H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-722, 1974.
DOI : 10.1109/TAC.1974.1100705

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

V. Berry and O. Gascuel, On the Interpretation of Bootstrap Trees: Appropriate Threshold of Clade Selection and Induced Gain, Molecular Biology and Evolution, vol.13, issue.7, pp.999-1011, 1996.
DOI : 10.1093/molbev/13.7.999

D. Bryant, N. Galtier, and M. Poursat, Likelihood calculations in phylogenetics Mathematics of Evolution & Phylogeny, pp.33-62, 2005.

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

M. Dayhoff, R. Eyck, and C. Park, A model of evolutionary change in proteins Atlas of protein sequence and structure, National Biomedical Research Foundation, vol.5, pp.89-99, 1972.

R. Desper and O. Gascuel, Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle, J Comp Biol, vol.19, pp.687-705, 2002.
URL : https://hal.archives-ouvertes.fr/lirmm-00269513

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: Probabilistic models of proteins and nucleic acids, 1998.
DOI : 10.1017/CBO9780511790492

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-376, 1981.
DOI : 10.1007/BF01734359

J. Felsenstein, Inferring phylogenies, 2003.

J. Felsenstein and G. Churchill, A Hidden Markov Model approach to variation among sites in rate of evolution, Molecular Biology and Evolution, vol.13, issue.1, pp.93-104, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025575

O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, vol.14, issue.7, pp.685-695, 1997.
DOI : 10.1093/oxfordjournals.molbev.a025808

URL : https://hal.archives-ouvertes.fr/lirmm-00730410

O. Gascuel and S. Guindon, Modelling the variability of evolutionary processes Reconstructing evolution: new mathematical and computational advances, pp.65-99, 2007.

N. Goldman, J. Thorne, and D. Jones, Assessing the impact of secondary structure and solvent accessibility on protein evolution, Genetics, vol.149, pp.445-458, 1998.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

M. Holder, J. Sukumaran, and P. Lewis, A Justification for Reporting the Majority-Rule Consensus Tree in Bayesian Phylogenetics, Systematic Biology, vol.57, issue.5, pp.814-821, 2008.
DOI : 10.1080/10635150802422308

I. Holmes and G. Rubin, An expectation maximization algorithm for training hidden substitution models11Edited by F. Cohen, Journal of Molecular Biology, vol.317, issue.5, pp.753-764, 2002.
DOI : 10.1006/jmbi.2002.5405

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.
DOI : 10.1093/bioinformatics/8.3.275

D. Jones, W. Taylor, and J. Thornton, A mutation data matrix for transmembrane proteins, FEBS Letters, vol.185, issue.3, pp.269-275, 1994.
DOI : 10.1016/0014-5793(94)80429-X

T. Keane, C. Creevey, M. Pentony, T. Naughton, and J. Mclnerney, Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evolutionary Biology, vol.6, issue.1, p.29, 2006.
DOI : 10.1186/1471-2148-6-29

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, Journal of Molecular Evolution, vol.46, issue.2, pp.170-179, 1989.
DOI : 10.1007/BF02100115

P. Klosterman, A. Uzilov, Y. Bendana, R. Bradley, S. Chao et al., XRate: a fast prototyping, training and annotation tool for phylogrammars, BMC Bioinformatics, vol.7, issue.1, p.428, 2006.
DOI : 10.1186/1471-2105-7-428

J. Koshi and R. Goldstein, Context-dependent optimal substitution matrices, Protein Engineering Design and Selection, vol.8, issue.7, pp.641-645, 1995.
DOI : 10.1093/protein/8.7.641

J. Koshi and R. Goldstein, Models of natural mutations including site heterogeneity, Proteins: Structure, Function, and Genetics, vol.3, issue.3, pp.289-295, 1998.
DOI : 10.1002/(SICI)1097-0134(19980815)32:3<289::AID-PROT4>3.0.CO;2-D

J. Kyte and R. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

N. Lartillot and P. H. , A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process, Molecular Biology and Evolution, vol.21, issue.6, pp.1095-1109, 2004.
DOI : 10.1093/molbev/msh112

URL : https://hal.archives-ouvertes.fr/lirmm-00108585

S. Le and O. Gascuel, An Improved General Amino Acid Replacement Matrix, Molecular Biology and Evolution, vol.25, issue.7, pp.1307-1320, 2008.
DOI : 10.1093/molbev/msn067

URL : https://hal.archives-ouvertes.fr/lirmm-00324106

S. Le, O. Gascuel, and N. Lartillot, Empirical profile mixture models for phylogenetic reconstruction, Bioinformatics, vol.24, pp.2317-2323, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324090

S. Le, N. Lartillot, and O. Gascuel, Phylogenetic mixture models for proteins, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.15, issue.12, pp.3965-3976, 2008.
DOI : 10.1016/S0025-5564(97)00081-3

URL : https://hal.archives-ouvertes.fr/lirmm-00365645

S. Le and O. Gascuel, Accounting for Solvent Accessibility and Secondary Structure in Protein Phylogenetics Is Clearly Beneficial, Systematic Biology, vol.59, issue.3, pp.277-287, 2010.
DOI : 10.1093/sysbio/syq002

URL : https://hal.archives-ouvertes.fr/lirmm-00511776

P. Lio, N. Goldman, J. Thorne, and D. Jones, PASSML: combining evolutionary inference and protein secondary structure prediction, Bioinformatics, vol.14, issue.8, pp.726-733, 1998.
DOI : 10.1093/bioinformatics/14.8.726

I. Mayrose, N. Friedman, and T. Pupko, A Gamma mixture model better accounts for among site rate heterogeneity, Bioinformatics, vol.21, issue.Suppl 2, pp.151-158, 2005.
DOI : 10.1093/bioinformatics/bti1125

M. Pagel and A. Meade, Mixture models in phylogenetic inference Mathematics of Evolution & Phylogeny, pp.121-142, 2005.

P. Raman, V. Cherezov, and M. Caffrey, The Membrane Protein Data Bank, Cellular and Molecular Life Sciences, vol.246, issue.1, pp.36-51, 2006.
DOI : 10.1007/s00018-005-5350-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792347

D. Robinson and L. Foulds, Comparison of weighted labelled trees, Lect. Notes Math, vol.3, pp.119-126, 1979.
DOI : 10.1007/BF01797452

M. Sanderson, M. Donoghue, W. Piel, and T. Eriksson, TreeBase: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life, 1994.

R. Schneider, A. De-daruvar, and C. Sander, The HSSP database of protein structure-sequence alignments, Nucleic Acids Research, vol.25, issue.1, pp.226-230, 1997.
DOI : 10.1093/nar/25.1.226

H. Shimodaira, Assessing the Error Probability of the Model Selection Test, Annals of the Institute of Statistical Mathematics, vol.49, issue.3, pp.395-410, 1997.
DOI : 10.1023/A:1003140609666

E. Susko, C. Field, C. Blouin, and A. Roger, Estimation of Rates-Across-Sites Distributions in Phylogenetic Substitution Models, Systematic Biology, vol.52, issue.5, pp.594-603, 2003.
DOI : 10.1080/10635150390235395

J. Thorne, N. Goldman, and D. Jones, Combining protein evolution and secondary structure, Molecular Biology and Evolution, vol.13, issue.5, pp.666-673, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025627

H. Wang, K. Li, E. Susko, and A. Roger, A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny, BMC Evolutionary Biology, vol.8, issue.1, 2008.
DOI : 10.1186/1471-2148-8-331

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

Z. Yang, Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites, Mol Biol Evol, vol.10, pp.1396-1401, 1993.

Z. Yang, Computational Molecular Evolution, 2006.
DOI : 10.1093/acprof:oso/9780198567028.001.0001

Z. Yang, R. Nielsen, and M. Hasegawa, Models of amino acid substitution and applications to mitochondrial protein evolution, Molecular Biology and Evolution, vol.15, issue.12, pp.1600-1611, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025888

. Exeho-/-s, 6-matrix model combining the accessibility to the solvent and the secondary structure of the residues, derived from the 3D protein structure UL3: 3-matrix, two-level mixture model, with blindly estimated matrices. LG4M: 4-matrix, one-level mixture model using gamma distribution of site rates, proposed in this paper. LG4X: 4-matrix, one-level mixture model using distribution-free scheme of site rates