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Abstract

Background: The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in
tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in
the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are
infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in
order to better understand the evolutionary history of this subtype, which predominates today in the MSM population

Methodology/Principal Findings: We used a combination of phylogenetic analyses and a Bayesian coalescent-based
approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains
that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains
that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the
different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many
different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely
related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is
estimated to be in the early 80’s.

Conclusions/Significance: Our evolutionary reconstructions suggest that multiple subtype C viruses with a common
ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which
most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses.
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Introduction

HIV-1 group M, which predominates in the global HIV/AIDS

epidemic, can be further subdivided into subtypes (A–D, F–H, J,

K), sub-subtypes (A1 to A4, F1 and F2), circulating recombinant

forms (CRF01 to CRF51) and numerous unique recombinant

forms (URFs) (www.hiv.lanl.gov). This genetic diversity has an

impact on almost all aspects of the management of this infection

going from identification and monitoring of infected persons, to

treatment efficacy and vaccine design [1–3]. The classification of

HIV strains has also helped in tracking the course of the HIV

pandemic [4]. Numerous molecular epidemiological studies

showed a heterogeneous geographic distribution of the different

HIV-1 M subtypes and CRFs. The initial diversification of group

M most likely occurred within or near the Democratic Republic of

Congo (DRC) [5,6], where the highest diversity of group M strains

has been observed and the earliest cases of HIV-1 infection (1959

and 1960) have been documented in Kinshasa, the capital city [7].

Different HIV variants have then spread across the world, and the

epidemics in the different continents and countries are the result of

different founder effects. Today, subtype C accounts for 50% of all

infections [8]. The majority of subtype C infections are found in

southern Africa where they represent almost 100% of circulating

HIV-1 strains. Subtype C also predominates in India, Ethiopia

and southern China, and has entered East Africa, Brazil, and

many European countries. With increasing mobility and human

migration, HIV-1 variants inevitably intermix in different parts of

the world and the distribution of the different HIV-1 variants is a

dynamic process.

In Senegal, which is located at the tip of West Africa, both

AIDS viruses, HIV-1 and HIV-2, co-circulate. HIV-2 was first

described in Senegal, but like in other West African countries, the

prevalence of HIV-2 remained low and is decreasing [9,10].

Today HIV-1 predominates and since the description of the first

HIV-1 AIDS case in 1986, HIV-1 seroprevalence remains below

1% in the general population but can reach up to 20% in
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population groups with high risk behavior like female sex workers

(FSWs) or men having sex with men (MSM) [11]. Several studies

showed that CRF02_AG predominates in Senegal, representing

50–70% of circulating strains in the general population and FSWs,

but in contrast to surrounding west African countries, a wide

diversity of other HIV-1 variants co-circulate; subtypes A1, A3, B,

D, F, G, H, CRF01, CRF06, CRF09, CRF11, CRF45 and HIV-1

group O have all been documented [10,12–14]. As mentioned

above, the distribution of HIV-1 subtypes/CRFs can differ

between geographic origins and between population groups.

Recently our studies showed that 40% of MSM in Senegal are

infected with subtype C, which is in strong contrast with 4% to

10% in the general population and FSWs [10,12–15]. The factors

associated with the rapid spread of subtype C and its predomi-

nance in the global epidemic are not entirely known, but in certain

regions where it has been introduced, subtype C has overtaken

other HIV-1 variants [16]. The high prevalence and the rapid

spread of subtype C among MSM needs thus particular attention

because this could also lead to an increase overtime of subtype C

in the general population because more than 90% of MSM

recognize having sex with women [17].

Using a combination of phylogenetic analyses and a Bayesian

coalescent-based approach, we studied the phylogenetic relation-

ships of subtype C isolates from Senegal with other subtype C

strains that were sampled worldwide, in order to define the origin

and onset of the subtype C epidemic in MSM in Senegal.

Results

Origin of subtype C sequences in Senegal
Among the HIV-1 subtype C pol sequences that were

downloaded, we first eliminated all sequences that were not

identified as subtype C (i.e. intersubtype recombinants) by the

REGA-subtyping tool and kept only one isolate per patient. The

final dataset includes a total of 3,081 sequences spanning a

1,011 bp fragment in pol between positions 2,253 and 3,263 on

the HXB2 genome, including 56 (among which 24 MSM and 18

newly sequenced) strains from Senegal (Table 1 and Table S1).

Sequences were included from 4 different continents and 61

countries: Africa (22 countries), the Americas (7 countries), Asia (9

countries) and Europe (23 countries) (Table 2). The majority

(67.73%) of the sequences are from Africa and more precisely from

southern Africa (55.14%) that is South Africa (22.36%) and

Zambia (20.55%), and to a lower extent Botswana (4.32%),

Mozambique (3.18%), Malawi (2.30%), Swaziland (1.53%), and

Zimbabwe (0.91%). Subtype C sequences from Asia are

predominantly from India (355 sequences on a total of 380) and

those from the Americas mainly from southern Brazil (253

sequences on a total of 299). Subtype C sequences from Europe

represent 10.22% of the dataset and are collected from 23 different

countries, without a single country or area that predominates in

the dataset.

The maximum likelihood (PhyML) tree of the 3,081 subtype C

sequences is shown in Figure 1. The strains from Senegal are

highlighted in red, those from southern Africa (South Africa,

Zambia, Zimbabwe, Malawi, Mozambique, Botswana, and

Swaziland) in orange and those from the other African countries,

which are predominantly from East Africa, in yellow. Strains from

Asia, the Americas, and Europe are highlighted in green, purple

and blue respectively. The sequences from Senegal are inter-

spersed with the other African strains, but one significant cluster

(98.9% aLRT support), which comprised all sequences obtained

from MSM from Senegal, was identified. The phylogenetic tree

shows also separate clades for subtype C strains from southern

Africa and one from eastern Africa (cluster B, 75.9% aLRT

support), each of which contains sequences from Senegal. The tree

shows the presence of two other major clusters, one for the

majority of South American (cluster A, purple) and one for the

Asian strains (cluster C, green), each apparently resulting from

different single introductions, but no strain from Senegal was

observed in these clusters. The clusters from South America and

Asia are each supported by 72.7% and 82.3% aLRT values,

respectively. No significant cluster of European subtype C was

observed, they are all interspersed with strains from different

geographic origins mainly in Africa and in Asia and southern

America. In order to exclude the possibility of artifactual

phylogenetic clustering due to drug induced convergent evolution,

especially for the clades from Senegal, the phylogenetic tree

analysis was repeated on an alignment where 43 (i.e. 129 nt,

,12.7% of the full alignment) codon positions known to be

associated with major resistance mutations were removed. This

analysis shows the same subtype C clusters (Figure S1).

The above analysis showed that subtype C was introduced into

Senegal at multiple occasions. Figure 2 shows in more details the

subtype C sequences that are most closely related to those

observed in Senegal. As described in Materials and Methods, only

sequences that branched with one or more sequences from

Senegal until the second ancestral node in the phylogenetic tree of

the 3,081 sequences, were used for this subtree. In addition to the

56 sequences from Senegal, 121 other subtype C sequences were

included (Table S2), representing 5.7% of the total alignment.

Figure 2 shows the tree obtained by PhyML with strains colored

according to their geographic origin (the same tree with strain

names is available in Figure S2). HIV-1 strains from Zambia are

represented by a separate color in this tree because strains from

this country are frequently present. The majority of the subtype C

strains from Senegal and those from the MSM cluster (node C) are

falling in clusters (aLRT .85%) which are mainly represented by

strains from Zambia and other countries from southern Africa (for

example node A, E and F). Nevertheless, some strains from

Senegal are related to subtype C from east African countries

(majority Ethiopia: node D). Although the exact country at the

origin of the most recent common ancestor of the MSM strains

remains uncertain, this was most likely in southern Africa. The first

ancestral node to the MSM cluster (node B) suggests an origin in

Zambia, but this node is only supported with 83.7% aLRT and

11% bootstrap values. The first ancestral node (node A), supported

by an aLRT value of 94.7% and a bootstrap value of 49%,

contains mainly strains from Zambia but also from other southern

African countries. The Bayesian phylogenetic tree analysis

performed with MrBayes shows similar results (Figure S3).

Dating the subtype C epidemic in Senegal and MSM
population
We used a Bayesian MCMC approach implemented in

BEASTv1.6.1 to estimate the dates of the most recent common

ancestors (MRCAs) for the subtype C sequences from Senegal in

the general population and for the subtype C epidemic in the

MSM population. We used the Bayesian skyride population

growth model associated to three molecular clock models: strict,

relaxed uncorrelated lognormal, and relaxed uncorrelated expo-

nential. Moreover, we used four different priors on the average

substitution rate among branches with varying informative levels.

Figure 3 shows the resulting estimations of the MRCA dates for

the different models and priors used. More details are provided in

Table S3, including substitution rate estimations.

Bayes factors (BF) indicate that the relaxed exponential model

has a small advantage (BF in the 3 to 5 range) over the relaxed

HIV-1 Subtype C in Senegal
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Table 1. HIV-1 subtype C strains from Senegal included in this study.

Strain identification Accession Number Year of isolation Population group Reference

90SN-90SE364 AY713416 1990 general population [53]

98SN-66HPD AJ583722 1998 general population [54]

99SN-159HALD AJ583716 1999 general population [54]

99SN-142HPD AJ583715 1999 general population [54]

98SN-39HALD AJ287005 1998 general population [55]

99SN-86HPD AJ583739 1999 general population [54]

04SN-MS003 FM210753 2004 MSM [15]

04SN-MS883 FM210752 2004 MSM [15]

04SN-MS855 FM210749 2004 MSM [15]

04SN-MS835 FM210745 2004 MSM [15]

04SN-MS821 FM210741 2004 MSM [15]

04SN-MS816 FM210740 2004 MSM [15]

04SN-MS779 FM210737 2004 MSM [15]

04SN-MS700 FM210736 2004 MSM [15]

04SN-MS540 FM210726 2004 MSM [15]

04SN-MS522 FM210725 2004 MSM [15]

04SN-MS492 FM210723 2004 MSM [15]

04SN-MS048 FM210722 2004 MSM [15]

04SN-MS481 FM210718 2004 MSM [15]

04SN-MS477 FM210717 2004 MSM [15]

04SN-MS475 FM210716 2004 MSM [15]

04SN-MS448 FM210712 2004 MSM [15]

04SN-MS422 FM210709 2004 MSM [15]

04SN-MS245 FM210699 2004 MSM [15]

04SN-MS029 FM210691 2004 MSM [15]

04SN-MS015 FM210689 2004 MSM [15]

04SN-MS011 FM210687 2004 MSM [15]

04SN-MS010 FM210686 2004 MSM [15]

04SN-MS007 FM210685 2004 MSM [15]

04SN-MS002 FM210684 2004 MSM [15]

03SN-980HALD FN599776 2003 general population [14]

03SN-965HALD FN599773 2003 general population [14]

02SN-510HALD FN599737 2002 general population [14]

99SN-67HDP FN599718 1999 general population [14]

09SN-SNA3-366 HM002544 2009 not known unpublished

08SN-SNA3-220 HM002517 2008 not known unpublished

08SN-SNA3-191 HM002515 2008 not known unpublished

07SN-SNA3-107 HM002507 2007 not known unpublished

02SN-260HALD HE588158 2002 general population this study

03SN-154HALD HE588157 2003 general population this study

03SN-321HALD HE588156 2003 general population this study

03SN-L065 HE588149 2003 general population this study

06SN-463HALD HE588155 2006 general population this study

07SN-2658HALD HE588150 2007 general population this study

07SN-2909HALD HE588151 2007 general population this study

07SN-2911HALD HE588152 2007 general population this study

07SN-2936HALD HE588153 2007 general population this study

07SN-3076HALD HE588154 2007 general population this study

00SN-102HALD HE588159 2000 general population this study

97SN-1119 HE588162 1997 general population this study

HIV-1 Subtype C in Senegal
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lognormal model, which in turn is slightly better (BF in the 3 to

6 range) than the strict molecular clock. However, the relaxed

exponential model becomes non-informative when non- or

poorly informative priors on the substitution rate are used

(U[0,1] and N[2.561023, 1061024], see Materials and

Methods), which reveals spurious peaks leading to very large

(up to ,400 years) 95% Highest Posterior Density (HPD)

intervals and unrealistic estimates. Except in these two cases, the

results with all models and priors are quite consistent. As

expected, when we used more informative priors we obtained

more restricted 95% HPD intervals. Nevertheless, the median

date estimates of the MRCAs of subtype C in the general

population of Senegal and for the MSM cluster are similar for

all models and priors, indicating likely epidemic origins in the

early 80’s, in the MSM population. The MRCA for the subtype

C strains that entered at multiple occasions into the general

population (i.e. heterosexual or mother to child transmission), is

estimated in the early 70’s.

To illustrate in more detail the MRCA of the subtype C strains

in the MSM population and their relation to the other HIV-1 C

strains from Senegal, the maximum clade credibility (MCC) tree

with time scale obtained from BEAST is shown in Figure 4. We

see the same MSM cluster as in the phylogeny of Figure 2 (see also

Figure S2 and S3), and the early 70’s and 80’s dates for the

MRCAs of general and MSM population respectively.

We verified whether presence of drug resistance mutations

could have an impact on MRCA dates and substitution rate

estimations. Therefore calculations were repeated on the three

different molecular clock models and for the four priors on an

alignment where 43 codon positions known to be associated with

major resistance mutations were removed. This analysis showed

no significant difference, compared to the results obtained with the

complete alignment (Table S3 for details on estimations and

Figure S4 for the MCC tree with time scale).

Finally, our reconstruction of the demographic history of HIV-1

C in Senegal identified an initial, slow growth phase until the end

of the 70’s followed by a period of quick exponential-like growth at

the end of the 90’s where the epidemic growth became slower

(Figure 5).

Discussion

In this study we analyzed the geographical origins and

introduction dates of HIV-1 subtype C in Senegal in order to

better understand the evolutionary history of this subtype which

predominates today in the MSM population [15]. Our evolution-

ary reconstructions suggest that multiple subtype C viruses with a

common ancestor originating in the early 1970s entered the

country, followed by a sharp growth of the effective number of

infections over the next decade.

This analysis of more than 3,000 globally collected reference

sequences most likely provides an adequate representation of

global subtype C diversity, and provides also additional informa-

tion on the subtype C epidemic in other continents. The

phylogenetic tree analysis showed several major clusters of subtype

C sequences, mainly related to the continent of origin, like Asia,

Southern America or Africa, except for Europe. Interestingly,

among the African strains, a separate cluster of strains derived

from patients living in east African countries was observed [18],

and subtype C strains from Europe do not form a separate cluster

and are interspersed among the different continents and major

clusters. Our data also confirm the previously reported link of the

subtype C epidemic in Brazil with east Africa [19–22].

Our analyses with various methods (PhyML, MrBayes and

BEAST) showed a significantly well-supported cluster which

contained all subtype C strains that circulate among MSM in

Senegal. The MSM cluster and other strains from Senegal are

widely dispersed among the different subclusters of African strains,

suggesting multiple introductions of subtype C into Senegal from

many different southern and also eastern African countries. More

detailed analyses showed that the majority of the HIV-1 C strains

from Senegal, including those circulating among MSM, are more

closely related to strains from southern African countries, mainly

Zambia. The cluster of subtype C strains derived from the MSM

population includes also strains from HIV-1 infected men from

Senegal, who were not identified as MSM. Homosexuality is illegal

in Senegal and male-to-male sex is condemned by political and

religious authorities and by the general population, therefore most

MSM keep their sexual life secret, including from their own family

and more than 90% of MSM reported having sex also with

women [17]. Thus, these additional strains in the MSM cluster are

most likely from individuals with male-to-male sex activities.

Subtype C in MSM may have its origin directly from southern

Africa but it is also possible that the ancestor of this subtype C

cluster circulated already for a certain period in the general

population in Senegal before it was introduced into the MSM

group.

The wide diversity and multiple introductions of subtype C fit

also with the distribution of the HIV-1 variants in the general

population in Senegal. Several studies showed that in addition to

CRF02_AG, many other HIV-1 subtypes and CRFs are also

present in the country, reflecting multiple introductions [10,12–

14]. This is most likely related to the important trading activity

and travel links of the country with many other African countries

[23,24]. Our estimates suggest that the MRCA of the subtype C

strains that entered Senegal was in the early 1970’s, about 10–15

years before the description of the first HIV-1 AIDS case in the

country or the first HIV-1 subtype C strain in 1988 in Senegal

[25]. The MRCA date estimate of subtype C in Senegal is

Table 1. Cont.

Strain identification Accession Number Year of isolation Population group Reference

02SN-478HALD HE588163 2002 general population this study

97SN-14Fann HE588165 1997 general population this study

97SN-25Fann HE588164 1997 general population this study

96SN-1083 HE588166 1996 general population this study

97SN-1186 HE588161 1997 general population this study

97SN-1189 HE588160 1997 general population this study

doi:10.1371/journal.pone.0033579.t001
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relatively close to those estimated in other African countries, like

1966 for subtype C in Ethiopia [26], beginning of the 70’s for

Zimbabwe [27] or in the late 60’s for Malawi [28]. As expected,

we found that MRCA of subtype C in Senegal is not specific,

because multiple introductions occurred, and our MRCA date

estimate corresponds most likely to those of subtype C strains

outside Senegal. In contrast to southern African countries, subtype

C did not become the predominant strain in Senegal and did only

spread efficiently in the MSM population, underlining the

importance of high risk behavior in spread of viruses [29]. The

MRCA of subtype C in the MSM population is estimated in the

early 80’s and is the result of a single introduction. This estimate

coincides with the period where the HIV-1 C epidemic started a

quick exponential-like growth phase in Senegal for nearly 15 years

according to the Bayesian skyride analysis.

Our study showed also that analysis of alignments with or

without codons that are associated with drug resistance did not

have a significant impact on phylogenetic clustering or on MRCA

date and substitution rate estimations. Among the different

molecular clock models used, Bayes factors suggested the use of

the relaxed exponential molecular clock above the most frequently

used relaxed lognormal molecular clock. However, the very large

confidence intervals and convergence problems with the expo-

nential model with poorly informative priors, and the almost

similar results with informative priors for both models are

probably at the basis for the preferential use of the relaxed

lognormal molecular clock model for HIV.

Previous studies suggest that subtype C could spread more

efficiently due to the predominance of CCR5 variants or a

stronger predisposition for localization in the female genital

mucosa than other subtypes, which may facilitate both vertical and

heterosexual transmission [30–33]. Increase of subtype C could

also have implications on treatment because other subtype C

specific mutations have been documented and commercial drug

resistance assays cannot correctly test subtype C infections [2,34–

Table 2. Numbers of HIV-1 subtype C strains from different
countries that were included in this study.

Continent Country Number %

Africa 2087 67.73

Botswana 133 4.32

Burundi 91 2.95

Democratic Republic of Congo 19 0.62

Djibouti 1 0.03

Equatorial Guinea 1 0.03

Eritrea 2 0.06

Ethiopia 99 3.21

Gabon 1 0.03

Kenya 4 0.13

Malawi 71 2.30

Mali 1 0.03

Mozambique 98 3.18

Niger 4 0.13

Senegal 56 1.82

Somalia 1 0.03

South Africa 689 22.36

Sudan 10 0.32

Swaziland 47 1.53

Tanzania 82 2.66

Uganda 16 0.52

Zambia 633 20.55

Zimbabwe 28 0.91

America 299 9.71

Argentina 8 0.26

Brazil 253 8.21

Cuba 25 0.81

Honduras 1 0.03

United States of America 9 0.29

Uruguay 2 0.06

Venezuela 1 0.03

Asia 380 12.33

China 7 0.23

India 355 11.52

Israël 5 0.16

Myanmar 1 0.03

Philippines 1 0.03

Russia 1 0.03

South Korea 2 0.06

Taiwan 1 0.03

Yemen 7 0.23

Europe 315 10.22

Austria 3 0.10

Belgium 35 1.14

Cyprus 8 0.26

Czech Republic 11 0.36

Danmark 21 0.68

Finland 6 0.19

Table 2. Cont.

Continent Country Number %

France 7 0.23

Georgia 1 0.03

Germany 7 0.23

Greece 3 0.10

Italy 22 0.71

Luxemburg 3 0.10

Norway 16 0.52

Poland 2 0.06

Portugal 28 0.91

Roumania 35 1.14

Slovakia 1 0.03

Spain 26 0.84

Sweden 64 2.08

Switzerland 2 0.06

The Netherlands 8 0.26

Ukraine 3 0.10

United Kingdom 3 0.10

Total 3081

doi:10.1371/journal.pone.0033579.t002
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36]. A cross-sectional study of women in Kenya indicated that

women infected with subtype C had a higher viral load and lower

CD4 counts than those infected with subtypes A and D, which

could also have an impact on pathogenesis and transmission [37].

Therefore, it is important to continue to monitor HIV-1 subtype/

CRF distribution among different population groups in Senegal.

However, in order to be able to compare trends over time, such

studies should be organized in a standardized way. For example,

WHO proposed standardized protocols for surveillance of drug

resistance mutations in recently infected individuals [38]. These

studies can be combined with subtype/CRF characterization.

Because MSM reported having sex also with women, they could

potentially serve as a bridge between high-risk men and low-risk

women. This sexual mixing pattern might contribute in the future

to the subsequent increase of subtype C in the general population.

An increase from 4% in 2000 to almost 10% between 2000 and

2010 among the general population in Senegal has already been

observed, and subtype C sequences recently obtained from HIV-1

C infected women in 2011 that cluster within the clade of strains

from the MSM population have now been observed (Coumba

Toure Kane, unpublished results). Understanding the origins and

dispersal patterns of HIV-1 clades at regional and country levels is

Figure 1. Maximum likelihood phylogenetic tree based on 3,081 HIV-1 subtype C pol sequences. Maximum likelihood (PhyML)
phylogenetic tree based on 1,011 nucleotide sites of pol gene sequence (nucleotides 2,253–3,263 of HXB2 coordinates) from 3,081 HIV-1 subtype C
isolates. Sequences were isolated in the countries shown in Table 2. Sequences are colored to their region of origin: Senegal in red, Southern African
countries (South-Africa, Botswana, Malawi, Mozambique, Swaziland, Zambia and Zimbabwe) in orange, other African countries (mainly from the East)
in yellow, North and South America in purple, Asia in green and Europe in blue. The branch support (aLRT) of clade A, B, C and MSM are of 73%, 76%,
82% and 99% respectively.
doi:10.1371/journal.pone.0033579.g001
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useful to improve the characterization and control of HIV spread.

Continuous monitoring of HIV variants seems necessary to adapt

treatment and vaccine strategies to be efficient against local and

contemporary circulating HIV variants.

Materials and Methods

Nucleotide sequence dataset
In order to increase the number of sequences and to cover a

wide geographic range, we used the pol region for our analysis. Pol

sequences are highly studied because they are the target of

antiretroviral drugs. A total of 56 subtype C pol gene sequences

from Senegal were used in this study. Thirty-eight were obtained

from the Los Alamos HIV sequence database (www.hiv.lanl.gov)

from previously published reports and eighteen were newly

characterized from ongoing molecular epidemiology and/or drug

resistance studies mainly in Dakar, the capital city of Senegal

(Table 1). We downloaded only sequences that were at least 1,000

nucleotides in length and spanning the genomic region which

covers protease and majority of RT in pol between positions

2,253–3,263 on the HXB2 genome. Sequences were from blood

samples collected between 1990 and 2009. In addition, all

available subtype C sequences spanning the same genomic region

and for which country of origin and sampling year were known,

were also downloaded from the Los Alamos HIV database (www.

hiv.lanl.gov). We then submitted all the sequences to the REGA

Figure 2. Maximum likelihood phylogenetic tree constructed from 56 HIV-1 C pol sequences from Senegal and 121 close relatives.
Detailed maximum likelihood (PhyML) phylogenetic tree constructed using 1,011 nucleotide sites of pol gene sequence (nucleotides 2,253–3,263 of
HXB2 coordinates) from 177 HIV-1 subtype C isolates from Senegal and close relatives (see text). Branch support values (bootstrap and aLRT) are
displayed (see figure legend). Colors indicate the geographic origin and sequences were isolated in the following countries: 56 in red from Senegal,
25 in orange from Zambia, 49 in yellow from southern Africa (Botswana 6; Mozambique 5; Swaziland 2; South Africa 35; Zimbabwe 1), 12 in green
from East Africa (Burundi 2; Ethiopia 9; Kenya 1; Sudan 2), 3 in blue from other African countries (DRC 1; Equatorial Guinea 1; Gabon 1) and 30 in black
from European and Asian countries (Belgium 4; China 1; Germany 2; Denmark 1; Spain 5; France 1; Greece 1; Israel 1; India 1; Italia 1; Luxembourg 1;
Norway 2; Portugal 2; Sweden 7).
doi:10.1371/journal.pone.0033579.g002
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Figure 3. Dating the subtype C epidemic in general and MSM populations in Senegal. Coalescent based estimations (BEAST) and 95%
highest posterior density (HPD) intervals of the MRCA dates of 56 HIV-1 subtype C pol sequences obtained from the general and the MSM population.
Results are displayed for all tested substitution rate priors and molecular clock models, except for relaxed exponential with both less informative
priors which provides very large 95% HPD intervals and shows convergence problems (see Table S3 for detailed results, including substitution rate
estimations).
doi:10.1371/journal.pone.0033579.g003

Figure 4. Bayesian tree with timescale of 56 HIV-1 C pol sequences from Senegal. Maximum clade credibility tree with time scale obtained
with BEAST using 1,011 nucleotide sites of pol gene sequences (nucleotides 2,253–3,263 of HXB2 coordinates) from 56 HIV-1 subtype C isolates from
Senegal. This tree is obtained using the relaxed uncorrelated lognormal molecular clock model and moderately informative substitution rate prior
(Normal: 2.561023,7.561024). Clades with posterior probabilities $95% are indicated by diamonds. MSM isolates are colored in red.
doi:10.1371/journal.pone.0033579.g004
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subtyping tool v.2 to confirm subtype assignments and to eliminate

eventual intersubtype recombinants [39,40]. We selected one

sequence per individual when sequential sequences were available

or when sequences were epidemiologically linked by direct donor–

recipient transmission.

HIV-1 pol sequencing
The 18 new HIV-1 pol sequences were obtained with an in-

house technique as previously described [41]. Briefly, RNA was

extracted using the QIAamp Viral RNA extraction kit (Qiagen

SA, Courtabeauf, France) and processed for reverse transcription

polymerase chain reaction (RT-PCR) with the integrase specific

primer IN3 59-TCTATBCCATCTAAAAATAGTACTTTCCT-

GATTCC-39 using the Expand reverse transcriptase (Roche

Diagnostics, Meylan, France) according to the manufacturer’s

instructions. The resulting cDNA served as template in the

subsequent nested PCR reaction during which a 1,865 base pairs

fragment, corresponding to the protease and the first 440 amino

acids of the reverse transcriptase region of the pol gene, was

amplified with previously described primers and cycling conditions

using the Expand Long Template PCR system (Roche Diagnos-

tics, Meylan, France). The amplified HIV-1 nucleic acid fragments

were purified using the Geneclean Turbo Kit (Q-Biogen,

MPbiomedicals, France) and directly sequenced with primers

encompassing the pol region using BigDye Terminator version 3.1

(Applied Biosystems, Courtaboeuf, France) according to the

manufacturer’s instructions. Electrophoresis and data collection

were done on an Applied Biosystems 3130XL Genetic Analyzer.

The sequenced fragments from both strands were reconstituted

using Seqman II from the DNAstar package v5.08 (Lasergene,

Madison, WI, USA).

Sequence alignment and phylogenetic tree analysis
The 18 newly obtained sequences were aligned with the

alignment of subtype C sequences downloaded from the Los

Alamos HIV database, using the L-INS-i method from MAFFT

[42,43], and then manually edited with MEGA5 [44]. The HXB2

subtype B prototype strain was used as outgroup. In order to study

potential bias due to drug-induced convergent evolution, all our

analysis were also repeated on an alignment for which we removed

43 codon positions known to be associated with major resistance

mutations according to the WHO-list of 2009 [45]. The following

positions were excluded for protease (23, 24, 30, 32, 46, 47, 48, 50,

53, 54, 73, 76, 82, 83, 84, 85, 88, 90) and RT (41, 65, 67, 69, 70,

74, 75, 77, 100, 101, 103, 106, 115, 116, 151, 179, 181, 184, 188,

190, 210, 215, 219, 225, 230), leaving 882 nt in the final

alignment. Both complete (1,011 nt) and restricted (882 nt)

sequence alignments are available from the authors upon request.

Maximum Likelihood phylogenies were inferred using the

GTR+I+C4 nucleotide substitution model recommended by [46]

and implemented in PhyML v3.0 [47]. The SPR option was

selected to search the tree space and aLRT SH-like branch

supports were used to assess confidence in topology [48]. The

phylogenetic tree was drawn with FIGTREE (tree.bio.ed.ac.uk/

software/figtree/).

In order to better determine and visualize the relationship of the

subtype C sequences from Senegal to those from other geographic

areas, another phylogenetic analysis was performed with less

sequences. For this subtree, we collected from the large, previous

phylogenetic tree, all descendant sequences of nodes that are first

or second level ancestor of at least one sequence from Senegal (i.e.,

all Senegalese sequences plus their sisters and close relatives). A

phylogeny was then inferred, using the same method and options

as described above, but in addition to aLRT we ran a non-

parametric bootstrap with 100 replicates to obtain a second

assessment of branch supports. A phylogenetic analysis on this

subset of sequences was also inferred using MrBayes v3.1 [49] with

the same substitution model as for the maximum likelihood tree,

and with chain length and tree sampling frequency of 56107 and

16104 generations, respectively. A burn-in of 2,000 sampled trees

(i.e. ,40%) was selected. By the end of the run, the average

Figure 5. Bayesian skyride plot of HIV-1 C demographic growth in Senegal using 56 pol sequences. Estimates of HIV-1 C effective
number of infections (Ne) over time from 56 Senegalese pol sequences using a Bayesian skyride plot in BEAST with relaxed uncorrelated lognormal
molecular clock and moderately informative substitution rate prior (ucld.mean Normal: 2.561023, 7.561024). The X-axis represents the time in year.
The Y-axis represents the HIV-1 effective number of infections (log10 scale). The black line marks the median estimate for Ne and the blue shadow
region displays the 95% highest posterior density (HPD) interval.
doi:10.1371/journal.pone.0033579.g005
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standard deviation of split frequencies was below 0.01 and the

potential scale reduction factor of every parameter was in the

range [0.999, 1.001], except the parameter pinvar which is at

1.002, proving the convergence of the Markov chains (see

MrBayes manual).

Dating the introduction of subtype C in Senegal and
MSM population
Estimates of the substitution rate and dates of the most recent

common ancestor (MRCA) of subtype C in Senegal and in the

sub-epidemic in MSM were obtained using BEAST v1.6.1 [50].

The 56 pol gene subtype C sequences from Senegal were analyzed

under a GTR+I+C4 substitution process (as for phylogenetic

analyzes). We used three different molecular clock models (strict

clock, relaxed uncorrelated exponential and relaxed uncorrelated

lognormal) [51] as implemented in BEAST with a Bayesian

skyride tree prior as a coalescent demographic model with time-

aware smoothing [52]. For the parameters of each molecular clock

model (ucld.mean, uced.mean and clock.rate for the relaxed

lognormal, relaxed exponential and strict molecular clock

respectively) we tested a total of four different priors, one non-

informative prior based on a uniform distribution (between 0.0

and 1.0) and three priors with varying information levels based on

normal distribution with a mean of 2.561023 (based on

estimations from a previous study [27] in the same genomic

region and as estimated by Path-O-Gen: tree.bio.ed.ac.uk/

software/pathogen/) and standard deviations of 1061024,

7.561024, and 5.061024, respectively. For the ucld.stdev

parameter (representing the variability of the rates among

branches for the relaxed lognormal molecular clock) we used a

prior based on an exponential distribution with mean of 0.1

(personal communication with A. Drummond). MCMC simula-

tions were run for 2.56108 chain steps with sub-sampling every

2.56105 steps. Convergence of the chains was inspected using

Tracer v.1.5. For each tested prior and for each parameter,

effective sample size (ESS) values were always above 300. The

Bayes Factor was calculated to compare molecular clock models,

using marginal likelihood as implemented in Tracer v.1.5. The

Maximum Clade Credibility with time scale (MCC) tree was

obtained by TreeAnnotator v1.6.1 with a burn-in of the first

hundred trees.

Supporting Information

Figure S1 Maximum likelihood phylogenetic tree based

on 3,081 HIV-1 subtype C pol sequences, without codons

associated to drug resistance in PR and RT. Maximum

likelihood phylogenetic tree (PhyML, with the same options as for

the tree in Figure 1) based on 882 nucleotide sites of pol gene

sequence from 3,081 HIV-1 subtype C isolates; nucleotide sites

with coordinates 2,253–3,263 of HXB2 are included, but codon

positions known to be associated with major resistance mutations

according to the WHO-list of 2009 were removed (see Materials

and Methods). Sequences were isolated in the countries shown in

Table 2. Sequences are colored according to their region of origin:

Senegal in red, Southern African countries (South-Africa,

Botswana, Malawi, Mozambique, Swaziland, Zambia and Zim-

babwe) in orange, other African countries (mainly from the East)

in yellow, North and South America in purple, Asia in green and

Europe in blue. The branch support (aLRT) of clades A, B, C and

MSM are respectively of 94%, 92%, 83% and 96%.

(JPG)

Figure S2 Maximum likelihood phylogenetic tree con-

structed of 56 HIV-1 C pol sequences from Senegal and

121 close relatives. Detailed maximum likelihood (PhyML)

phylogenetic tree constructed using 1,011 nucleotide sites of pol gene

sequence (nucleotides 2,253–3,263 of HXB2 coordinates) from 177

HIV-1 subtype C isolates from Senegal and close relatives (see

Materials and Methods) as shown in Figure 2 but names of the

strains are added. Branch support values (bootstrap and aLRT) are

displayed (see figure legend). Colors indicate the geographic origin

and sequences were isolated in the following countries: 56 in red

from Senegal, 25 in orange from Zambia, 49 in yellow from

southern Africa (Botswana 6; Mozambique 5; Swaziland 2; South

Africa 35; Zimbabwe 1), 12 in green from East Africa (Burundi 2;

Ethiopia 9; Kenya 1; Sudan 2), 3 in blue from other African

countries (DRC 1; Equatorial Guinea 1; Gabon 1) and 30 in black

from European and Asian countries (Belgium 4; China 1; Germany

2; Denmark 1; Spain 5; France 1; Greece 1; Israel 1; India 1; Italia

1; Luxembourg 1; Norway 2; Portugal 2; Sweden 7).

(TIFF)

Figure S3 Bayesian phylogenetic tree of 56 HIV-1 C pol

sequences from Senegal and 121 close relatives. Detailed

Bayesian phylogenetic tree (MrBayes, same model and similar

options as for the tree in Figure 2, see Materials and Methods)

constructed using 1,011 nucleotide sites of pol gene sequence

(nucleotides 2,253–3,263 of HXB2 coordinates) from 177 HIV-1

subtype C isolates from Senegal and close relatives. Clades with

posterior probabilities $95% are shown. Colors indicate the

geographic origin of the sequences, which were isolated in the

following countries: 56 in red from Senegal, 25 in orange from

Zambia, 49 in yellow from southern Africa (Botswana 6;

Mozambique 5; Swaziland 2; South Africa 35; Zimbabwe 1), 12

in green from East Africa (Burundi 2; Ethiopia 9; Kenya 1; Sudan

2), 3 in blue from other African countries (DRC 1; Equatorial

Guinea 1; Gabon 1) and 30 in black from European and Asian

countries (Belgium 4; China 1; Germany 2; Denmark 1; Spain 5;

France 1; Greece 1; Israel 1; India 1; Italia 1; Luxembourg 1;

Norway 2; Portugal 2; Sweden 7).

(TIFF)

Figure S4 Bayesian tree with timescale of 56 HIV-1 C

pol sequences from Senegal, without sites associated to

major, known resistance in PR and RT. Maximum clade

credibility tree with time scale obtained with BEAST using 1,011

nucleotide sites of pol gene sequences (nucleotides 2,253–3,263 of

HXB2 coordinates) from 56 HIV-1 subtype C isolates from

Senegal. This tree is obtained using the relaxed uncorrelated

lognormal molecular clock model and moderately informative

substitution rate prior (Normal: 2.561023, 7.561024). Clades with

posterior probabilities $95% are indicated by diamonds. MSM

isolates are colored in red.

(TIFF)

Table S1 Genbank accession numbers per country of

subtype C HIV-1 strains included in the study.

(DOC)

Table S2 Details of the strains included in the restricted

phylogenetic tree analysis from Figures 2, S2 and S3.

(PDF)

Table S3 Dating the subtype C epidemic in general and

MSM populations in Senegal. Coalescent based estimations

(BEAST) and 95% highest posterior density (HPD) intervals of the

MRCA dates and substitution rates of 56 HIV-1 subtype C pol

sequences obtained from the general and the MSM population.

Results are displayed for all tested substitution rate priors and

molecular clock models.

(PDF)
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