selecting Partitioning Schemes.

Taxon Reference
Number
of Spp. Sites

Loci Used (* denotes
non–protein-coding)

Data
Blocks

Number
of Possible

Partitioning Schemes

Moths Mitchell et al. (2000) 77 1,949 DDC, EF1a 6 203
Bark beetles Cognato and Vogler (2001) 44 1,896 COI, EFIa, 16S* 7 877
Swallowtail butterflies Caterino et al. (2001) 37 3,228 COI, COII, EF1a 9 21,147
Rodents Huchon et al. (2002) 42 3,633 A2AB, IRBP, vWF 9 21,147
Hummingbirds McGuire et al. (2007) 164 3,821 ND2, ND4, Bfib*, AKI*, tRNA* 9 21,147
Skinks Miralles et al. (2011) 33 3,936 BDNF, C-mos, a-Enolase 9 21,147
Midges Ekrem et al. (2010) 74 2,701 COI, COII, CAD, 16S* 10 115,975
Saxifragales (Eudicots) Fishbein et al. (2001) 40 9,005 atpB, matK, rbcL, 18S*, 26S* 11 678,570
Clearwing butterflies Elias et al. (2009) 143 4,159 COI, COII, EFIa, tetkin 12 4,213,597
Armadillos Delsuc et al. (2003) 13 6,070 ADRA2B, BRCA1, vWF, ND1 12 4,213,597

Table 2. A Comparison of Partitioning Schemes Selected Using PartitionFinder and A Priori Approaches.

Data Set
Data

Blocks

Optimum
Partitioning

Scheme (BIC)
PartitionFinder
Search (DBIC)

No Partitioning
(DBIC)

Partitioned
by Gene (DBIC)

Partitioned
by Codon

Position (DBIC)

Partitioned by
Gene and Codon
Position (DBIC)

Moths 6 65,903.2 0 21,775.8 21,541.6 2477.5 0.0
Bark beetles 7 37,911.9 0 21,853.5 21,251.3 2468.2 215.9
Swallowtail butterflies 9 63,152.8 0 24,302.0 23,429.9 21.9 2127.4
Rodents 9 112,900.0 0 22,165.0 22,102.9 291.1 2125.4
Hummingbirds 9 185,747.1 0 26,610.8 22,809.4 229.2 259.5
Skinks 9 9,726.2 0 2195.7 2128.7 2132.5 298.9
Midges 10 82,716.2 0 24,190.6 22,647.6 264.2 252.2
Saxifragales (Eudicots) 11 88,684.2 0 22,814.6 21,208.1 2818.1 2253.3
Clearwing butterflies 12 45,092.8 0 23,608.8 21,898.1 2108.6 2149.9
Armadillos 12 45,828.0 0 23,383.0 21,545.9 21,215.6 2111.4
Mean DBIC 0 23,090.0 21,856.4 2340.7 299.4

NOTE.—The optimum partitioning scheme for each data set was found using the exhaustive search feature in PartitionFinder. The difference in the BIC score between the
optimum scheme and the five other partitioning schemes (DBIC) is shown. Details of data sets are provided in table 1. All BIC scores were calculated in PartitionFinder.
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(Stamatakis 2006). Finally, we calculated the AIC and BIC
scores of each of the six partitioning schemes based on the
likelihoods of the ML topology estimated in RAxML. All
analysis files are available from the authors or from
www.datadryad.org.

Results and Discussion

Heuristic Searches in PartitionFinder Find Optimal
Partitioning Schemes
The heuristic algorithm implemented in PartitionFinder
was able to find the optimal partitioning scheme in all
ten of the data sets that we examined (table 2). For the
moth data set, this result is trivial because the optimal
scheme involves treating all data blocks independently,
and the heuristic algorithm is guaranteed to discover this
scheme because it is used as the starting scheme for the
heuristic search. In all other cases, however, the optimal
scheme had at least two fewer subsets than there were data
blocks. These results suggest that the heuristic search in
PartitionFinder is a reliable method of selecting best-fit
partitioning schemes. This heuristic approach will be of
particular use for large data sets, for which exhaustive
searches are not feasible.

A Priori Approaches to Choosing Partitioning
Schemes Are Usually Suboptimal, but Some
Methods Are Better than Others
Our results demonstrate that commonly used a priori par-
titioning schemes are rarely optimal and are often severely
over- or underparameterized (table 2). From the ten data
sets we examined, there was only a single case in which the
optimal scheme was selected a priori: when partitioning by
gene and codon position with the moth data set (table 2).
For all other cases, a priori partitioning schemes performed
much worse than either exhaustive or heuristic searches in
PartitionFinder. This highlights the utility of methods such
as those presented here, which allow very large numbers of
partitioning schemes to be compared and for the best
scheme to be selected objectively.

Of the four a priori approaches to partitioning that we
compared, not partitioning at all resulted in the worst BIC
scores (on average 3,090 BIC units worse than the optimal
scheme, table 2), followed by partitioning by gene (on av-
erage 1,856 BIC units worse than the optimal scheme), par-
titioning by codon position (on average 341 BIC units
worse than the optimal scheme), and finally partitioning

by gene and codon position (on average 99 BIC units worse
than the optimal scheme). These results highlight that a fail-
ure to partition the data at all or partitioning it by gene
only (which remains surprisingly common in molecular
phylogenetic analyses) can result in highly suboptimal par-
titioning schemes and may severely limit the accuracy of
phylogenetic analyses in some cases. Our results suggest that
in the absence of objective comparisons of large numbers of
partitioning schemes, the most reliable ad hoc approach is to
partition on the basis of gene and codon position, although
even this approach can be highly suboptimal for some data
sets (table 2).

Heuristic Searches in PartitionFinder Outperform
Hierarchical Clustering
The heuristic algorithm implemented in PartitionFinder
selected better partitioning schemes than a recently
proposed hierarchical clustering approach on a ten gene
data set from ray-finned fishes (table 3; Li et al. 2008).
The best scheme selected by PartitionFinder was better
than the best scheme selected using hierarchical clustering
for both the AIC (118 units difference; table 3) and the BIC
(531 units difference; table 3). These improvements are
large and suggest that our heuristic algorithm is able to
overcome some of the limitations of the hierarchical clus-
tering approach (see above).

Conclusions
The methods we have presented increase the efficiency of
comparing and searching for partitioning schemes by many
orders of magnitude. We have demonstrated that they
routinely outperform other ad hoc and objective methods
for choosing partitioning schemes. The implementation of
these methods in freely available open-source software
paves the way for their routine use in molecular phyloge-
netics. Our analyses demonstrate that PartitionFinder can
be used to compare millions of partitioning schemes in
a single run and to select good and often optimal partition-
ing schemes for a large range of DNA data sets. We hope
that PartitionFinder will simplify the selection of partition-
ing schemes and lead to concomitant improvements in
phylogenetic analyses.
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