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Abstract 

Most protein substitution models use a single amino acid replacement matrix summarizing 

the biochemical properties of amino acids. However, site evolution is highly heterogeneous 

and depends on many factors that influence the substitution patterns. In this paper we 

investigate the use of different substitution matrices for different site evolutionary rates. 

Indeed, the variability of evolutionary rates corresponds to one of the most apparent 

heterogeneity factors among sites, and there is no reason to assume that the substitution 

patterns remain identical regardless of the evolutionary rate. We first introduce LG4M, which 

is composed of four matrices, each corresponding to one discrete gamma rate category (out of 

four). These matrices differ in their amino acid equilibrium distributions and in their 

exchangeabilities, contrary to the standard gamma model where only the global rate differs 

from one category to another. Next, we present LG4X, which also uses four different 

matrices, but leaves aside the gamma distribution and follows a distribution-free scheme for 

the site rates. All these matrices are estimated from a very large alignment database, and our 

two models are tested using a large sample of independent alignments. Detailed analysis of 

resulting matrices and models shows the complexity of amino acid substitutions and the 

advantage of flexible models such as LG4M and LG4X. Both significantly outperform 

single-matrix models, providing gains of dozens to hundreds of log-likelihood units for most 

data sets. LG4X obtains substantial gains compared to LG4M, thanks to its distribution-free 

scheme for site rates. Since LG4M and LG4X display such advantages but require the same 

memory space and have comparable running times to standard models, we believe that 

LG4M and LG4X are relevant alternatives to single replacement matrices. Our models, data 

and software are available from http://www.lirmm.fr/~le/LG4X/. 

Keywords:  amino-acid substitutions, replacement matrices, gamma and distribution-free 

rate models, maximum likelihood estimations, phylogenetic inference 
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Introduction 

Amino acid replacement matrices ─20x20 matrices containing estimates of the 

instantaneous substitution rates of any amino acid by another─ are essential in most methods 

to infer protein phylogenies. These matrices are expected to capture the biological and 

physico-chemical properties of amino acids. They are used in distance-based methods to 

estimate the evolutionary distance ─the expected number of substitutions per site─ between 

sequence pairs. In maximum likelihood and Bayesian methods, they are used to compute 

substitution probabilities along tree branches, and hence the likelihood of the data (see 

textbooks, e.g., Felsenstein 2003; Yang 2006). 

The standard approach to infer protein phylogenies is based on the use of a single 

replacement matrix. Several general matrices estimated from very large sets of taxa and 

alignments have been proposed since the pioneering work of Dayhoff, Eyck and Park (1972), 

notably JTT (Jones, Taylor and Thornton 1992), WAG (Whelan and Goldman 2001) and LG 

(Le and Gascuel 2008). Some studies showed that specific matrices should be used for certain 

analyses, for example with membrane (Jones, Taylor and Thornton 1994) or mitochondrial 

(Yang, Nielsen and Hasegawa 1998) proteins, but general matrices are usually robust and 

tend to perform well in many cases (Keane et al. 2006). However, site evolution is highly 

heterogeneous and depends on many factors such as genetic code, solvent accessibility, 

secondary and tertiary structure, and protein functions. Most notably, some sites are subject 

to strong evolutionary pressure and evolve slowly due to their role in the structure or 

functions of the protein, while others are much less constrained and accumulate substitutions 

rapidly. In the standard approach, this variability is modeled by discrete gamma rate 

categories, which are used to modulate the (unique) replacement matrix being selected,  

depending on the site rates (Yang 1993). As site rates are unknown, all rates are envisaged for 

every site and accounted for thanks to a mixture approach (see textbooks, e.g., Gascuel and 

Guindon 2007).  

However, many works revealed that depending on site specificities, not only do the global 

rates vary, but also the substitution patterns. Notably, buried sites (typically slow) and 
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exposed sites (typically fast) obey very different matrix models (Koshi and Goldstein 1995; 

Lio et al. 1998; Goldman, Thorne and Jones 1998; Holmes and Rubin 2002; Le, Lartillot and 

Gascuel 2008; Le and Gascuel 2010). To a lesser extent, it was also shown that substitution 

processes vary among secondary structures (Koshi and Goldstein 1995; Thorne, Goldman 

and Jones 1996; Le, Lartillot and Gascuel 2008; Le and Gascuel 2010). All of these works 

(and others) thus explored site-dependent models using several matrices or profiles.  

In the profile approach (Koshi and Goldstein 1998; Lartillot and Philippe 2004; Le, 

Gascuel and Lartillot 2008), sets of elementary models defined by their amino acid 

equilibrium frequencies are used; these models rely on simple multinomial processes over the 

20 amino acids ─analogous to the (Felsenstein 1981) model of DNA substitution─ and do not 

use replacement matrices (or only highly simplified ones). In the multi-matrix approach 

(Koshi and Goldstein 1995; Thorne, Goldman and Jones 1996; Goldman, Thorne and Jones 

1998; Le, Lartillot and Gascuel 2008), different matrices are used for different site categories. 

The model introduced by Wang et al. (2008) is a compromise between these two approaches 

as it uses several (full range) matrices that only differ in their amino acid equilibrium 

distributions (see also Lartillot and Philippe 2004, for a similar model). In all cases, the set of 

profiles or matrices is combined thanks to a mixture approach or a HMM (Felsenstein and 

Churchill 1996; Thorne, Goldman and Jones 1996). In recent studies (Le, Gascuel and 

Lartillot 2008; Le, Lartillot and Gascuel 2008; Wang et al. 2008) this first-level mixture is 

combined with a second-level mixture corresponding to the standard gamma rate categories. 

This combination was shown to be quite accurate, but is computationally heavy as both the 

computing time and the memory consumption are roughly proportional (see, e.g., Bryant, 

Galtier and Poursat 2005) to the number of site categories (e.g., 12 with four gamma 

categories and three biochemical categories).  

In this paper we investigate simpler models, where sites are categorized depending on 

their evolutionary rate, and different replacement matrices are used for each site category. 

Indeed, the variability of evolutionary rates corresponds to the one of most apparent 

heterogeneity factor among sites, and there is no reason to suppose (as in the standard 
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approach) that the substitution pattern remains identical regardless the evolutionary rate.  For 

example, we expect slow sites to be mostly hydrophobic (and fast sites to be hydrophilic), 

which implies that the amino-acid equilibrium frequencies should vary depending on the site 

rate. Investigated models thus focus on an essential site heterogeneity factor. They refine the 

standard gamma model by using several different replacement matrices, instead of only one 

modulated by a global rate. However, these models are less complex than two-level mixtures 

as they use a single mixture level enabling fair computing times and low memory 

consumption.  

We first verify the use of different matrices for different evolutionary rates that follow a 

discrete gamma distribution. To this end, we estimate a 4-matrix model (LG4M), where each 

matrix corresponds to one standard gamma rate category (4; Yang 1993). Experimental 

results show that LG4M outperforms single-matrix models (JTT+4, WAG+4 and LG+4) 

in terms of tree likelihood, and often infers different tree topologies.  

We then examine the limitation of constraining rates to a gamma distribution by testing a 

model of four matrices where rates and weights of the four matrices are freely estimated. To 

this end, we estimate another 4-matrix model (LG4X), where rates and weights are left out of 

the gamma distribution assumption. Experimental results show that LG4X is significantly 

better than LG4M, and comparable to the two-level mixture models from (Le, Lartillot and 

Gascuel 2008; Le and Gascuel 2010), and at the same time much simpler.  

These results, combined with low computing times and memory consumption, suggest that 

LG4M and LG4X are relevant alternatives to standard single-matrix models in inferring 

phylogenetic trees from protein sequences. In the following, we first describe our data, then 

our models and their estimation procedures, and lastly provide comparisons with independent 

testing alignments. 

Data Sets 

To estimate LG4M and LG4X, we used alignments extracted from HSSP (Schneider et al. 

1997). This database comprises ~50,000 alignments of protein families, each containing an 
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average of ~550 members. Each alignment is obtained by aligning a protein with known 

three-dimensional structure in the Protein Data Bank (PDB; Berman et al. 2000) to all its 

probable sequence homologs in UNIPROT. The protein with known structure is called the 

‘test protein’ of the alignment. HSSP alignments contain a huge number of gaps due to absent 

or unsequenced domains for some proteins. Consequently, we cleaned each alignment by 

selecting sequences that were well-aligned, sufficiently different one from the other, and had 

40-99% identities with the test protein. Gapped regions among selected sequences were 

eliminated using GBLOCKS (Castresana 2000) with default options, and we removed 

alignments with less than 10 selected sequences or 100 remaining sites. We also left out 

membrane proteins (based on their presence in the Membrane Protein Data Bank, Raman, 

Cherezov and Caffrey 2006) since their amino acid replacement pattern is highly different to 

that of globular proteins (Jones, Taylor and Thornton 1994). Moreover, HSSP is highly 

redundant because a protein sequence may appear in more than one alignment depending on 

its homologs with known structure in PDB. Thus, we retained only independent alignments 

that do not share any sequence. To this end, we used a heuristic algorithm to find a large 

number of independent alignments containing a large number of sites with few gaps (Le, 

Lartillot and Gascuel 2008). This selection procedure resulted in 1,771 non-redundant 

alignments, with an average of ~56 sequences and ~254 sites per alignment, a total of ~27 

million amino acids and less than 0.1% gaps. We randomly picked 1,471 alignments to 

estimate LG4M and LG4X, and used the remaining 300 for model comparison. These 

alignments were the same as those used to estimate and test our two-level mixtures of profiles 

and matrices, and our structure-informed models (Le, Gascuel and Lartillot 2008; Le, 

Lartillot and Gascuel 2008; Le and Gascuel 2010). Additional details on the selection 

procedure are provided in these references, and the training and test alignments are available 

from www.lirmm.fr/~le/LG4X. 

To assess the performance of our models, we used the 300 HSSP test alignments and 

another set of independent alignments extracted from TreeBase (Sanderson et al. 1994). This 

database contains alignments that were produced especially for phylogenetic analyses, and 



7 

thus provide a good benchmark for comparing models meant for phylogenetic reconstruction. 

Moreover, the use of test alignments from a different database should avoid possible biases 

induced by some feature specific to our HSSP training alignments. We took all (113) most 

recently updated TreeBase globular protein alignments and then removed those including too 

many gaps (>45%) or showing a too high level of sequence divergence (average number of 

amino acids per site >8, presence in the ML tree of one or several branches with length >2.0, 

or average ML tree branch length >0.50). We retained 84 alignments, with size ranging from 

small, single protein alignments (e.g., 7 taxa and 232 sites), to very large concatenated 

protein alignments (e.g., 62 taxa and 11,544 sites). These TreeBase test alignments are also 

available from www.lirmm.fr/~le/LG4X.    

Models 

All amino acid substitution matrices discussed here comply with the general time-

reversible (GTR) model (see textbooks, e.g., Bryant, Galtier and Poursat 2005; Yang 2006). 

Such a matrix is denoted  xyQ q , where xyq
 
is the substitution rate from amino acid x  to 

amino acid ( )y x ; diagonal terms are set such that the row sums are all zero, that is, 

xx xyy x
q q


  . Thanks to time reversibility, Q can be decomposed into the symmetric 

exchangeability matrix  x yR r   and the amino acid equilibrium distribution  π x  , using 

( )xy y x yq r x y   . The amino acid distribution () may be estimated from the training 

alignments and is then called the model equilibrium distribution, or from the data analyzed 

(+F option). With single-matrix models, Q and R are normalized such that one time unit 

corresponds to one substitution per site, that is, 1.0xx xx
Q     , where   is the global 

rate of Q . This constraint is released with some multi-matrix models (e.g., Le, Lartillot and 

Gascuel 2008), where some site categories and matrices are fast with a high global rate and 

some others are slow with a low  value. Here we use normalized matrices only, but 

modulate their global rate using external parameters with values fitted on the analyzed 

alignment (see below). A matrix Q then contains 208 free parameters (190 in R  + 19 in  - 1 

normalization constraint). 
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The likelihood of the data (denoted D ) for a given tree T (including branch lengths) and 

replacement matrix Q  is 

 ( , ; ) ( , ; ) ,i
i

L T Q D L T Q D  (1)

where the product runs over all the sites (independence assumption), and ( , ; )iL T Q D  is the 

likelihood of the data at site i ( )iD  given T and Q. ( , ; )iL T Q D is computed efficiently thanks 

to the the pruning algorithm (Felsenstein 1981). 

 Yang (1993) introduced a mixture model based on a single replacement matrix but 

variable rates across sites following a discrete gamma distribution with K  equally weighted 

rate categories. With 4K   the data likelihood is given by 

 4

1

1
( , , ; ) ( , ( , ) ; ) ,

4 i
ki

L T Q D L T k Q D


 
     

 
 (2)

where ( , )k   is the thk  rate of a discrete gamma distribution with parameter  . The weights 

(or contributions) of rate categories are all equal to 1/ K . Both T and  are estimated by 

maximizing likelihood (2). Variants of this model include non equally weighted gamma rate 

categories (e.g., Susko et al. 2003; Mayrose, Friedman and Pupko 2005), an approach that 

could be further investigated to improve models presented here. 

Multi-matrix models were proposed by several authors (e.g., Koshi and Goldstein 1995; 

Thorne, Goldman and Jones 1996; Goldman, Thorne and Jones 1998) to account for the 

secondary structure and solvent accessibility. With such models, the data likelihood in a 

mixture context is expressed as 

 
   1 1

1

( ,Q ,.., ,w ,..., ; ) ( , ; )
M

M M m m i
mi

L T Q Q w w D w L T Q D


 
     

 
 , (3)

where M is the number of matrices, and mw  the weight of matrix mQ , with constraint 

1
1

M
mm

w


 . 
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Recent works (e.g., Le, Lartillot and Gascuel 2008; Wang et al. 2008) combined Yang’s 

model (2) with the above (3) multiple-matrix model   

 
   1 1

1 1

( ,Q ,.., ,w ,..., , ; ) ( , ( , ) ; ) ,
M K

m
M M m i

m ki

w
L T Q Q w w D L T k Q D

K 

 
       

 
   (4)

where constraint 
1

1
M

mm
w


  still holds. Equation (4) expresses two levels of mixture, one 

for gamma distributed rate categories, and one for multiple substitution matrices. In this 

framework we introduced several supervised and unsupervised models, for example 

(supervised) EX2 with two matrices for buried and exposed sites, and (unsupervised or 

‘blind’) UL3 based on three matrices that were estimated without a priori knowledge on site 

categorization (Le, Lartillot and Gascuel 2008). The same framework was used by Wang et 

al. (2008) in a 5-matrix model, where all matrices were based on the same JTT or WAG 

exchangeability matrix (R), but used different amino acid equilibrium distributions (). 

Although the above models (EX2, UL3, etc.) perform well and provide high likelihood 

values, they are computationally expensive in terms of both computing time and memory 

consumption. This is mainly due to their high number of site categories, for example twelve 

with UL3 and four gamma categories. In this paper, we explore simplifications of Equation 

(4). In our LG4M model, we assume four equally weighted gamma rate categories, and use 

four matrices, one for each rate category. Let 1 2 3 4Q { , , , }Q Q Q Q  be the set of these four 

matrices, where 1Q  stands for the matrix corresponding to slowest category and 4Q  that of 

the fastest one. Data likelihood is expressed as 

 4

1

1
( ,Q, ; ) ( , ( , ) ; ) .

4 k i
ki

L T D L T k Q D


 
     

 
  (5)

Mathematically speaking, this model (5) is a compromise between Yang’s model (2) and 

two-level mixture models (4). Instead of sharing the same matrix as in Yang’s model, each 

rate has its own matrix, and each matrix is applied only to one rate category instead of being 

applied to all rates as in two-level mixture models. This model (5) is thus more general than 

Yang’s model, but keeps the same free parameters to be estimated from the data (i.e.  and T) 
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as in Yang’s model. From a biological standpoint, the simplification from two-level mixture 

(4) to model (5) means that the main heterogeneity factor among sites is their evolutionary 

rate, an assumption that will be tested using independent alignments in the Performance 

Comparison section. 

Model LG4M in Equation (5) constrains the site rates using a discrete gamma distribution. 

In our LG4X model, we generalize LG4M by removing this constraint 

 
   

4

1 2 3 4 1 2 3 4
1

( ,Q,ρ , , , ,w , , , ; ) ( , ; ) ,k k k i
ki

L T w w w w D w L T Q D


 
         

 
  (6)

where kw  and k  are the weight and rate of matrix kQ such that 
4

1
1kk

w


 and 

4

1
1k kk

w


  . The latter normalization constraint is needed to get 1.0 substitution per site 

within one time unit, just as in standard single-matrix models (this normalization is implicit 

in LG4M). This model thus involves three free parameters among weights kw , plus three free 

parameters among rates k , which are estimated by maximizing likelihood (6) on the data set 

analyzed. 

Model Estimation 

We have a set of N  protein alignments denoted 1D { ,..., }ND D , where aD  is an 

alignment. We aim to estimate a 4-matrix model  * * * * *
1 2 3 4Q , , ,Q Q Q Q  that maximizes the 

likelihood of D 

 

 
 

1 2 3 4Q , , , ,T, ,W 1

Q* arg max ,Q, , w ;
N

a a a a

Q Q Q Q a

L T D
  

    
  
 , (7)

where 1T ( ,..., )NT T , 1Ρ (ρ , ...,ρ )N and  1W w ,...,w N  are the trees, rates and weights of 

the N alignments, respectively;  ,Q,ρ , w ;a a a aL T D  is the likelihood of aD  given model Q , 

tree aT , rates 1 4ρ ( ,..., )a a a   , and weights 1 4w ( ,..., )a a aw w . Thus, to estimate 

 * * * * *
1 2 3 4Q , , ,Q Q Q Q  we also need to estimate *T ,  *P  and *W  which optimize likelihood (7). 

We are interested in two 4-matrix models: LG4M where  ,Q,ρ , w ;a a a aL T D  is calculated 

using Equation (5), and LG4X that is based on Equation (6). For each alignment aD , ρa  and 
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wa  of LG4M follow a discrete gamma distribution with four equally-weighted rate 

categories, while in LG4X, these parameters are freely estimated such that 
4

1
1a

kw   and 

4

1
1a a

k kw   , without any additional constraint. 

Following (Whelan and Goldman 2001; Le and Gascuel 2008; Le, Lartillot and Gascuel 

2008), we estimate  * * * * *
1 2 3 4Q , , ,Q Q Q Q  from Equation (7) in two steps: (i) given a fixed 

starting value of Q, we estimate *T , *  and *W  by maximizing likelihood (5) (LG4M) or (6) 

(LG4X); (ii) we then estimate  * * * * *
1 2 3 4Q , , ,Q Q Q Q

 
using Equation (7) with respect to 

*T , *  

and *W  values obtained in step (i). These two steps are iterated one after the other until no 

more improvement of *T , * , *W and 
*Q  is found. 

Since trees, rates, and weights of alignments in D are independent of one another, we 

optimize *T , *  and *W  for each alignment aD  independently 

 
  

,ρ,w
: ( ,ρ ,w ) arg max ,Q,ρ,w; .a a a a a

T
D T L T D   (8)

For this purpose, we use an adaptation of PhyML 3.0 (Guindon et al. 2010) that is described 

below. Having obtained *T , *  and *W , we search for *Q  that maximizes the likelihood of 

the data given *T , *  and *W  

 
   

1 2 3 4

* * * * *
1 2 3 4

Q ( , , , ) 1

Q , , , arg max ,Q,ρ ,w ; .
N

a a a a

Q Q Q Q a

Q Q Q Q L T D
 

     
  
  (9)

It is impractical to optimize  * * * *
1 2 3 4, , ,Q Q Q Q  directly from Equation (9) due to the huge 

number (4 x 208) of free parameters in Q . Consequently, we use the approximate learning 

method proposed in (Le and Gascuel 2008; Le, Lartillot and Gascuel 2008) where 

 * * * * *
1 2 3 4Q , , ,Q Q Q Q  is handled by simplifying the site likelihood in Equation (9) using the 

site rate category with maximum posterior probability (MAP) only, instead of summing 

overall rate categories, that is, 

 
   

1 2 3 4

* * * * *
1 2 3 4

Q ( , , , )
Q , , , arg max , ; ,

i i

a a a
c c i

Q Q Q Q a i

Q Q Q Q L T Q D


     
  
  (10)



12 

where a
iD  is the ith site of alignment aD , ic is the MAP rate category (computed during tree 

estimation) for site a
iD , and 

ic  is the rate of ic  corresponding to 
icQ substitution matrix. 

Equation (10) can then be rewritten as 

 
 *

:

1..4, arg max , ;  .
k i

a a a
k k k i

Q a i c k

k Q L T Q D


      
  
  (11)

In other words, every kQ  is estimated independently. To achieve these estimations, we used 

XRate (Holmes and Rubin 2002; Klosterman et al. 2006) with the same search options as in 

(Le and Gascuel 2008; Le, Lartillot and Gascuel 2008). Notably, we used the forgiven option 

(with 3 jumps) to escape from local optima. XRate is able to deal with mixtures, instead of 

using our simplifying MAP-based approach (11). However, we observed that using MAP in 

this estimation context is much faster, less affected by local optima, and tends to provide 

better results (Le and Gascuel 2008). This is why here we adopted the same strategy, which is 

close to Viterbi’s approximation that proved to be both efficient and accurate when 

estimating HMMs (Durbin et al. 1998). 

To perform these computations and use our new models to infer trees, we adapted PhyML 

3.0 (Guindon et al. 2010) to LG4X and LG4M. This dedicated version is called PhyML-4X 

in the following. The adaptation of PhyML to LG4M is just a trigger so that the program 

selects the correct matrix for each rate category. The other parts (for example to optimize   

or to search tree topologies) are kept the same as in standard PhyML. In the case of LG4X, 

we reused the optimization module from (Le, Lartillot and Gascuel 2008) to optimize weights 

1 4( ,..., )w w  and rates 1 4( ,..., )  , alternating mono-dimensional Brent optimization of every 

variable until global convergence. To account for constraint  1mw  , we use the variable 

change i mv v
iw e e   and then optimize the siv  using Brent. The second constraint 

1m mw    is fulfilled by rescaling rates and branch lengths before returning the final tree. 

To accelerate the calculations, the tree and the starting rate and weight (= 0.25) values are 

estimated with LG4M, which involves a single () parameter to be optimized instead of six. 
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Figure 1 summarizes the whole estimation procedure. Both LG4M and LG4X are 

initialized starting from the LG matrix. LG4M uses a supervised approach where each matrix 

is associated with the same gamma rate category throughout the optimization procedure; for 

example, the ‘Fast’ matrix is systematically associated with the highest rate, among four 

gamma-distributed rates. LG4X is estimated in a semi-supervised way. During the first step, 

sites are categorized based on the rate (associated to LG) providing the highest likelihood 

value. During subsequent steps, sites are categorized based on the (rate, matrix) pair with 

highest likelihood. In most cases, the ‘Fast’ matrix is associated with the highest rate, and the 

same holds with other matrices. However, since rates (and weights) are estimated 

independently for each alignment without any a priori constraint, it may occur for some 

datasets that the ‘Fast’ matrix is actually associated with a slow rate and vice versa (see 

below, Table 1 and Supplementary Material). Thus, this semi-supervised procedure provides 

a measure of the importance of the site rate factor. If the initial rate-based site categorization 

and matrix interpretation disappeared during the subsequent training steps, this would mean 

that site rate is not a heterogeneity factor of first importance, and that other more important 

factors exist. If (as is the case), the initial rate-based site categorization and matrix 

interpretation is (mostly) preserved all along training steps, this implies that the rate factor is 

of first importance, as we assumed in this study. 

As all Expectation-Maximization (EM) approaches, XRate is sensitive to starting 

parameter values. For computing-time reasons (LG4X required nearly a week to be 

estimated, and much more to be tested and compared to other models), we did not try 

alternative starting matrices and training strategies. However, based on our previous 

experiments with LG where XRate performed remarkably well (Le and Gascuel 2008), we 

are confident that LG4M (estimated in a supervised manner) should be relatively stable and 

insensitive to the starting matrix used to initiate the training procedure. On the other hand, we 

also observed (Le, Lartillot and Gascuel 2008) that semi-supervised training of mixture 

models is more sensitive to the choice of the starting point. This suggests that LG4X could 

likely be improved using other starting points or training strategies. 
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LG4M and LG4X Matrices and Models 

LG4M and LG4X matrices (estimated as described above) are available from 

Supplementary Material (www.lirmm.fr/~le/LG4X) along with additional information and 

statistics. Here we discuss the main features of these matrices and models that make them 

better than single-matrix models, especially LG4X thanks to its rate distribution-free scheme. 

Table 1 provides summary statistics and Figure 2 shows some illustrative matrices. It can be 

seen that: 

LG4M and LG4X matrices clearly depart from LG. The correlation of the log-entries with 

those of LG (LogCor/LG, Tab. 1) is below 0.9 in most cases. LG4M ‘Medium’ is a 

noticeable exception (LogCor/LG = 0.957), which is somewhat expected as this matrix is 

used for intermediate sites with evolutionary rates close to 1. For each matrix, Table 1 

provides its global hydropathy (Hydro), computed as the average hydropathy index (Kyte and 

Doolittle 1982) of the 20 amino acids with weights equal to their equilibrium frequencies in 

the given matrix. This index also points to a clear difference between the new matrices and 

LG (Hydro = -0.253). Most of the matrices (e.g., LG4X ‘Fast’ = -1.815 or LG4M ‘Slow’ = 

1.249) are clearly hydrophilic or clearly hydrophobic, with hydropathy values close to that of 

‘Exposed’ (-1.993) or ‘Buried’ (1.715) matrices from our EX3 model (Le, Lartillot and 

Gascuel 2008). These results and measures support our working hypothesis that the 

substitution patterns differ depending on the site rates. Modulating a unique replacement 

matrix (e.g., LG) using gamma distributed rates appears to be an oversimplification.  

‘Very Slow’ matrices show a remarkable pattern, especially that of LG4X (Fig. 2) which 

is mostly used to express high replacement rates between amino acid pairs that are 

biochemically very similar, for example: R and K (positively charged), D and E (negatively 

charged), and F and Y (aromatic). These three pairs are very close in the genetic code, 

requiring only one nucleotide change to mutate amino acid into the other. Interestingly, some 

of these pairs are highly hydrophilic (e.g., R and K), which contradicts the first intuition that 

very slow sites should be all buried and hydrophobic. However, to avoid misinterpretation, it 

has to be noted that rates displayed in Fig. 2 are relative rates; all matrices are normalized and 
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do not incorporate the fact that very slow sites globally evolve slower (~6 times in average; 

Tab. 1) than fast sites; for example, the absolute rate (accounting for this global factor of ~6) 

between R and K is nearly symmetrical and almost the same in the ‘Very Slow’ and ‘Fast’ 

matrices of LG4X. In other words, R-K replacements are fast in all rate categories, including 

the slowest one. The ‘Very Slow’ LG4M matrix is less contrasted than the LG4X matrix and 

deals with other amino acid groups, also very close biochemically and in the genetic code, for 

example: I, L and V (aliphatic), and S and T (tiny and polar). The latter amino acids are 

focused in the LG4X ‘Slow’ matrix, while the LG4M ‘Slow’ matrix mainly deals with tiny 

and nearly neutral amino acids (A, G, S and T) and the I, V pair (Sup. Mat.).  

The ‘Very Slow’ matrices are thus used to express the fact that even in very slow sites, 

substitutions between highly similar amino acids are likely to occur. Their contents may be 

seen as being similar to that of the profiles in the CAT model (Lartillot and Philippe 2004; 

Le, Gascuel and Lartillot 2008). The ‘Slow’ matrices are analogous, but less contrasted. 

Moreover, the ‘Slow’ matrix of LG4M is relatively close to ‘Buried’ from EX3 (Tab. 1 and 

above hydropathy values), indicating (as expected) that buried sites and slow sites are often 

the same. However, both LG4M and LG4X ‘Very Slow’ matrices partly contradicts this basic 

fact, as the LG4X ‘Very Slow’ matrix focus on some hydrophilic pairs, and the LG4M ‘Very 

Slow’ matrix is slightly hydrophilic  (Hydro  = -0.429). An explanation of this finding could 

be that both LG4X and LG4M ‘Very slow’ matrices are strongly influenced by the genetic 

code (see above examples), which intervenes first in the mutational process (before the 

physicochemical constraints and selection) and favors substitutions between amino acids that 

are not necessarily hydrophobic. 

The ‘Medium’ matrix of LG4M is correlated with both LG and ‘Intermediate’ matrix from 

EX3, and is thus mostly used for standard sites with average rates and solvent accessibility. 

The ‘Medium’ matrix of LG4X is also correlated with ‘Intermediate’, but to a lesser extent 

than LG4M ‘Medium’, and its global hydropathy is relatively low (-0.816) compared to that 

of LG (-0.253) and that of LG4M ‘Medium’ (0.219). 
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Lastly, the ‘Fast’ matrices of LG4X and LG4M are very close (correlation of the log-

entries = 0.994) and quite similar to ‘Exposed’ from EX3 (correlation of the log-entries ≈ 

0.99). As expected, fast sites and exposed sites are often the same. Moreover, ‘Fast’ matrices 

show a relatively low contrast (Fig. 2) and allow for all possible substitutions, with a 

preference for substitutions between amino acids with similar hydrophathy. 

All together we thus see (as expected) a clear correlation between evolutionary rate and 

solvent accessibility; for example, LG4M ‘Slow’ is close to ‘Buried’ while both ‘Fast’ 

matrices are close to ‘Exposed’. However, the matrices of LG4M and LG4X account for 

other features of the substitution processes; for example, LG4X ‘Very Slow’ is weakly 

correlated with ‘Buried’ but focuses on specific highly exchangeable amino acid pairs, some 

highly hydrophilic (e.g., R and K). The variability among all these replacement matrices 

demonstrates the complexity of amino acid substitutions and explains why a single matrix has 

limited capacity in modeling such complex processes.  

Analysis of rates across sites further illustrates the difficulty involved in substitution 

modeling and the advantage of flexible models such as LG4X. With LG4M, the value of 

the gamma parameter is significantly higher than with LG (respectively 0.866 and 0.584 on 

average; this ordering of  values is observed with all but five alignments, see Supp. Mat.). 

This is an expected outcome, as part of the rate variability is taken into account in LG4M by 

the use of four different matrices. With LG4X, the matrix rates show a different picture. 

While with LG4M each of the four matrices is pretty much associated with the same rate, 

with LG4X the rates differ significantly depending on the data set analyzed, to the point that 

the ‘Slow’ matrix is sometimes (3 cases among 84 TreeBase test alignments, Tab. 1)  

associated with the fastest rate. It is worth to note that that rates and weights in Equation (6) 

are optimized for each data set analyzed, without constraining the rates to be ordered 

depending on the matrix with which they are associated. In the same way, the weights of site 

categories are highly variable; for example with TreeBase test alignments, the ‘Fast’ weight 

varies from ~0.0 to ~0.25 (Tab. 1). Results with HSSP test alignments (Supp. Mat.) are 

similar but show less variability; for example, the ‘Slow’ matrix is only once the fastest one 
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among 300 alignments, instead of 3/84 with TreeBase. This indicates that the flexibility of 

LG4X is less useful with HSSP than with TreeBase, which can be expected since LG4X was 

estimated from HSSP. 

The gains obtained by LG4X over LG4M (see next section) are thus explained by the high 

flexibility of LG4X, which is more powerful than the association of a single matrix with a 

distribution-free scheme of rates across sites, whose performance is somewhat disappointing 

(Susko et al. 2003; Mayrose, Friedman and Pupko 2005; see results of LG+4 below). Here, 

each matrix corresponds (to some extent) to many/few and fast/slow sites, depending on the 

protein analyzed. This clearly shows that substitutions are not just Markovian with a fixed 

pattern (replacement matrix) modulated by site-dependent rates. As in other site-dependent 

models, we have different categories of sites corresponding to different matrices and 

tendencies to be slow or fast, but no strict constraint to be so. This further illustrates the 

finding by many authors (e.g., Keane et al. 2006) that substitution patterns may be very 

different in different proteins. The payoff of LG4X flexibility is that matrices in this model 

are not fully interpretable as ‘Very Slow’, ‘Slow’, ‘Medium’ and ‘Fast’ matrices; for 

example, the ‘Slow’ matrix is sometimes the fastest one and this feature most likely impacts 

its coefficient values. However, the average rates of these four matrices (0.29, 0.77, 1.37 and 

3.42, respectively) clearly correspond to their natural interpretation. It must be emphasized 

that this ranking and global interpretation are obtained through our semi-supervised learning 

procedure (see above and Fig. 1), where only the first step accounts for site rates while 

further optimization steps are performed in a blind manner, clustering the sites based on their 

preferred matrix without reference to their rate. The fact that the four LG4X matrices are still 

clearly correlated to rate categories after this (6-step) phase of blind learning illustrates (if 

needed) that the evolutionary rate is a major factor in modeling substitution processes. 
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Performance comparisons 

In this section, we assess the performance of the new models LG4M and LG4X by 

comparing them to existing models using 84 TreeBase and 300 HSSP test alignments (see 

Data Sets). The following models are compared: 

Single-matrix models: JTT, WAG, LG. These standard matrices are used with four 

categories of gamma-distributed rates across sites (+4 option, not indicated below for 

conciseness). To assess the use of a gamma distribution with four discrete rate categories, we 

ran: LG- (constant site rate); LG+3, LG+ 6 and LG+ 8 with 3, 6 and 8 gamma rate 

categories, respectively; LG+4 (free distribution of site rates with 4 categories, just as in 

LG4X, but using a single LG matrix). Moreover, we tested LG+F, where the amino acid 

frequencies are estimated from the studied alignment, instead of being assigned to the default, 

average frequencies of LG. LG+F was used with the +4 option, as LG and most other 

models studied here. LG+F should better fit the specificities of the data being analyzed, but is 

penalized by the large number of extra-parameters (frequencies) to be estimated. In total, 

LG+F has 20 free parameters (1 gamma + 19 frequencies); LG+4 has 6 free parameters (3 

rates + 3 weights); LG, JTT and LG (+3, +4, +6, +8) have 1 free (gamma) parameter; 

LG- has 0 free parameter. 

Two-level mixture models: EX2, UL3, EXEHO. EX2 involves two first-level categories 

of sites, based on solvent accessibility; its two matrices were estimated in a supervised 

manner from sites being classified as Buried and Exposed in HSSP. UL3 has three first-level 

categories of sites; it was estimated in a fully unsupervised manner, starting from 3 random 

matrices. EXEHO has six first-level categories of sites, crossing solvent accessibility (2 

categories) with secondary structure (3 categories: Extended, Helix and Other); EXEHO was 

learned in a supervised manner from HSSP sites categorized accordingly. First-level 

categories in EX2, UL3 and EXEHO were combined in this study with four second-level 

gamma-distributed rate categories (+4 option); for example, EXEHO has 6 x 4 = 24 site 

categories in total. EX2 and UL3 proved to be our best mixture models with two and three 

(first-level) categories, respectively, and UL3 was even better than the CAT60 model that 
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involves 60 first-level categories (profiles), and thus 240 categories in total with the +4 

option (Le, Lartillot and Gascuel 2008). Among mixture models, EX2 and UL3 were only 

beaten by EXEHO (Le and Gascuel 2010), but this latter requires high memory consumption 

and running time with large data sets due to its 24 site categories; for this reason, EXEHO 

was not run on TreeBase test alignments, some being very  large, but on HSSP alignments 

only. We also tested the model by Wang et al. (2008), but encountered several difficulties 

when running their program and do not provide results for this model (e.g., QmmRAxML did 

not finish searching for 10/84 alignments after three weeks). EX2, UL3 and EXEHO require 

estimating the gamma rate parameter from the data plus the proportions of first-level 

categories, that is, 2, 3 and 6 free parameters, respectively. 

Confidence-based models: EX2/S, EXEHO/S. The previous models are mixtures. EX2 

and EXEHO use categories of sites having a structural meaning, and matrices estimated from 

sites categorized based on their structural properties, but to infer phylogenies these two 

models do not use any structural information. The likelihood of every site is computed within 

each category and then averaged, as expressed in Equation (4). On the contrary, EX2/S and 

EXEHO/S use structural information on the analyzed data set. Basically, the likelihood of 

each site is computed based on its known structural category, as in the standard partition 

approach. However, since structural information may be erroneous or inappropriate in a 

phylogenetic context, we refined this approach by introducing a confidence coefficient, 

estimated from the analyzed data set, which expresses a trade-off between the standard 

mixture (no structural information is available) and partition (structural information is fully 

reliable and relevant) models. These models are described in details in (Le and Gascuel 

2010), where they are called EX2_CONF/MIX and EX_EHO_CONF/MIX. Here we use 

EX2/S and EXEHO/S to make it clear that they benefit (contrary to all other models) from 

structural information. Both are combined with four gamma rate categories (+4 option). 

They were run on HSSP test alignments only, as no structural information is available in 

TreeBase. EX2/S and EXEHO/S involve 3 (1 gamma + 1 confidence + 1 category 
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proportion) and 6 (1 gamma + 1 confidence + 5 category proportions) free parameters to be 

estimated from the data. 

Single-level mixture models: LG4M and LG4X. These are the two new models proposed 

in this paper. Both involve 4 site categories in total (to be compared to the 24 categories of 

EXEHO and the 240 of CAT60, remembering that the computing time and memory 

consumption are strongly correlated to the number of categories). Rates in LG4M are gamma 

distributed, while LG4X uses a distribution-free scheme. LG4M has 1 (gamma) free 

parameter; LG4X has 6 (3 rates + 3 weights) free parameters. 

Comparison criteria and methods 

Our aim was to compare the performance of all these models, regarding likelihood and 

topological criteria. To infer trees, we used: the last version of PhyML 3.0 (Guindon et al 

2010) for LG, JTT and WAG; PhyML-Structure (Le and Gascuel 2010) for EX2, UL3, 

EXEHO, EX2/S and EXEHO/S; and our adaptation (PhyML-4X) of PhyML 3.0 for LG4M, 

LG4X and LG+4. All programs were run with BioNJ (Gascuel 1997) starting tree and 

subtree pruning and regrafting (SPR) tree searching.  

Since these models involve different numbers of free parameters, we measured their 

fitness to data using the AIC criterion (Akaike 1974) 

( , ) 2 ( , ; ) 2# ( ),a a aAIC M D LL M T D parameters M    

where: ( , ; )a aLL M T D  is the log-likelihood of alignment aD  given model M and inferred tree 

aT ; # ( )parameters M  is the number of free parameters of model M. The AIC criterion has to 

be minimized; best scores are given to models with low numbers of free parameters and high 

likelihood values. All tested models involve one parameter (length) per tree branch, plus the 

model parameters detailed in previous section.  

For every model M studied, we computed the average AIC per site for all alignments in 

test set A 
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where as  is the number of sites in aD . To complete this global average result, we performed 

pairwise model comparisons and counted the number of alignments aD  where 

1 2( , ) ( , )a aAIC M D AIC M D  (i.e., 1M  fits aD  better than 2M ) for a given model pair 

1 2,  M M . To assess the statistical significance of the observed difference between 1M  and 

2M  for any given alignment, we used a Kishino-Hasegawa (KH; 1989) test with p<0.01. As 

the number of free parameters between 1M  and 2M  may differ, we used AIC penalized 

likelihood values. This test is essentially the same as that used to compare phylogenies. We 

use the RELL bootstrap to estimate the distribution of the test statistic under the null 

hypothesis that both models are equivalent, but incorporate the number of parameters of each 

model in this statistic, just as in the AIC criterion (see Shimodaira 1997, for explanations and 

justifications of this test). 

We compared the lengths of inferred trees, that is, the sums of their branch lengths. It has 

been suggested that best models tend to produce longer trees capturing more hidden 

substitutions (e.g., Pagel and Meade 2005). 

We also compared the topologies of inferred trees. Indeed, if the new models produced the 

same topologies as the existing models, the effort of introducing new models would be rather 

useless. Unfortunately, the true tree is usually unknown with real data (as opposed to 

simulated data), and thus it is hard to assess the topological accuracy induced by any tree-

building approach in a realistic setting. Here, we studied the topological impact of our new 

models, that is, whether or not using these models enables us to frequently infer trees that 

differ from those inferred with standard models.  

When comparing models 1M  and 2M , we counted the number of alignments where the 

inferred topology using 1M  differs from that obtained using 2M . Both topologies were also 

compared using the Robinson and Foulds (RF; 1981) distance, which is the number of 

branches (bipartitions) that belong to one tree but not to the other. When different topologies 
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are found, one should prefer the one with best likelihood value, or best AIC (or similar 

criterion) value, when evolutionary models used for tree inference involve different numbers 

of parameters. However, the difference may be slight and non-significant, so one cannot 

reject the topology with a lower fit to data. We thus counted the number of alignments where 

1M  and 2M  topologies differ, and where 1M  is significantly better (worse) than 2M , using a 

KH test on AIC penalized likelihood values with p<0.01.   

Lastly, we checked that the observed topological differences comprised some branches 

with significant support. Indeed, the topological impact would be low if all differences 

corresponded to poorly-supported branches. To this end we performed bootstrap analyses and 

counted the number of branches with notable bootstrap support (BP1 ≥ 50%) in one tree, 

which were not recovered in the other tree, or had a much lower support in this tree (BP2 + 

50% ≤ BP1). For example, one branch with BP1=40% was not counted, even when it was not 

recovered in the other tree; on the contrary, one branch with BP1=80% in one tree was 

counted when it was found in the other tree with BP2=20%. This measure (first introduced in 

Le and Gascuel 2010) thus summarizes the topological and branch support differences. We 

used only 50 bootstrap replicates for computing time reasons, but this suffices for our gap of 

50% between BP1 and BP2 to be highly significant (p-value ~ 0.0 using a Z-test for two 

proportions). Moreover, 50% of bootstrap support was shown to be optimal in terms of 

topological error (Berry and Gascuel 1996; see also Holder, Sukumaran and Lewis 2008). As 

this procedure is computationally heavy (even with 50 replicates), we analyzed the 63 

smallest TreeBase alignments only, and all (300, relatively small) HSSP alignments were 

analyzed. 

Fitness comparison 

Comparisons were performed on 84 TreeBase and 300 HSSP test alignments. Both sets 

are independent of the training alignments, and thus provide fair estimations of model 

performance. Moreover, using TreeBase should avoid possible biases induced by some of the 

specificities of HSSP alignments used to train our models. Tables 2 (TreeBase) and 3 (HSSP) 
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display comparisons between all models listed above. Figures 3 (TreeBase) and 4 (HSSP) 

show the progress in the AIC/site for the main models. 

It is clear from these results that LG outperforms JTT and WAG. The average AIC/site of 

LG with TreeBase alignments is respectively 0.47 and 0.29 lower than that of JTT and WAG, 

equivalent to a gain of 117.5 and 72.5 log-likelihood units with a 500-site alignment. 

Moreover, LG is significantly better than JTT and WAG for most alignments. These results 

reconfirm the claim in (Le and Gascuel 2008). 

Table 2 (TreeBase) reports comparisons between several standard model options, 

combined here with LG. The comparison between LG-(no gamma distribution of site rates) 

and LG+4 highlights the crucial role of modeling rates across sites. LG+4 has significantly 

better AIC values than LG-for 80/84 alignments, with an average AIC/site gain of 2.34. 

LG+4 is significantly better than LG+3 for 41/84 alignments, with an average AIC/site 

gain of 0.07, while it is worse than LG+6 for 37/84 alignments, with a slight average 

AIC/site loss of 0.04. Using eight categories in LG+8 does not improve AIC results, 

compared to LG+6. These results indicate that with standard models three gamma rate 

categories are not enough, and that six categories suffice. Moreover, the differences in 

AIC/site between these options are low, compared to those of other options and models (e.g., 

LG+ versus LG-). Using four categories, which is standard throughout the community, 

thus appears to be a fair compromise between likelihood (AIC) value and computing time, 

which is proportional to the number of categories. These results also support our choice of 

using four categories in our LG4M and LG4X models. Having three categories would be not 

enough and overly simple, while using four categories is likely to be a fair compromise, just 

as with standard models. However, we cannot exclude that having more than four categories 

could lead to even better (but slower) models. The low AIC/site gain (0.03) between LG+4 

and LG+4 confirms the conclusions of Susko et al. (2003) and Mayrose, Friedman and 

Pupko (2005), who observed low gains when combining a single replacement matrix with a 

distribution-free scheme or a mixture of gamma distributions. Lastly, when combining LG 

with +F option, where amino acid distribution is estimated independently for each testing 
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alignment, the average AIC/site value is nearly the same as with LG alone. Six large 

alignments obtain significantly better AIC values than with LG, but for the other (small or 

medium-size) alignments the likelihood gain is not large enough to compensate for the 19 

additional free parameters estimated from the data. 

LG4M shows a clear improvement over LG, with an AIC/site gain of 0.15 and 0.59, with 

TreeBase and HSSP alignments respectively (note that these gains cannot be compared, as 

they depend on several factors, e.g. the number of taxa per alignment). With HSSP, LG4M 

has higher AIC (and likelihood) values than LG for 270/300 alignments with 174 significant 

cases. With TreeBase results are not so impressive, but still clearly in favor of LG4M versus 

LG. 

LG4X has a major advantage over LG, with an AIC/site gain of 0.33 and 0.65, with 

TreeBase and HSSP respectively. LG4X is significantly better than LG for more than half of 

the alignments (both HSSP and TreeBase), while LG is significantly better than LG4X for 

only one (TreeBase) alignment. Compared to LG4M, LG4X shows a slight advantage with 

HSSP (AIC/site gain of 0.06) and is clearly better with TreeBase: mean AIC/site gain of 0.18, 

which is significant for 50/84 alignments, while LG4M is better than LG4X for only one non-

significant alignment. The advantage of LG4X over LG4M is explained by its greater 

flexibility to fit the specificities of analyzed data, thanks to its distribution-free scheme. This 

scheme (4) does not show such an advantage with single-matrix models (see above), but 

becomes clearly beneficial when combined with different replacement matrices. The 

superiority of LG4X over LG4M is more marked with TreeBase than with HSSP alignments, 

possibly because LG4M and LG4X were learned from HSSP alignments and fit both HSSP 

specificities well. Moreover, HSSP alignments are smaller than TreeBase alignments, and 

some HSSP alignments are likely too small to compensate for the 5 additional parameters in 

LG4X, compared to LG4M. This advantage of LG4X over LG4M should thus be observed by 

future users analyzing phylogeny-intended alignments, such as those stored in TreeBase. 

Compared with two-level mixture models, we see that LG4X is: (i) slightly better than 

EX2 (AIC/site gain of 0.08 and 0.15 with TreeBase and HSSP, respectively); (ii) nearly 
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equivalent to UL3 (AIC/site loss of 0.19 with TreeBase, but null with HSSP; the number of 

significant cases is low and does not favor one model over the other); (iii) slightly behind 

EXEHO (AIC/site loss of 0.14 with HSSP, but low number (23) of cases where EXEHO is 

significantly better than LG4X). Globally, we thus do not see a clear advantage of two-level 

mixture models over our new one-level mixture models, the former involving high number of 

rate categories (up to 24 with EXEHO) and heavy computational resources (at least EXEHO). 

Lastly, when comparing EX2/S and EXEHO/S with LG4X and LG4M (and all other 

models), we see the clear advantage of using structure-informed models when the structural 

annotation of the proteins analyzed is available. The AIC/site gain of EXEHO/S over LG4X 

is of 0.61 on average, and this gain is significant with 223/300 alignments, while LG4X is 

never significantly better than EXEHO/S. The advantage of EX2/S over LG4X is less 

impressive, but still significant. 

Tree-lengths comparisons (Tab. 2 and 3) do not show a clear picture. Some of the findings 

are expected, for example LG+4 trees are much longer than LG-ones, but the correlation 

between tree length and AIC value is weak or nonexistent. Mixture models tend to produce 

longer trees than standard models, with the notable exception of both distribution-free models 

(LG+4 and LG4X) which infer trees shorter than LG+4 ones. LG4M and LG+4 trees 

have similar length. UL3 trees (comparable to LG4X in AIC terms) are very long, while 

those inferred using EXEHO/S (our best model in AIC terms) do not differ substantially from 

LG ones. These results thus contradict the assumption that better models should produce 

longer trees (Pagel and Meade 2005). 

Overall, we the comparisons of likelihood and AIC values show that: (1) our new simple 

one-level mixture models outperform the standard models; (2) they are comparable to the 

best two-level mixture models, while requiring less computational resources; (3) they are 

clearly beaten by structure-informed models, which should be preferred when structural 

information is available. 
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Topological impact 

The previous section analyzes model performance in terms of fit to the data, measured by 

likelihood and AIC values. Here we study the impact of using refined models, that is, how 

they change the topology of inferred trees.  

We see from Tables 2 and 3 that refined models have a strong topological impact, 

compared to standard models. For example comparing LG4X to LG, both models infer 

different topologies with 58/84 TreeBase and 267/300 HSSP alignments. Moreover, these 

topologies are clearly different (percentage RF distance of 15% and 19% for TreeBase and 

HSSP, respectively), and the AIC value significantly favors LG4X topologies over LG 

topologies for 36/58 TreeBase and 163/267 HSSP alignments, while the LG topology is 

significantly favored for only one TreeBase alignment and never with HSSP. This means that 

with 36 (~45%) TreeBase and 163 (~55%) HSSP alignments, one should confidently select 

the LG4X topology and abandon that inferred using LG. Moreover, these two topologies are 

very different in general (see RF values). 

However, the effective impact of selecting these alternative trees would be low if the 

differences between topologies of standard and refined models corresponded to poorly-

supported branches and was solely due to random effects inherent to phylogenetic 

reconstruction. Indeed, inspecting the topological distances (RF) between LG topologies and 

those of other models, we see that closely-related models still show substantial topological 

differences; for example (Tab. 2), LG (used with the +4 option, omitted below for 

conciseness as in the previous section) and LG+8 topologies are different for 32/84 

TreeBase alignments, with 9/32 significant cases and percentage RF distance of 7%. We thus 

counted the number of branches that are supported by the bootstrap in one tree but not the 

other (BP1≥BP2+50%, see above). For example, comparing LG and LG+8 with the 63 

smallest TreeBase alignments, we have 8 such branches among a grand total of 2,382 

branches, against 48 with LG versus LG4X. Using the 300 HSSP alignments, we have 122 

branches supported in one tree but not the other when comparing LG and LG+8, and 552 

for LG versus LG4X (grand total = 23,908). These measures are much lower than the 
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corresponding RF topological distances (Tab. 2 and 3), as expected since here we only 

consider branches with substantial bootstrap support. However, with LG versus LG4X we 

still have on average ~1 (TreeBase) to ~2 (HSSP) branches per tree with clearly different 

bootstrap support. Moreover, this “topological support dissimilarity” provides a sharper view 

of the models’ resemblance and dissemblance, than standard RF distance; for example, the 

topological support dissimilarity between LG and LG4X is ~6 times larger with TreeBase 

(~4.5 with HSSP) than the topological support dissimilarity between LG and LG+8, while 

this ratio is ~2 with RF distance (both TreeBase and HSSP).  

We thus measured the topological support dissimilarities between main models using (63 

smallest) TreeBase and (300) HSSP alignments, and then constructed distance-based trees 

representing the topological impacts and resemblance/dissemblance of these models. For this 

purpose, we used the FastME software (Desper and Gascuel 2003; http://www.atgc-

montpellier.fr/fastme/) with default options (analogous to NJ but using branch swapping). 

Resulting trees are displayed in Figure 5, and the pairwise distance matrices are available in 

Supplementary Material. 

While these two trees were obtained from completely different data (TreeBase, HSSP) 

through a complex procedure (bootstrap, dissimilarity computation, FastME), it is remarkable 

that both are nearly identical in terms of topology and branch lengths. Moreover, these trees 

are easily interpreted and illustrate the main features of studied models. A first obvious 

observation is that standard and non-standard models form the two main clades. Moreover, as 

expected with standard models: LG and LG+8 form a tight clade; LG, WAG and JTT are 

relatively close; LG- (constant site rate) is isolated at the end of a long branch, which 

illustrates the (well-documented) impact of using a gamma distribution of site rates. Non-

standard models are separated in two clades respectively containing one-level and two-level 

mixtures. Within two-level mixtures in the HSSP tree we have a clade containing all 

structure-based models, with two tight sub-clades containing respectively EX2 and EX2/S, 

and EXEHO and EXEHO/S. Surprisingly, knowing the 3D structure in EX2/S and EXEHO/S 

does not have much impact on the tree topology with respect to EX2 and EXEHO. However, 
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the topological impact of these four structure-based models with respect to LG is almost the 

same as that of LG with respect to LG-. The topological impact of UL3, LG4M and LG4X 

with respect to LG is even larger. As expected LG4M and LG4X form a clade, but both 

models are relatively distant, while UL3 is distant from all other models. 

From trees in Figure 5, it is not possible to predict which model provides the best 

topologies. However, it is noticeable that non-standard and mixture models are on the 

opposite side of LG-, known to be a poor model, while standard models are in between. We 

might have a preference for structure-based models, as they infer similar tree topologies (Fig. 

5) and lead to very high likelihood values when the 3D structure is available (Fig. 4). 

However, there is no guaranty that these models are best from a topological standpoint, even 

if they have strong biological justifications. LG4X and LG4M are also based on meaningful 

assumptions (as opposed to UL3 learned in a purely blind manner). Both have a strong 

topological impact and provide high likelihood gains compared to standard models. LG4M 

and LG4X tree topologies contain well supported clades, not discovered by any of the other 

models, and thus representing biological and phylogenetic interest and deserving further 

investigations. 

Memory consumption and running time 

LG4M and LG4X require the same amount of memory as single-matrix models with the 

4 option. EX2, UL3 and EXEHO (all three with the 4 option), respectively use twice, three 

and six times as much memory, because they are two-level mixtures with two, three and six 

matrices, respectively. For example, LG4X and UL3+4 require two gigabytes (GB) and six 

GB of memory space, respectively, for the largest TreeBase alignment with 62 taxa and 

11,544 sites (accession number M4680). EXEHO requires almost twelve GB to analyze this 

data set, which makes it impractical for most standard computers and users. 

The same ratios apply to the computing times needed to calculate data likelihood, given a 

tree with branch lengths and model parameter values. For example, EXEHO is nearly six 

times slower than a standard, single-matrix model. However, other factors impact the total 
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computing time. Most notably, models differ in the number of parameters to be estimated 

from the data via likelihood optimization. Standard models and LG4M have only one 

(gamma) parameter, while EX2, UL3, LG4X and EXEHO respectively have two, three, six, 

and six parameters, thus again requiring additional computing time compared to standard 

models and LG4M.  

Using PhyML-4X with standard options (+4, SPR-based tree searching) on a powerful 

CPU (Intel(R) Xeon(R) E5440 at 2.83GHz with 16 GB memory) to infer phylogenies for all 

84 TreeBase alignments, requires about 55 hours with standard models (LG was used here), 

60 hours with  LG4M, and 85 hours with LG4X. As expected, LG4M is nearly as fast as 

standard models, but LG4X is somewhat slowed down by model parameter estimations. 

Using PhyML-Structure (Le and Gascuel 2010) for the same task requires about 280, 380, 

and 670 hours for EX2, UL3 and EXEHO, respectively (total time for EXEHO is about one 

month and was estimated from a sample of alignments). Applying these models to the largest 

TreeBase alignment (M4860) using the same CPU, programs and options, requires about 6, 8, 

11, 51, 53 and 84 hours for LG, LG4M, LG4X, EX2, UL3, and EXEHO, respectively. 

Though different programs were used in these experiments, with PhyML-4X being based on 

a more recent and about twice faster version of PhyML than PhyML-Structure, we obtain a 

clear picture: LG4M is nearly the same as standard models and is a fast model, as expected; 

LG4X is a bit slower due to its six parameters to be estimated; EX2 and UL3 are significantly 

slower than standard models, but still clearly applicable, even to large data sets; EXEHO 

requires important computing resources for large data sets, not only in terms of computing 

times but also with respect to memory space. The /S option (called CONF/MIX in Le and 

Gascuel, 2010) that we used for HSSP alignments with known 3D structure, requires nearly 

the same time and memory as the mixture version, with both EX2 and EXEHO. However, 

EXEHO (and EX2) may be used with less demanding options (CONF/LG and PART) when 

the 3D structure is known. 
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Conclusion  

In this paper, we proposed two new models, LG4M and LG4X, for amino acid 

replacement modeling in protein phylogenetics. The main idea was to use different 

substitution matrices for the different evolutionary rate categories, and to reduce the standard 

gamma distribution constraints on site rates by adopting a distribution-free scheme (LG4X). 

Experiments with independent alignments showed that LG4M and LG4X most often infer 

trees with higher likelihood and AIC values than single-matrix models (JTT, WAG and LG), 

thus illustrating the limit of the standard approach that assumes a unique replacement matrix 

regardless of the site rate. Moreover, these trees tend to differ significantly in their topology 

from those inferred using the standard approach. These experiments also showed that our 

distribution-free scheme for site rates offers high flexibility and contributes greatly to LG4X 

performance.  

Since LG4M and LG4X produce significantly better results while requiring the same 

memory space and similar running times, they would be reasonable replacements for single-

matrix models. Current phylogenetic tree inference software using the standard approach and 

gamma distribution of site rates could immediately use LG4M because it requires the same 

data structures and procedures as single-matrix models. LG4X could be easily adapted as 

well, by adding an appropriate optimization procedure for estimating the distribution-free site 

rate parameters. These two models and others, notably structural, will be incorporated in a 

forthcoming release of the official PhyML. 

Many questions arise from the improvement provided by LG4X and LG4M. The first is to 

check the number of rate categories. It is commonly acknowledged (our results in Tab. 2 

support this practice) that four gamma-distributed rate categories provide a fair compromise 

for single-matrix models. Moreover, LG4X with four rate categories is better than two-matrix 

x four-rate models (EX2+4) and comparable to three-matrix x four-rate models (UL3+4). 

However, we do not yet know the difference when we increase or decrease the number of rate 

categories and use the same scheme as LG4M or LG4X. Variants of LG4X and LG4M and 

their combination with the standard +F option to fit proteins with specific amino acid 
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distributions should also be investigated. Lastly, a major direction for further research is to 

better understand the substitution processes revealed by these complex models and 

replacement matrices, unravel the biological differences between models and exploit them for 

further improvements. 
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TABLE AND FIGURE LEGENDS 

Table 1. Main features of LG4M and LG4X replacement matrices 

Note: The four matrices of LG4M and LG4X are ranked according to their average rates as 

‘Very Slow’, ‘Slow’, ‘Medium’ and ‘Fast’. ‘LogCor/LG’ is the Pearson correlation 

coefficient of the log-entries in the given matrix with those of LG. ‘ClosestMatrix’ is the 

matrix among ‘Buried’, ‘Intermediate’ and ‘Exposed’ matrices from EX3 (Le, Lartillot and 

Gascuel 2008) that is closest to the given matrix, based on the correlation of the log-entries 

(value in parentheses). ‘Hydro’ is the average hydropathy index (Kyte and Doolittle, 1982) of 

the 20 amino acids with weights equal to their equilibrium frequencies in the given matrix. 

‘Weight’ is the weight (w) of the given matrix, averaged over the 84 TreeBase testing 

alignments. ‘Rate’ is the average rate () among TreeBase alignments. ‘5% quantiles’ 

provide the 5th and 80th rate (resp. weight) values among these 84 alignments. ‘Rate 

distribution’ is the number of alignments in which a given matrix is ranked (based on its 

estimated rate) as very-slow/slow/medium/fast; for example, with ‘Slow’ we see that this 

matrix is never ranked as the slowest matrix, 75 times as the second slowest, 6 times as 

medium and 0 times as the fastest matrix. Similar statistics are obtained with the 300 HSSP 

test alignments (see Sup. Mat.). 

Table 2: Model comparison with TreeBase test alignments,  

using likelihood and topological criteria 

Note: Models are compared using 84 TreeBase test alignments. All models use four 

categories of gamma distributed rates (+4), unless explicitly stated, that is: +4 and LG4X 

for distribution-free scheme; - for constant site rate; +3 and +8 for 3 and 8 gamma rate 

categories respectively. LG+F: LG exchangeability coefficients are combined with the amino 

frequencies of the alignment being analyzed. EX2: 2-matrix, two-level mixture model, with 
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matrices estimated from buried/exposed sites. UL3: 3-matrix, two-level mixture model, with 

blindly estimated matrices. LG4M: 4-matrix, one-level mixture model using gamma 

distribution of site rates, proposed in this paper. LG4X: 4-matrix, one-level mixture model 

using distribution-free scheme of site rates, proposed in this paper. On each row, model M1 

is compared with model M2 using all test alignments. AIC/site: average per site difference in 

AIC value between M1 and M2; a positive (negative) value means that AIC/site of M1 is 

better (worse) than M2, on average. #M1>M2: number of alignments (out of 84) where M1 

has a better AIC value than M2. #M1>M2 (p<0.01): number of alignments where the AIC of 

M1 is significantly better than that of M2; #M1<M2 (p<0.01): same as #M1>M2 (p<0.01), 

but now M2 is significantly better than M1. #T1>T2: number of alignments where the tree 

T1 inferred with M1 has a better AIC value than T2 inferred using M2 and where T1 and T2 

have different topologies. #T1<T2: same as #T1>T2 but now T2 is better than T1. #T1>T2 

(p<0.01): same as #T1>T2, but now T1 is significantly better than T2. #T2<T1 (p<0.01): T2 

is significantly better than T1. RF (%): total Robinson and Foulds distance between T1 and 

T2 trees (i.e. sum over all data sets of the number of branches that belong to one tree but not 

the other); numbers in parentheses report the percentage of RF relative to the total number 

(3,994) of internal branches in both T1 and T2 trees. L1-L2 (p<0.01): average of tree length 

differences between T1 and T2; we also counted the number of cases where T1 is 

longer/shorter than T2 and assessed the significance using a sign test with p<0.01, significant 

differences are underlined. 

 Table 3: Model comparison with HSSP test alignments,  

using likelihood and topological criteria 

Note: Models are compared using 300 HSSP test alignments. All models use four categories 

of gamma distributed rates (+4), except LG4X. EX2: 2-matrix, two-level mixture model, 

with matrices estimated from buried/exposed sites. EX2/S has the same matrices as EX2, but 
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(contrary to EX2) uses the solvent accessibility of the residues, derived from the 3D protein 

structure. EXEHO: 6-matrix, two-level mixture model, combining accessibility to solvent 

and secondary structure. EXEHO/S has the same six matrices as EXEHO, but (contrary to 

EXEHO) uses the secondary structure and the solvent accessibility of the residues, derived 

from the 3D protein structure. UL3: 3-matrix, two-level mixture model, with blindly 

estimated matrices. LG4M: 4-matrix, one-level mixture model using gamma distribution of 

site rates, proposed in this paper. LG4X: 4-matrix, one-level mixture model using 

distribution-free scheme of site rates, proposed in this paper. On each row, model M1 is 

compared with model M2 using all test alignments. AIC/site: average per site difference in 

AIC value between M1 and M2; a positive (negative) value means that AIC/site of M1 is 

better (worse) than M2, on average. #M1>M2: number of alignments (out of 84) where M1 

has a better AIC value than M2. #M1>M2 (p<0.01): number of alignments where the AIC of 

M1 is significantly better than that of M2; #M1<M2 (p<0.01): same as #M1>M2 (p<0.01), 

but now M2 is significantly better than M1. #T1>T2: number of alignments where the tree 

T1 inferred with M1 has a better AIC value than T2 inferred using M2 and where T1 and T2 

have different topologies. #T1<T2: same as #T1>T2 but now T2 is better than T1. #T1>T2 

(p<0.01): same as #T1>T2, but now T1 is significantly better than T2. #T2<T1 (p<0.01): T2 

is significantly better than T1. RF (%): total Robinson and Foulds distance between T1 and 

T2 trees (i.e. sum over all data sets of the number of branches that belong to one tree but not 

the other); numbers in parentheses report the percentage of RF relative to the total number 

(23,908) of internal branches in both T1 and T2 trees. L1-L2 (p<0.01): average of tree length 

differences between T1 and T2; we also counted the number of cases where T1 is 

longer/shorter than T2 and assessed the significance using a sign test with p<0.01, significant 

differences are underlined. 
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Figure 1: Algorithm for estimating LG4M and LG4X 

Note: Tree likelihood is calculated by PhyML-4X in step 3 using Equation (5) for LG4M and 

Equation (6) for LG4X. In step 6 *
k kQ Q  is measured by the sum of squared entry 

differences, to be <0.1.  

Figure 2: LG4M and LG4X replacement matrices 

Note: Amino acids are ranked from highly hydrophilic (R) to highly hydrophobic (I), based 

on the hydropathy index (Kyte and Doolittle, 1982). Bubble sizes are proportional to the 

replacement rates. The horizontal axis displays the original amino acid, the vertical axis the 

new one resulting from replacement. X1: ‘Very Slow’ LG4X matrix; X4 ‘Fast’ LG4X matrix 

(highly similar to fast LG4M matrix); M1: ‘Very Slow’ LG4M matrix; LG is provided as a 

reference average matrix. 

Figure 3: AIC progress of amino acid replacement models, using TreeBase 

Note: Models are compared using 84 TreeBase test alignments. All models use four 

categories of gamma distributed rates (+4), except LG4X. EX2: 2-matrix, two-level mixture 

model, with matrices estimated from buried/exposed sites. UL3: 3-matrix, two-level mixture 

model, with blindly estimated matrices. LG4M: 4-matrix, one-level mixture model using 

gamma distribution of site rates, proposed in this paper. LG4X: 4-matrix, one-level mixture 

model using distribution-free scheme of site rates, proposed in this paper.  In the upper panel 

(a) performance is measured by the average AIC per site (AIC/site) and compared with the 

JTT value. In the lower panel (b), we count the number of alignments (among 84) where each 

model provides a better (positive side) and a worse (negative side) likelihood value than LG. 

The black bars correspond to the numbers of significant differences using the Kishino-

Hasegawa test on AIC values with p<0.01. 



40 

Figure 4: AIC progress of amino acid replacement models, using HSSP 

Note: Models are compared using 300 HSSP test alignments. All models use four categories 

of gamma distributed rates (+4), except LG4X. EX2: 2-matrix, two-level mixture model, 

with matrices estimated from buried/exposed sites. EX2/S has the same matrices as EX2, but 

(contrary to EX2) uses the solvent accessibility of the residues, derived from the 3D protein 

structure. EXEHO: 6-matrix, two-level mixture model, combining accessibility to solvent and 

secondary structure. EXEHO/S has the same six matrices as EXEHO, but (contrary to 

EXEHO) uses the secondary structure and the solvent accessibility of the residues, derived 

from the 3D protein structure. UL3: 3-matrix, two-level mixture model, with blindly 

estimated matrices. LG4M: 4-matrix, one-level mixture model using gamma distribution of 

site rates, proposed in this paper. LG4X: 4-matrix, one-level mixture model using 

distribution-free scheme of site rates, proposed in this paper. In the upper panel (a) 

performance is measured by the average AIC per site (AIC/site) and compared with the JTT 

value. In the lower panel (b), we count the number of alignments (among 300) where each 

model provides a better (positive side) and a worse (negative side) likelihood value than LG. 

The black and grey bars correspond to the numbers of significant differences using the 

Kishino-Hasegawa test on AIC values with p<0.01. 

Figure 5: Topological support dissimilarities of the main models 

Note: Topological support dissimilarity between models M1 and M2 is computed from the 

bootstrap trees inferred using M1 and M2, by counting the number of branches supported in 

one tree but not the other (BP1≥ BP2+50%, see text). Trees in this figure were built using 

distance-based FastME software, from all pairwise model dissimilarities. The tree in the 

upper panel (a) is based on the 63 smallest TreeBase test alignments; tree (b) is based on 300 

HSSP test alignments. All models use four categories of gamma distributed rates (+4), 
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unless explicitly stated, that is: LG4X for distribution-free scheme; - for constant site rate; 

+8 for 8 gamma rate categories. EX2: 2-matrix, two-level mixture model, with matrices 

estimated from buried/exposed sites. EX2/S has the same matrices as EX2, but (contrary to 

EX2) uses the solvent accessibility of the residues, derived from the 3D protein structure. 

EXEHO/S: 6-matrix model combining the accessibility to the solvent and the secondary 

structure of the residues, derived from the 3D protein structure. UL3: 3-matrix, two-level 

mixture model, with blindly estimated matrices. LG4M: 4-matrix, one-level mixture model 

using gamma distribution of site rates, proposed in this paper. LG4X: 4-matrix, one-level 

mixture model using distribution-free scheme of site rates, proposed in this paper. 
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Table 1. Main features of LG4M and LG4X replacement matrices 

 

     Very Slow Slow Medium Fast 

LogCor/LG 0.813 0.874 0.957 0.917 

ClosestMatrix Intermediate 
(0.828) 

Buried 
(0.914) 

Intermediate 
(0.966) 

Exposed 
(0.986) 

Hydro -0.492 1.249 0.219 -1.682 

Average rate 0.145 0.440 0.952 2.463 

5% quantiles 0.035/0.315 0.257/0.673 0.826/1.053 1.938/2.882 

LG4M 

 

 

 

 

 

      

LogCor/LG 0.847 0.853 0.898 0.897 

ClosestMatrix Buried 
(0.880) 

Buried 
(0.885) 

Intermediate 
(0.946) 

Exposed 
(0.987) 

Hydro 0.934 0.325 -0.816 -1.815 

Average weight 0.313 0.332 0.233 0.122 

5% quantiles 0.180/0.418 0.185/0.419 0.145/0.375 0.019/0.251 

Average rate 0.289 0.770 1.370 3.420 

5% quantiles 0.084/0.441 0.394/1.209 0.800/2.232 1.406/5.317 

LG4X 

 

 

 

 

 

 

 

 Rate distribution 84/0/0/0 0/75/6/3 0/9/73/2 0/0/5/79 
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Table 2: Model comparison with TreeBase test alignments,  

using likelihood and topological criteria 

 

M1 M2 AIC/site #M1>M2 #M1>M2

(p<.01) 

#M1<M2

(p<.01) 

#T1>T2 #T1<T2 #T1>T2

(p<.01) 

#T1<T2 

(p<.01) 

RF (%) 

 

L1-L2 

(p<.01) 

LG JTT 0.47 73 66 7 39 8 36 5 430 (11) 0.036 

LG WAG 0.29 71 62 7 32 10 29 6 404 (10) 0.136 

LG LG- 2.34 83  80 0  62 0  61 0  566 (14) 0.307 

LG LG+ 0.07 80 41 1 32 0 11 0 242 (6) 0.002 

LG LG+6 -0.04 7  1  37 3  22 0  6 266 (7) 0.018 

LG LG+8 -0.05 10  1  33 3  29 0  9 270 (7) 0.027 

LG LG+ -0.03 34  15  21 17  28 4  10 476 (12) 0.063 

LG LG+F 0.00 51 7 6 24 12 4 3 364 (9) -0.011 

LG LG4M -0.15 33 11 34 20 37 7 24 616 (15) -0.073 

LG LG4X -0.33 12 1 50 10 48 1 36 606 (15) 0.062 

LG4M LG4X -0.18 1 0 48 0 52 0 26 530 (13) 0.145 

LG4X EX2 0.08 67 27 2 44 11 17 1 536 (13) -0.100 

LG4X UL3 -0.19 39 6 22 24 35 3 17 602 (15) -0.265 
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Table 3: Model comparison with HSSP test alignments,  

using likelihood and topological criteria  

 

M1 M2 AIC/site #M1>M2 #M1>M2

(p<.01) 

#M1<M2

(p<.01) 

#T1>T2 #T1<T2 #T1>T2 

(p<.01) 

#T1<T2 

(p<.01) 

RF(%) L1-L2

(p<.01) 

LG JTT 0.72 267 221 10 220 23 184 6 3570 (15) 0.048 

LG WAG 0.31 248 141 7 196 32 110 2 3478 (15) 0.174 

LG LG4M -0.59 30 3 174 27 251 1 162 4386 (18) 0.009 

LG LG4X -0.65 13 0 182 10 257 0 163 4548  (19) 0.078 

LG4M LG4X -0.06 93 2 20 83 166 2 16 4014 (17) 0.068 

LG4X EX2 0.15 241 62 2 200 51 42 1 4110 (18) -0.063 

LG4X UL3 0.00 199 37 10 165 99 26 10 4356 (18) -0.326 

LG4X EXEHO -0.14 117 2 23 88 166 2 21 4176 (17) -0.094 

LG4X EX2/S -0.21 60 1 80 56 199 0 57 4188 (18) -0.058 

LG4X EXEHO/S -0.61 5 0 223 4 250 0 181 4204 (18) -0.092 
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 Figure 1: Algorithm for estimating LG4M and LG4X 

 

Estimation algorithm 

step 1. Input a set of alignments, 1D { ,..., }ND D  

step 2. 1 2 3 4Q { }Q Q Q Q LG      
 ; Initialization of the four matrices of Q with LG ; 

step 3. For each alignment aD  

o Use PhyML-4X to estimate the tree aT , rates 1 4ρ ,...,a a a   , and weights 

1 4w ,...,a a aw w , based on Equation (8).  
; ML estimation of the phylogeny and rate parameters for every alignment ; 

o Cluster every site a
iD  of aD  into set 

i

a
cC  where  

1..4
arg max ( , | )a a a

i k k k i
k

c w L T Q D


 
  

; Estimation of  the MAP site rate category ;
 

step 4. Build 4 sub-alignments from aD  with corresponding trees 

 1 1,a a aC T  ,  2 2,a a aC T  ,  3 3,a a aC T  , and  4 4,a a aC T 
  

; T x  means that all branch lengths in T are multiplied by  ;   
; This is equivalent to multiplying the Q matrix in Equations (5), (6) by ;

 

step 5. For 1..4,k  estimate *
kQ  using XRate with Equation (11)  

  from sub-alignments  1 1 1( , ),..., ( , )N N N
k k k kC T C T        

  ; Most standard use of XRate ;  
  ; Thanks to tree scaling in step 4, branch lengths are comparable among ; 
  ; sub-alignments, and the estimated matrix is expected to be (nearly) normalized ; 

step 6. If * : 1..4k kQ Q k   , then output  * * * * *
1 2 3 4Q , , ,Q Q Q Q . Otherwise, replace  

  * : 1..4k kQ Q k   and go back to step 3.   

  ; When convergence is observed, we output the estimated, normalized matrix ;  
  ; Otherwise we iterate the computations ; 
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Figure 2: LG4M and LG4X replacement matrices 
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Figure 3: AIC progress of amino acid replacement models, using TreeBase 
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Figure 4: AIC progress of amino acid replacement models, using HSSP 
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Figure 5: Topological support dissimilarities of the main models 

 

 

 

 


