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Abstract.—Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing
evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabil-
ities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both meth-
ods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based
measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira–Hasegawa [SH]-aLRT) provide a
compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels
of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Consider-
ing both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods
with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations
and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes
offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors
can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using
SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira–Hasegawa tree selection. In
general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based methods.
[Accuracy; aLRT; branch support methods; evolution; model violation; phylogenetic inference; power; SH-aLRT.]

Computing and evaluating tree branch supports—
measures of confidence in given branches—are
indispensable parts of phylogenetic inference. In par-
ticular, support measures are crucial to validating or
refuting biological hypotheses on the basis of trees (e.g.,
Baum et al. 2005). Parallel to the development of phylo-
genetic inference methods, various measures of branch
support have been proposed (for review see Wrobel
2008). In the statistical paradigm, the perhaps three
most desirable properties of a branch support measure
are high accuracy, power, and robustness. High accuracy
implies that under the true model, incorrectly inferred
branches should not be statistically supported. High
power implies that correctly inferred branches should
have high statistical support. As for high robustness,
it conveys the notion that modeling inadequacies—
which are unavoidable when dealing with real biolog-
ical data—do not strongly affect the accuracy of the
measure. These three properties are typically validated
in simulations, where the model, tree, and all other pa-
rameters are known. However, conclusions drawn from
simulation studies are highly dependent on the simu-
lation design: size and properties of the synthetic test
data, the analysis model, nature and extent of model
violations introduced to assess robustness, and the
approach used to characterize the properties of the
support measure. Thus, simulation studies need to
be complemented with empirical tests based on real

biological data. Although in real data, the random and
the systematic errors are hard to separate, simulations
with model violations may be used to explore the meth-
ods’ biases, if only for very specific and very few simu-
lation scenarios.

In this work, we focus on likelihood-based sup-
port measures that are used in the model-based tree
inference by maximum-likelihood (ML) or the Bayesian
approach. In recent years, likelihood-based approaches
have established themselves as methods of choice. In
particular, since the introduction of ML in phyloge-
netics (Felsenstein 1981), the heuristics for ML tree
search have steadily improved in terms of efficiency and
speed (Lemmon and Milinkovitch 2002; Guindon and
Gascuel 2003; Hordijk and Gascuel 2005; Stamatakis and
Ott 2008; Stamatakis et al. 2008; Guindon et al. 2010).
Although nonparametric ML bootstrap (Efron 1979;
Felsenstein 1985) and the Bayesian approach (Rannala
and Yang 1996; Larget and Simon 1999; Mau et al. 1999)
are popular for evaluating branch supports, their inter-
pretation and accuracy has been often disputed (see dis-
cussion in Anisimova and Gascuel 2006). Furthermore,
even with fastest tree search or Markov chain Monte
Carlo (MCMC) sampling algorithms, these classical
techniques become slow and even impractical with an
increase of sample size and sequence length. Recently,
fast approximate methods to evaluate branch supports
have been proposed, which make it possible to compute
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branch supports for trees with several hundred taxa in
less than an hour on a standard computer. Anisimova
and Gascuel (2006) developed an approximate likeli-
hood ratio test (aLRT), a frequentist test that compares
two best nearest-neighbor interchange (NNI) configu-
rations around the branch of interest. In simulations,
this test was shown to be accurate, powerful, and robust
to moderate model misspecifications. Tests on large
real data sets demonstrated that for a fixed type I error
rate threshold α, the frequency of inconsistent supports
on suboptimal trees for aLRT is ≤ α, although some
dependency on the inferred tree is expected (Stamatakis
et al. 2008). As with any model-based method, more
serious models violations may cause the aLRT to be-
come overconfident. Typically, the use of a more conser-
vative test helps to reduce the excess of false positives
(FPs). This is often achieved by introducing a non-
parametric element within an algorithm for evaluating
branch supports. For example, nonparametric boot-
strap may be used to reduce Bayesian posterior branch
supports, which are typically perceived as too high
(Douady et al. 2003). However, this requires computa-
tionally intensive MCMC approximation of Bayesian
posterior probabilities (PP) to be done multiple times
(≥100), making such a procedure prohibitively expen-
sive, especially with large samples or limited computing
power. One alternative is a fast nonparametric ver-
sion of the aLRT (Shimodaira–Hasegawa [SH]-aLRT),
which was developed and implemented in the PHYML
phylogenetic inference software (Guindon et al. 2010).
SH-aLRT is derived from the SH multiple tree com-
parison procedure (Shimodaira and Hasegawa 1999)
and is fast due to the RELL technique based on the
resampling of estimated log likelihoods (Kishino and
Hasegawa 1989). Additionally, here we propose a new
simple à la Bayes modification of the aLRT for rapid and
accurate approximation of branch supports (aBayes).
Another solution is a fast approximation to the stan-
dard nonparametric ML bootstrap (rapid bootstrap or
RBS), implemented in the other popular fast phyloge-
netic ML inference program RAxML (Stamatakis et al.
2008). The RBS supports exhibited strong correlation
with standard bootstrap (SBS) values on several large
real data sets (Stamatakis et al. 2008). However, with
real data, the true tree topology is typically unknown,
making it hard to evaluate the accuracy of the method.
Given the popularity of the bootstrap, it is of a consider-
able interest to investigate and compare the properties
of standard and RBS procedures. Although results from
simulation studies cannot be directly transferred on to
real data, computer simulations play an essential role in
evaluating method performance because the true simu-
lation scenario (e.g., tree topology) is then known. Here,
we present results from a computer simulation evaluat-
ing four approximate tests (aLRT, SH-aLRT, aBayes, and
RBS), and make comparisons with SBS and PP supports
where possible.

Clearly, values of branch support computed with
different methods have different interpretation and are
difficult to compare. Typically, researchers inferring

phylogenies use rules of thumb (depending on the
method) to guide their decision making. For exam-
ple, a posterior probability value PP = 0.9 is generally
considered insufficient, whereas a bootstrap value of
the same magnitude serves as evidence of high support.

Here we take a pragmatic approach and use simu-
lations to evaluate the error rates produced by each
method for a given support value. Although the results
of simulations should not be overgeneralized, they pro-
vide a rough idea of the methods robustness and should
help in guiding the decisions of how high a support
value should be to provide sufficient evidence for a
branch. In addition, we complement our analyses by
evaluating all methods in the traditional probabilistic
sense that is compared with an estimated true prob-
ability, which has been done in numerous studies of
bootstrap and Bayesian supports.

Despite the differences in method formulation, we
suggest that a threshold-based evaluation of branch
supports is more meaningful for all methods. Although
the full Bayesian method is expected to have the prob-
abilistic interpretation under a true model, two approx-
imate tests (aBayes and RBS) may also approximately
satisfy the probabilistic interpretation in cases where
model assumptions are not seriously violated. Finally,
we illustrate the behavior of different methods for esti-
mating branch supports on real data, where contradict-
ing results have been previously reported.

METHODS AND DATA

Existing Methods of Branch Support

Phylogeny inference by ML requires optimization of
the log-likelihood function ℓ(T, t, θ|D)= log Pr(D|T, t, θ)
over the space of possible topologies T, branch lengths t,
and evolutionary model parameters θ. Argument val-
ues maximizing the likelihood of observing sequence
data D are the ML estimates of the topology, its branch
lengths, and model parameters; these estimates are
denoted as (TML, tML, θML) = argmax ℓ(T, t, θ|D). A tree
found in a heuristic ML search is better described as
the “best known” ML tree, as heuristic algorithms do
not guarantee that the global ML tree is found. Two fast
implementations of ML tree search heuristics employed
in this study are PHYML (Guindon and Gascuel 2003;
Guindon et al. 2010) and RAxML (Stamatakis et al. 2005;
Stamatakis 2006).

Approximate tests implemented in PHYML compare
optimized log likelihoods for three NNI configurations
around the branch of interest: one optimal and two sub-
optimal. For suboptimal configurations, log likelihoods
are optimized only over five branch lengths (those of
the branch of interest and the four adjacent branches),
whereas other branch lengths and all model parameters
are kept at their ML estimates. Log likelihoods for the
three configurations may be ordered, so that ℓ1, ℓ2, and
ℓ3, denote the best ML score, second best and the worst,
respectively. Note that ℓ1 = ℓ(TML, tML, θML| D).
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The aLRT for a branch evaluates the statistic 2(ℓ1−ℓ2),
that is, double the log-likelihood difference for the best
known ML configuration and the second best NNI
rearrangement around the branch of interest (Anisimova
and Gascuel 2006). The significance of a branch support
is tested based on the comparison of the Bonferroni-
corrected test statistic with the 0.5χ2

0 + 0.5χ2
1 distribution.

The resulting P values may be converted into support
values ranging from 0.125 to 1 (Anisimova and Gascuel
2006). Note that this test is related to the interior branch
test previously studied for distance and likelihood tree
inference.

The aLRT with the nonparametric SH correction
(SH-aLRT) uses a routine developed in the spirit of the
Shimodaira–Hasegawa (SH) algorithm for tree compar-
ison (Guindon et al. 2010). Assuming site independence,
the log-likelihood ℓC for configuration C is a sum of site
log likelihoods over the alignment of length n. Pseu-
doreplicates are generated by resampling n sites with
replacement. For each pseudoreplicate, log-likelihoods
ℓ∗C for configuration C may be quickly computed by
summing up the original site log likelihoods for config-
uration C corresponding to resampled positions (RELL
procedure). The condition ℓ∗1 ≥ ℓ∗2 ≥ ℓ∗3 may no longer
hold for resampled data. Starting with the branch sup-
port count SH = 0, for each pseudoreplicate the follow-
ing procedure is repeated:

(a) using the bootstrapping property E(ℓ∗C) = ℓC,
center pseudolikelihoods ℓ0C = ℓ

∗
C − ℓC for each C;

(b) order centered values {ℓ0C} so that ℓ0best =

maxC{ℓ0C} ≥ ℓ0next ≥ ℓ0worst;

(c) increase SH by 1 if ℓ1 − ℓ2 ≥ ℓ0best − ℓ0next.

The SH-aLRT branch support is measured by the pro-
portion of replicates for which condition in (c) holds.

Finally, the RBS heuristic was developed within the
popular package RAxML to accelerate the computation
of SBS (Stamatakis et al. 2008). RAxML uses the Lazy
Tree Rearrangement algorithm to search the tree space
(Stamatakis et al. 2005), similar to the Subtree Prun-
ing and Regrafting algorithm implemented in PHYML
(Hordijk and Gascuel 2005). During the RBS search, a
flexible model (GTR) is imposed, and an approximation
of the gamma distribution is used for rate heterogeneity.
This strategy facilitates rapid progress towards higher
likelihood areas of the tree space.

Bayesian-like Modification of the aLRT (aBayes)

Let TC represent the topology corresponding to one
of the three NNI configurations around the branch of
interest. We approximate the posterior probability of
configuration C using the Bayes rule:

Pr(Tc|D) =
Pr(D|Tc)Pr(Tc)

∑3
i=1 Pr(D|Ti)Pr(Ti)

and assuming only three possible configurations (with
no rearrangements within subtrees) with a flat prior

Pr(T1) = Pr(T2) = Pr(T3). Log likelihoods of the three
configurations are reused in this calculation as log
Pr(D|TC) = ℓC. Despite these crude assumptions, made
for simplicity and speed benefits, this à la Bayes inter-
pretation of the aLRT branch support is an interesting
showcase of an extreme approximation, as we demon-
strate below its clear advantages over most branch
tests. Note that this approach appears similar to using
likelihood weights to puzzle quartets (Strimmer and
Rambaut 2002) and an earlier suggestion of likelihood
mapping for assessing the phylogenetic content of a
sequence alignment for quartets (Strimmer and Von
Haeseler 1997).

Speed

Our fast approximate likelihood-based methods
(aBayes, aLRT, SH-aLRT) do not significantly augment
the time required for the ML tree inference because all
the calculations are based on fast approximations and
reuse intermediate likelihood values obtained during
heuristic tree search. In other words, the time required
to perform ML tree inference with PHYML with one of
the fast approximate methods is roughly the same as
the time spent to only infer an ML tree (with no branch
support estimation). In contrast, SBS with 100 replicates
requires 100 times longer. RBS takes on average a third
of the time of SBS (both with 100 replicates), but the
exact time varies depending on the size and the proper-
ties of the data set and the model used for the inference.

Availability

SH-aLRT and aLRT are available in PHYML v. 3.0
(Guindon et al. 2010). The implementation of the aBayes
method is now included in the current version of the
PHYML program, which is available for download
(http://www.atgc-montpellier.fr/phyml).

Evaluation of Performance in Simulations

Because the methods under scrutiny are nonhomo-
geneous in the statistical sense, we take a practical
approach to evaluate error rates committed for a given
fixed support value threshold. This strategy resem-
bles the so-called approximate frequentist framework
(Anisimova and Gascuel 2006). We define the approxi-
mate measures of FP and false-negative (FN) error rates
for a given threshold α:

FP rate (α) = Pr (support ≥ 1− α | branch is NOT
correct)

FN rate (α) = Pr (support < 1− α | branch is correct)

For aLRT, developed in the frequentist framework,
the support ≥1– α when the branch test is significant
at level α (and support < 1−α when the branch test is
not significant at α). This means that an aLRT support
of 0.95 corresponds roughly to a 5% FP rate. This is
because for the aLRT, the threshold is unambiguously
defined as a size of test (or significance level) because

http://www.atgc-montpellier.fr/phyml
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it relies on the theoretical asymptotic distribution of
the test statistic under the null hypothesis. For other
support methods, such correspondence is not expected.
Instead, the FP and FN rates are error rate estimates that
one may expect for a given support value (1 −α).

The tree topology is not fixed in our simulations,
so these probabilities must be estimated as average
frequencies over all branches in the tree (rather than
focusing on one particular branch in the same topol-
ogy over simulated replicates). Therefore, controlling
this estimated overall FP rate for a tree is equivalent to
controlling the false discovery rate FDR, which recently
became the method of choice in controlling for multiple
testing in a variety of situations (Storey 2002).

Ideally, the desirable test has a low FP rate (or high
accuracy, i.e., 1− FP rate) and a high power (1− FN rate).
When the FP rate is reduced, the power is also reduced,
and vice versa. Often an FP error is considered to be a
worse mistake than an FN error. Therefore, the foremost
requirement for a method is to have an acceptable FP
error rate. Accurate approaches (i.e., with low FP) are
then further compared on the basis of their power (the
higher the better).

The process of branch testing may also be considered
as a binary classification procedure, where a branch
is labeled “correct” if it has sufficiently high support
and “incorrect” otherwise. With a perfect support mea-
sure, only true branches are labeled as “correct,” and
all branches absent from the true tree are classified as
“incorrect.” Such binary prediction may be assessed by
the Matthews correlation coefficient:

MCC= TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, where TP, TN, FP,

and FN are the numbers of true positives, true nega-
tives, false positives, and false negatives, respectively.

Bayesian posterior clade probabilities (unlike other
types of branch supports) by definition should have
the probabilistic interpretation (Huelsenbeck et al. 2002;
Huelsenbeck and Rannala 2004), so that the estimated
posterior probability for a clade is very close to the
true probability of this clade being correct. This nice
property, however, is often affected by model viola-
tions (Huelsenbeck and Rannala 2004). Several authors
interpreted SBS supports as clade probabilities (Hillis
and Bull 1993; Efron et al. 1996; Murphy et al. 2001).
First objections to such an interpretation (Felsenstein
and Kishino 1993) were supported by evaluations in
the probabilistic framework (Berry and Gascuel 1996;
Anisimova and Gascuel 2006). Although the probabilis-
tic interpretation is not expected to be strictly applicable
to any of the described approximate measures, we use
the probabilistic framework to contrast methods prop-
erties and to verify whether any of the support methods
produce values close to probabilistic interpretation.

For simulated data, because the true tree is known,
the probabilities of an inferred clade to be true (found
in the true tree) can be estimated. For all inferred trees
in our simulation, we first ordered all inferred biparti-
tions (i.e., interior branches) by their estimated branch
supports. Next, going over this ordered list in sliding

windows of size 100 with step 10, we estimated the
probabilities of an inferred clade (defined by a biparti-
tion) to be true as the proportions of correctly inferred
bipartitions in each window. For each window, the
estimated probability of an inferred clade to be true was
compared with the average inferred branch support in
the same window.

Simulated Data

The performance of the above-mentioned measures
was compared on 1000 simulated replicates, each with
100 taxa and 600 nucleotides and based on a random
tree (data from Desper and Gascuel 2004). Trees were
simulated using the beta-splitting model (Aldous 1996),
which generalizes the uniform distribution on phyloge-
nies and the standard Yule–Harding branching process
(Yule 1925; Harding 1971), both of which are typically
used to generate a distribution of biologically relevant
trees. Deviations from molecular clock were introduced
to each tree (Desper and Gascuel 2004). Sequence data
were generated using the K2P + covarion model, similar
to Galtier (2001), where evolutionary rates vary among
sites and over time. Analyses were performed under
the incorrect models HKY+Γ4 (moderate model viola-
tion) and JC+Γ4 (serious violation). For comparison with
the Bayesian approach and with the results from our
previous study, we used 1500 smaller simulated data
sets, each generated under HKY+Γ4 with 12 taxa and
1000 nucleotides, and based on a distribution of phylo-
genies generated using the standard speciation process
with deviations from the molecular clock (data from
Anisimova and Gascuel 2006). The data were analyzed
under both the correct model HKY + Γ4 and the in-
correct model JC + Γ4. The Bayesian MCMC analyses
were conducted with MrBayes v3.1.2 (Huelsenbeck and
Ronquist 2001) as described in Anisimova and Gascuel
(2006). To address concerns that 4×104 generations used
in our previous study may not have been sufficient
(despite good convergence diagnostics), we also run
longer chains (4 × 105 generations) under each model.

It has previously been noticed that bootstrap propor-
tions as well as PP can be too high not only for incorrect
but also for nonexisting (i.e., zero-length) branches (e.g.,
Lewis et al. 2005; Yang 2007; Guindon et al. 2010). Thus,
we tested how often branch partitions were inferred
with high supports on star-like data, as can be the case
for viral data or samples of deep divergence confounded
by selection (adaptive radiation). We simulated 100- and
12-taxa star trees with branches drawn from the expo-
nential distribution with a mean of 0.1 expected substi-
tutions per branch per site. All star trees were simulated
under HKY + Γ4.

Real Data

The degree of agreement and correlation between
branch support measures was assessed on real data.
Eight highly diverse data sets from the comparative
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study of bootstrap and Bayesian posterior supports
(Douady et al. 2003) were analyzed with PHYML and
RAxML, and different methods were used to estimate
clade supports. The choice of these data was motivated
by an apparent conflict of highly supported bipartitions.
Because robustness to model violations is part of our
assessment, we do not perform a model selection step
(like in Douady et al. 2003), but instead use the suf-
ficiently complex HKY + Γ4 model for all data. We
acknowledge that this model provides a certain degree
of violation for each data set.

For further tests, we selected eight amino acid genes
from metazoa lineages that were used to reconstruct the
relative position of bilaterian animals (Philippe et al.
2005). Conflicting inferences from such multilocus pro-
tein data were previously reported (Lartillot et al. 2007).
All bilaterian protein sequences were analyzed under
WAG + Γ4. Finally, we performed a detailed analysis
of the rbcL plant data set containing 500 taxa and 1428
nucleotides (previously analyzed in Guindon and
Gascuel 2003). The main features of all real data sets
analyzed here are listed in Table 1.

RESULTS AND DISCUSSION

The Effect of Model Misspecifications on the Accuracy of
Branch Supports

For simulated data, we compared the performance of
various branch support measures under mild or strong
model violations, in both the frequentist and proba-
bilistic frameworks. Analyses assuming the HKY + Γ
model represent mild model violation (detected by the
Goldman–Cox test; Goldman 1993), whereas JC + Γ is
a more serious model violation (e.g., compared with
the HKY + Γ model, JC + Γ has much higher Akaike
information criterion [AIC] score; Akaike 1973). How-
ever, the degree of deviation from the true model varies
among simulated replicates, with the differences of AIC
scores under the two models measuring the severity
of using JC instead of HKY for a particular data set. We
observed weak but significant positive correlation
between the distance from the more flexible to the
simple model and the FP rate (r2 = 0.1, P value =
0.002; Suppl. Fig. S1, available from http://www.sysbio
.oxfordjournals.org/).

TABLE 1. Simulated and real data sets used for the comparison of branch support methods

Data set description Data type No. taxa Sequence length Gaps or missing (%) Phylogenetic signala

Simulated data
(A) 1000 replicates from Desper and
Gascuel (2004)

DNA 100 600 None Distribution with mean = 0.26

(B) 1500 replicates from (Anisimova
and Gascuel 2006)

DNA 12 1000 None Distribution with mean = 0.48

(C) 1000 replicates simulated on large
random star trees; simulation model
HKY + Γ

DNA 100 600 None 0

(D) 1000 replicates simulated on ran-
dom star trees; simulation model
HKY + Γ

DNA 12 1000 None 0

Real data from Douady et al. (2003)
(1) Orchids, nuclear ribosomal ITS DNA 23 682 7.93 0.26
(2) Mammals, nuclear protein-coding
vWF

DNA 13 1161 0.23 0.50

(3) Insects 1, nuclear protein-coding
EF1α

DNA 14 2033 6.15 0.18

(4) Insects 2, mitochondrial (12S−16S
rRNA, COI, COII)

DNA 14 2249 0.06 0.17

(5) Sharks 1, mitochondrial (12S−16S
rRNA)

DNA 23 1880 3.24 0.19

(6) Sharks 2, mitochondrial (12S−16S
rRNA)

DNA 21 1963 2.58 0.24

(7) Snakes, mitochondrial (12S−16S
rRNA)

DNA 23 1545 6.46 0.32

(8) 3 domains of life, HMGR AA 15 258 19.10 0.56
Real Metazoan proteins from Lartillot

et al. (2007)
(9) sap40 AA 49 190 3.71 0.29
(10) rpl5 AA 47 249 5.07 0.27
(11) vata AA 39 598 24.57 0.32
(12) yif1p AA 26 145 15.12 0.31
(13) glcn AA 25 215 16.71 0.33
(14) rpo-A AA 27 713 34.78 0.34
(15) rpo-B AA 33 1145 31.94 0.31
(16) nsf2-F AA 26 414 13.41 0.30

Real data from test set used in Guindon
and Gascuel (2003)
(17) Protein-coding rbcL DNA 500 1398 2.25 0.28

aThe phylogenetic signal is the proportion of the total tree length that is taken up by internal branches (Phillips et al. 2001).

http://www.sysbio.oxfordjournals.org/
http://www.sysbio.oxfordjournals.org/
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In the frequentist framework, all methods appeared
accurate with moderate model violations (analysis with
HKY + Γ). We evaluated the performance of methods
by estimating the error rates for several fixed thresh-
olds of support values, paying particular attention to
error rates achieved at high threshold values such as
0.99, 0.95, and 0.9 (Fig. 1). Recall that for aLRT a support
threshold of 0.95 corresponds to 5% significance level.
This means that among all branches reconstructed with
an aLRT support of≥ 0.95, the FP rate should not exceed
5%. Although this requirement may not hold for other
methods, low levels of FP rates respective to the sup-
port threshold is clearly a desirable property for any test.
Moreover, plotting the FP rates for all methods as a func-
tion of the support threshold gives the user a valuable
information on what can be expected for certain values
of supports for a given method, and how the same abso-
lute value of support compares with supports obtained
by other methods (in terms of FP error rates).

In 100-taxa data sets, for a threshold of 0.95 FP rate
remained below 5% for all methods with the exception
of aLRT, which was slightly above—with 6.3% (Table 2
and Fig. 1a). Such behavior of the aLRT under moder-
ate model misspecifications is consistent with our earlier
report (Anisimova and Gascuel 2006). More conserva-
tive tests typically suffer from loss of power. Indeed, the
least conservative methods aLRT and aBayes had clearly
a higher power than the other measures (Table 2 and
Fig. 1a). Consequently, with moderate model violations,
aLRT and aBayes appear to be the preferred methods.

Under more serious model violations (analysis with
JC+Γ), FP rate of aLRT increased to 10% at the 5%
significance level. All other tests, however, remained

TABLE 2. FP error rate (FP rate) and power of branch support
methods for simulated data set (A in Table 1) for a threshold of 0.95

Analysis model Support method FP rate (%) Power (%)

HKY + Γ
aLRT 6.3 79
aBayes 2.8 71
SH-aLRT 0.2 36
SBS 0.3 48
RBS 0.2 35

JC + Γ
aLRT 10 81
aBayes 5 74
SH-aLRT 0.3 38
SBS 0.3 35

accurate (Table 2 and Fig. 1b). An elevated FP error
rate for aLRT may be due to its explicit use of the the-
oretical distribution under the null hypothesis, which
is known to be sensitive to model misspecifications.
Although some increase of FP rate was also observed
for other methods, error rates remained low, showing
better resistance to model misspecifications.

As a consequence of the accuracy power trade-off, the
power of the methods also slightly increased (Table 2
and Fig. 1b). Note that RBS could not be performed un-
der either HKY + Γ or JC + Γ because RAxML enforces
GTR + Γ as part of its heuristic algorithm. When com-
pared with other methods performed under HKY + Γ ,
RBS has good accuracy and relatively good power (Fig
1a). Such competitive performance may be due to us-
ing a more flexible model (GTR + Γ) to navigate to
more promising areas of tree space. Although RBS
compares favorably with both SBS and SH-aLRT in

FIGURE 1. FP error rate (continuous lines) and power (dotted lines) of branch support methods. Data are simulated with 100 taxa, 600
nucleotides under the covarion model and analyzed using incorrect models: (a) HKY + Γ and (b) JC + Γ .
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terms of accuracy-power balance (Fig. 1a), it tends to
behave differently to SBS. On average, RBS produces
visibly higher branch supports than SBS in simulations
(and on real data; see below). For a threshold of >0.9,
RBS and aBayes produce very similar rates of FPs, but
aBayes achieves much higher power (Fig. 1a), and re-
quires only a fraction of computing time compared
with RBS.

Based on the MCC values, aLRT and aBayes ensure
the best binary prediction of correct/incorrect branches,
outperforming the nonparametric approaches (SH-
aLRT, RBS, and SBS) by a large margin (Suppl. Table S1).
Although the branch support estimation problem is not
a typical classification problem, the trend seen in MCC
values highly correlates with the power of these tests.
Indeed, the power of nonparametric tests is much lower
than that achieved by aLRT and aBayes.

The above simulations demonstrate aBayes as a clear
winner judging by its speed and the power-accuracy
balance it achieves, even with serious model violations.
But even for aBayes, we observed a certain tendency for
the FP rate to increase with more serious model viola-
tions. Thus, if severe model violations are anticipated,
the nonparametric SH correction appears more suit-
able for testing branch support than the generally more
powerful aBayes. Indeed, the SH-aLRT is sufficiently
conservative to avoid high FP rates and at the same
time is very fast computationally, eliminating the need
to use the SBS procedure. Indeed, with a threshold of
> 0.9 both SBS and SH-aLRT are very conservative and
have very similar accuracy, whereas SH-aLRT has better
power for a range of thresholds <0.95.

Difficulties with Probabilistic Interpretation

The traditional approach to evaluating the accuracy
of branch support is to compare the estimated sup-
ports with the estimated probability of a clade to be
true. Computer simulations are used to verify whether
or not such probabilistic interpretation is appropriate.
The probabilistic interpretation of estimated supports is
desirable as it is more intuitive, and therefore has been
a popular evaluation strategy. However, in reality, such
property is hard to achieve even when probabilistic
interpretation is expected to hold, as it is the case for
the Bayesian PP inferred under the true evolutionary
model and correct prior distributions (Huelsenbeck and
Rannala 2004; Yang and Rannala 2005; Kolaczkowski
and Thornton 2007; Yang 2007). None of the other sup-
port estimation methods allows the probabilistic inter-
pretation, including PP supports estimated under the
incorrect model (or incorrectly specified priors). Despite
this, studies where the probabilistic interpretation is
attached to branch supports abound (e.g., Murphy et al.
2001). Here we show that such interpretation would be
inappropriate in most cases (including PP) and suggest
that the frequentist approach should be preferred. Such
an approach is a decision rule (as described above),
which controls the rate of FP error. Below we illustrate
this by simulation.

To include computationally expensive PP supports
in our evaluation, we used smaller simulated data sets
of 12 taxa (Table 1, Data set B). Trees inferred using the
Bayesian approach and ML were compared with the
known true trees, so that each inferred clade (i.e., split)
was classified to be true or false. To test the suitability
of the probabilistic interpretation for branch supports,
true probabilities of a split to be correct were plotted
against the average inferred support values (calculated
in sliding windows, as described above; Fig. 2). PP val-
ues estimated from short and long MCMC chains (see
Methods section) were very similar under both the true
and the incorrect model. We thus report only the results
obtained from long chains here.

When the model was true, the PP indeed closely
reflected the true probabilities for a split to be cor-
rect (Fig. 2a), consistent with our earlier report as
well as other studies (Huelsenbeck and Rannala 2004;
Anisimova and Gascuel 2006). With stronger model
violation (assuming JC + Γ), the PP were often much
higher than the estimated true probability (Fig. 2a).
The tendency to overestimate branch supports was
often observed in empirical studies. Two strategies
were proposed to remedy this. Lewis et al. (2005)
introduced a nonzero prior for trees with polytomies.
Alternatively, using a branch length prior with higher
weighting for near-zero values has been suggested
(Yang et al. 2005; Yang 2007). Here we opted to make
a comparison of the original Bayesian implementation
(MrBayes) with the modified implementation using
the two-exponential mixture as the branch length prior
(mb2E; http://abacus.gene.ucl.ac.uk/software.html).
With the mixed prior, we reanalyzed the 12-taxa repli-
cates and, indeed, observed on average lower poste-
rior supports for clades compared with the original
MrBayes implementation. However, these were far
from the true probabilities even when the analysis
model was true (Fig. 2a). No other branch supports
were close to true probability values. The trends we
observed are however informative because they are
consistent with the evaluation under the frequentist
framework.

We also used large data sets of 100 taxa (as above)
to depict different support values in the probabilis-
tic framework (Fig. 2b). Under the true model, aBayes
supports were lower than true probabilities for 12 taxa
(Fig. 2a), but slightly higher than true probabilities for
100 taxa sets (Fig. 2b). With model violations, aBayes
supports became higher than true probabilities for both
12- and 100-taxa data sets. In comparison with aBayes
under the same model, PP supports were on average
visibly higher than aBayes supports, but also closer to
the true probabilities (Fig. 2a). Consistent with the fre-
quentist evaluation, the more conservative SBS tended
to be much lower than the true probability (Fig. 2b).
Although high SH-aLRT supports (> 0.85) were very
similar to bootstrap values, lower SH-aLRT supports
(< 0.85) were higher than bootstrap values. On the
other hand, aLRT supports were always higher than
estimated true probabilities, even with the true model.

http://abacus.gene.ucl.ac.uk/software.html
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FIGURE 2. Probabilistic interpretation is rarely achieved. Inferred average support of a clade is plotted against the true probability under
the true (HKY + Γ) and the incorrect (JC + Γ)models.

For 100 taxa, aBayes and RBS provided the closest esti-
mates for the true probability, with aBayes being slightly
higher and RBS slightly lower than the true probabilities
on average (Fig. 2b).

Using the wrong model exaggerated these trends
(Fig. 2a; data not shown for 100 taxa), making the
estimated supports even further from the estimated
probabilities regardless of the method. Again, the be-
havior of RBS could not be tested under the wrong
model, as during the heuristic ML search RAxML en-
forces GTR + Γ and does not perform searches under
simpler models.

The above clearly demonstrates that the probabilistic
interpretation of support values is unachievable and
is indeed misleading in most cases. Under the correct
model, the Bayesian approach is superior. With model
misspecifications, aLRT and aBayes outperform the
Bayesian approach in both frameworks (Figs. 1 and 2).
Even under the true substitution model, it would come
as no surprise if the Bayesian approach is vulnerable to
violations of other assumptions, such as those concern-
ing the tree shape: the distribution of branch lengths,
the branching pattern, or presence of recombination.
For example, the choice of branch length prior was
demonstrated to have a strong effect on the Bayesian
estimation (Yang and Rannala 2005), and different

exponential priors were proposed to be used in order to
correct for often elevated posteriors and to resolve the
so called “star-tree paradox” (Yang 2007). In our sim-
ulated 12-taxa data sets, internal and external branch
lengths were sampled from the same distribution and
trees were strictly bifurcating. Thus, the use of mixed
priors for the analysis of these data also represents a
violation of assumptions. Surprisingly, the effect of prior
misspecification was almost as strong as that observed
for the original MrBayes under the wrong substitution
model (compare lines for MrBayes under JC + Γ and
mb2E under HKY + Γ in Fig. 2a).

We further tested the robustness of branch support
methods on data evolved on star trees. For example,
trees reconstructed from measurably evolving popu-
lations tend to lack resolution at most nodes support-
ing a star-like model of evolution (Drummond et al.
2003). Viral and bacterial data often have high levels of
mutation and recombination weakening tree signal. For
the simulated 12-taxa star-like data sets (Table 1, Data
set D), we observed only 0.3% of PP ≥ 0.95. This error
was still acceptably low for aBayes (2%), but higher
with aLRT (7.6%), slightly trespassing the traditionally
acceptable level of 5%. We expect that these error rates
may rise for larger trees and with model misspecifica-
tions. For example, using the correct model HKY + Γ
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for the analysis of 100-taxa data sets simulated on star
trees, aLRT generated 20.9% of branch supports ≥ 0.95,
whereas aBayes had 9.9% of equally high supports.
When simulated data were analyzed with JC + Γ (in-
correct model), these frequencies slightly rose: to 23.5%
and 13.2%, respectively. In contrast, SH-aLRT, RBS, and
SBS almost never produced high branch supports on
star trees, even when the model was violated: frequency
of high supports for inferred bipartitions was always <
0.01%. Star-like evolution should be easily detectable,
for example, using simple LRT comparing a binary
inferred tree versus a star tree (we provide one such
implementation and its description on our website:
http://people.inf.ethz.ch/anmaria/tree-likeness).

Evaluation of Branch Supports on Real Data

General comparison of branch supports.—The general
trends observed in our simulations were confirmed on
real data. We plotted branch supports obtained with dif-
ferent methods against SBS. Though the dispersion was
considerable, the global pattern was easily seen from the
arrangement of correlation lines (Suppl. Fig. S2). As in
simulations, SBS produced the lowest supports, whereas
PP, aLRT, and aBayes values were on average more
optimistic (Suppl. Fig. S2). Most of the time SH-aLRT
and RBS were higher than SBS, but visibly lower than
other supports. For protein data and for 500-taxa rbcL
data set, we observed that SH-aLRT supports were of-
ten higher than RBS (Suppl. Figs. S2b,c), whereas the
reverse was true for nuclear data (Suppl. Fig. S2a). Note
that this effect may be due to the fact that our nuclear
data sets contained on average fewer taxa than protein
data. Recall that in our simulations the performance of
RBS was worse for smaller data sets. For protein and

rbcL data sets, the behavior of RBS was the closest to
SBS, as it was intended in the RBS approximation algo-
rithm (Stamatakis et al. 2008). However, the correlations
we observed were not nearly as high as those reported
for RAxML test data sets (R2 ranging from 0.85 to 0.98):
for protein data sets, the linear correlation of SBS and
RBS had slope S = 0.76 and R2 = 0.66, whereas for rbcL
data these were S= 0.92 and R2 = 0.69.

Comparison of aBayes supports and Bayesian posteriors
(PP).—Among the three most optimistic measures,
aBayes can be considered as a crude approximation
of PP values. Thus, we studied the correlations of these
two supports for bipartitions inferred from real data
sets (as listed in Table 1 except for rbcL data). Trees and
PP values were estimated with MrBayes. Then aBayes
supports were calculated on these inferred topologies
with our modified version of PHYML3.0.

The strength of correlation between aBayes and PP
varied from data set to data set. But in general, for
nucleotide data, the correspondence of aBayes and PP
values was very good and highly significant (espe-
cially in their high range), with slope S= 0.98, intercept
I = 0.01 and R2 = 0.69 (Fig. 3a). Out of the total com-
mon 104 splits, aBayes and PP agreed for 91.3% of
them (both supports ≥0.95, or both supports <0.95),
and disagreed for 9 splits (one support >0.95 and
the other support <0.95). If a lower threshold of 0.9
was used, disagreements were observed only for five
splits (with aBayes supporting three of them and PP the
other two).

For protein data sets, the correlation was statisti-
cally weaker, and depended on the model used for
the analysis (WAG + Γ , LG + Γ+F). Under WAG + Γ ,

FIGURE 3. Bayesian PP compared with aBayes supports, and their distributions in real data: (a) DNA data 1–8 from Table 1, analyzed
assuming HKY + Γ ; (b) AA data 9–16 from Table 1, analyzed assuming WAG + Γ .

http://people.inf.ethz.ch/anmaria/tree-likeness
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there was a light tendency of aBayes to be on average
higher than corresponding PP (Fig. 3b): S=0.71, I=0.29,
R2=0.49. Out of the total 211 common splits, aBayes and
PP agreed on 85% of inferred splits (supporting 58% of
splits and both doubtful about 27% of splits). PP was
in disagreement with aBayes for the remaining 15% of
splits: 11% were supported only by aBayes and 4% only
by PP. It is possible that aBayes supports are on average
higher than PP due to serious model violations known
to exist for these data (Lartillot et al. 2007): for example,
under LG + Γ+ F, we observed a slight tendency for
aBayes supports to be lower than PP (data not shown).
However, we postulate that an inappropriately speci-
fied model may cause not only the increase of branch
supports, but also a decrease. One such example was
shown above for simulated data, where PP supports
from the modified Bayesian approach (mb2E) decreased
compared with PP values obtained with the original
MrBayes implementation.

To further investigate the relationship between aBayes
and PP, we reestimated trees for each of 1500 simulated
12-taxa data using the Bayesian approach, with both
the correct model HKY + Γ and incorrect JC + Γ . As
with real data, we then used these inferred trees to
estimate the corresponding aBayes branch supports
(with correct or incorrect models, respectively). When
simulated data were analyzed with the true model
HKY + Γ , 97% of tree partitions were inferred correctly
with the Bayesian approach. The agreement between
aBayes and PP supports (both ≥ 0.95, or both <0.95)
was observed for 97% of all correctly inferred partitions.
Moreover, 88% of inferred partitions received high sup-
ports with both methods, whereas 9% were poorly
supported by both methods. Disagreements were ob-
served only for 3% of correctly inferred partitions, with
most such splits having low or insufficiently high aBayes
but high PP support. The correlation between aBayes
and PP was high and significant (Fig. 4a,b). In agreement
with our results presented above, aBayes supports show
a tendency of being slightly lower than PP values. For in-
correctly inferred branches (3%), the agreement between
aBayes and PP was also very good: 90% of the incor-
rectly inferred partitions received insufficient support
with both methods (<0.95), whereas only 6.5% of incor-
rect branches were highly supported by both methods.
The disagreement was observed in the remaining 3.4%
of cases, again mostly due to lower aBayes supports.

When the simplistic JC + Γ model was used in the
analysis, the agreement between aBayes and PP val-
ues was once again observed for most of all correctly
inferred partitions (97.5%), with slightly lower cor-
relation but similar to the simulation where the true
model was used (Fig. 4c, d). However, for incorrectly
inferred branches (4.3%), the distribution of branch sup-
ports shifted significantly, with more incorrect branches
having higher support compared with the analyses un-
der the true model (compare Fig. 4a,b with Fig. 4c,d).
In more detail, 80.2% of the incorrectly inferred par-
titions received insufficient support with both meth-
ods, whereas 12.5% of incorrect branches were highly

supported by both methods (6% more compared with
the analysis under the true model). The disagreement
was observed in the remaining 7.3% of cases, again
mostly due to lower aBayes supports (4% more com-
pared with the analysis under the true model).

Note that theoretically, there is no reason for aBayes
supports to be biased to higher values compared with
PP. Recall that aBayes support of a partition correspond-

ing to configuration C is p̃c =
Pr(D|Tc)

Σ
3
i=1Pr(D|Ti)

, where trees

Ti are derived from the ML topology and are not re-
arranged within. In a proper Bayesian calculation, the
posterior probability of a partition is calculated over

all topological possibilities: pc =
Pr(D|Tc)+Pr(D|T̄c)

Σ
3
i=1Pr(D|Ti)+Pr(D|T̄1,2,3)

,

where T̄C refers to a set of topologies with branch
lengths that do not conserve tree TC but support the
same partition of leaves as configuration C. Similarly,
T̄1,2,3 is a set of topologies with branch lengths that are
not consistent with either of the three configurations
around the branch of interest. In addition, each proba-
bility term is calculated as an integral over the branch
length distribution, unlike with aBayes approach where
only ML estimates are used. Mathematically aBayes
support may be not only higher but also lower or equal
to PP value.

Examples from real data.—Above we observed that the
disagreements between aBayes and PP are infrequent
but exist, and it is not clear whether they are due to
excessive caution of one method or to the overconfi-
dence of the other. To explore this on real data, here we
present two contrasting examples of suboptimal meta-
zoan phylogenies from the set of proteins previously
considered by Lartillot et al. (2007). Although it may
be undesirable to study suboptimal trees, scientists are
regularly confronted with such without knowing. Thus,
observations from incorrectly reconstructed trees can
be illuminating. In our example of the metazoan phy-
logeny (Philippe et al. 2005; Lartillot et al. 2007), the
true tree is unknown, but the assumed species relation-
ship for major animal phyla is (((((N, A), P), D), C), F))
(Fig. 5c). However, note that gene trees may often differ
from the species tree (Galtier and Daubin 2008; Degnan
and Rosenberg 2009). Most strikingly, for more than five
taxa, the most probable reconstructed gene tree is dis-
tinct from the species tree (Degnan and Rosenberg 2006).

Here we aim to investigate the robustness of the
branch supports estimated for real data, especially
for small samples analyzed under misspecified mod-
els where the inferred tree is highly likely to contain
many incorrect splits. First, we considered the protein
alignment of the ribosomal sap40 gene with 190 sites
and 49 sequences. For this small sample but a large
number of divergent lineages, we expect the reconstruc-
tion to be very unstable. Indeed, trees reconstructed by
PHYML, MrBayes, and RAxML under WAG + Γ show
the lowest degree of agreement compared with all other
data sets in Table 1 (with only ∼70% common splits).
We compared branch supports for the suboptimal tree
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FIGURE 4. Bayesian PP compared with aBayes supports and their distributions in simulations: (a) for correctly inferred branches under
HKY + Γ ; (b) for incorrectly inferred branches under HKY + Γ ; (c) for correctly inferred branches under JC + Γ ; (d) for incorrectly inferred
branches under JC + Γ . This figure is available in black and white in print and in colour at Systematic Biology online.

reconstructed by PHYML. Nodes unambiguously sup-
ported by all methods were always found close to the
tips of the tree, where relationships were easier to re-
construct (Suppl. Fig. S3). Deeper nodes were more
problematic. One obvious fault in the reconstruction
was branch PX, grouping Mnemiopsis (Ctenophora) to-
gether with Platyhelminthes (Platyzoa), most likely due
to the long-branch attraction artifact affecting the recon-
struction of deep-rooted phylogenies (Felsenstein 2004).
According to current beliefs, Ctenophora is an out-
group of Bilateria, and so Mnemiopsis should branch

off split X2. This means that tree partitions X1 and
APX1–APX3 are also reconstructed wrongly. Given the
short alignment, the tree reconstruction for 49 very di-
verse species is particularly hard, especially considering
existing model violations. The distribution of support
values contains a large proportion of low supports—a
sign that optimal reconstruction conditions were not
met. In such conditions, we recommend opting for the
more conservative branch support methods. Indeed, in
our example SH-aLRT, RBS, and SBS do not support
the incorrect branches X1, APX1–APX3, and PX. On the
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FIGURE 5. Comparison of branch support measures on the nsf2-F gene: (a) Metazoan phylogeny reconstructed for the nsf2-F gene with ML
using PHYML; (b) estimated branch supports corresponding to reconstructed branches, and (c) the hypothesized species tree (Guindon and
Gascuel 2003; Lartillot et al. 2007).

other hand, more conservative methods fail to support
many correct branches (e.g., N9, D2, F4, NX, X2, X3),
where other tests show high supports.

In contrast, the phylogenetic reconstruction was much
more stable for the vesicular fusion protein nsf2-F,
with most branch supports in agreement. The nsf2-F
alignment is more than twice as long and contains
roughly half the number of lineages compared with the
sap40 alignment. All programs reconstructed the same
tree, which was largely matching the species tree, ex-
cept for the sister relationship between nematodes and
arthropods (Fig. 5a). Instead, Platyhelminths were clus-
tered with Nematodes, which was observed in other
studies and was well supported even with bootstrap
when multiple genes were used. This may be again
attributed to the long-branch attraction artifact in meta-
zoan genes (Philippe et al. 2005; Lartillot et al. 2007).
This relationship is supported by aBayes, aLRT, and
PP (>0.95) but has insufficient SH-aLRT, RBS, and SBS
supports (Fig. 5a,b).

Although the tree signal was overall much better for
nsf2-F, bootstrap supports (RBS and SBS) and SH-aLRT
lack power (low supports for monophyly of Diptera
(A1), Basidiomycota (F5), Ascomycota (F8)). Higher
power of SH-aLRT compared with RBS and SBS can be
demonstrated by its support of the partition separat-
ing Fungi and Choanoflagellida from bilaterian animals

(DX1). Note that a more relaxed threshold is typically
chosen for bootstrap supports (e.g., 0.7–0.8). Yet, the
accuracy of a branch support method depends on the
data size and evolutionary complexity. We thus warn
against arbitrary thresholds. The choice of a thresh-
old and a support method should be guided by the
properties of the data set. Using an adequate model to
accommodate data specifics is highly desirable, though
possibly elusive.

CONCLUSIONS AND RECOMMENDATIONS

Branch supports evaluated in our study fall into two
categories: parametric (aLRT, aBayes, PP) and nonpara-
metric (SH-aLRT, RBS, SBS). Simulations presented
above warn against using aLRT with serious model
violations. Other tests appear more robust to model
violations: aBayes exhibits the best power, whereas
nonparametric tests are much less powerful but more
conservative. Although the distributions of aBayes and
PP supports tend to be very similar, aBayes method
is more conservative and more robust to model viola-
tions. Considering this, the à la Bayes interpretation of
the aLRT branch support is an interesting showcase of
an extreme approximation, as we demonstrate its clear
advantages.
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Based on our results, it is tempting to think that the
distribution of estimated branch supports has some
capacity to help with educated guesses about the cor-
rectness of the reconstructed phylogeny. For finite data
samples, the distribution of branch supports of a tree
may give an overall impression of the quality of a tree:
distributions steeply peaking at higher support values
may provide a sign of robust inference, whereas high
percentage of low supports is an indication of a poor
tree signal. Kolaczkowski and Thornton (2007) also
noticed that the shape of the distribution of PP supports
may depend on the pattern of branch lengths in the true
tree. We suggest that the extent of model violations, the
true tree and the information content of a sample also
play role. Moreover, with long sequences and strong
systematic bias (due to model violations), any of tested
branch support methods will become very confident in
supporting wrong bipartitions, as can be seen from phy-
logenetic analyses of concatenated genes (Jeffroy et al.
2006). Increased taxon sampling helps to avoid artifacts
related to the long-branch attraction (Pick et al. 2010).

More conservative tests (SH-aLRT, RBS, SBS) may be
useful if the model is known to have serious violations.
SH-aLRT is extremely fast and has the highest power
among nonparametric tests, while remaining as conser-
vative as SBS. These characteristics make SH-aLRT very
attractive. RBS often produces higher supports than SBS
and therefore presents a different measure that should
be interpreted with caution. Because RAxML does not
allow evaluation under simplistic models, we did not
test how this heuristic behaves with strong model viola-
tions. Our simulations show that RBS requires roughly
a third of the computational time of the SBS but is
less conservative and more powerful. Although the
computation of RBS is now possible for hundreds and
thousands of sequences, the running time for RBS is con-
siderably longer than for aLRT-based tests. In real data,
SH-aLRT and RBS produced closer estimates, whereas
aBayes was closer to aLRT values, but less liberal.

The probabilistic interpretation is likely never
achieved by any test (except for Bayesian posteriors
under the true model and priors). Thus, none of the
branch support measures should be interpreted as a
probability. Instead, we recommend the frequentist in-
terpretation, controlling the rate of FPs.

Even though our analyses cover a wide range of
topologies, divergences, and models, the conclusions
should not be overgeneralized: the properties of the
support measures investigated here may vary with
divergence, tree shape, and model fit. Before selecting a
particular branch support method, we recommend test-
ing the data set for signs of model violations. ABayes
is recommended when no serious model violations
are suspected, whereas SH-aLRT may be more robust
if key assumptions are not met. Violations of model
assumptions may be known based on biological knowl-
edge or detected through model selection procedures
(for review see Posada and Buckley 2004). Sometimes,
other signs of model inadequacy can be observed, such
as strong deviations of observed likelihoods (or other

statistics and patterns) from the expected under the
assumed model.

Real data are inherently difficult to interpret, high-
lighting the difficulties we face when validating meth-
ods in simulations. Equally, testing only on real data is
subjected to prejudices. A recently proposed framework
for more objective testing on real data is a promis-
ing step (Dessimoz and Gil 2010). Using appropriate
models should improve the data fit, although this may
become computationally intensive for large data sets.
Intuitively, with the addition of taxa, the amount of data
required for accurate model estimation should grow
rapidly for a fixed average pairwise divergence (but
see Erdos et al. 1999 for an interesting theoretical result
on a related question). Optimizing model complexity,
fit, and sample size becomes the key to more accurate
phylogenetic inference.

Overall, the promising results of this study lay a
solid foundation for further work on new approximate
likelihood-based branch supports. Fast well-performing
methods like aBayes and SH-aLRT may be especially
advantageous in metagenomics studies of microbial
communities, where the number of taxons in a sample
is in the thousands. Moreover, the idea of relying on
approximate likelihoods may provide a good starting
point for evaluating branch supports in multiloci anal-
yses, where the objective is to reconstruct a species tree,
rather than a gene tree. Evaluating branches inferred by
supertree and supermatrix methods is currently emerg-
ing as a new research direction in phylogenetic recon-
struction (Delsuc et al. 2005; Joly and Bruneau 2009;
Ropiquet et al. 2009).

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found at http://www
.sysbio.oxfordjournals.org/.
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