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Abstract. We study the asymptotic behavior of a new type of maxi-
mization recurrence, defined as follows. Let k be a positive integer and
pk(x) a polynomial of degree k satisfying pk(0) = 0. DefineA0 = 0 and for
n ≥ 1, let An = max0≤i<n{Ai+nk pk(

i
n
)}. We prove that limn→∞ An

nk =

sup{ pk(x)

1−xk : 0 ≤ x < 1}. We also consider two closely related maximiza-

tion recurrences Sn and S′
n, defined as S0 = S′

0 = 0, and for n ≥ 1,
Sn = max0≤i<n{Si +

i(n−i)(n−i−1)
2

} and S′
n = max0≤i<n{S′

i +
(
n−i
3

)
+

2i
(
n−i
2

)
+ (n− i)

(
i
2

)}. We prove that limn→∞ Sn
n3 = 2

√
3−3
6

≈ 0.077350...

and limn→∞
S′
n

3(n3)
= 2(

√
3−1)
3

≈ 0.488033..., resolving an open problem

from Bioinformatics about rooted triplets consistency in phylogenetic
networks.

1 Introduction

A recurrence relation (or recurrence, for short) is an equation of the form Tn =
f(Tn−1, Tn−2, . . . , T0, n), where f is a specified function and n is an unspecified
positive integer, along with the values T0, T1, . . . , Tm for some finite, non-negative
integer m. Intuitively, a recurrence describes how the value of Tn for any n
depends on n and the values of the elements in the sequence T0, T1, . . . , Tn−1.

Recurrences are central to the analysis of algorithms [3]. In particular, when
recursion is involved, the worst-case running time Tn of an algorithm for an
input of size n can often be expressed in terms of Tn1 , Tn2 , . . . , Tnk

, where
n1, n2, . . . , nk < n, which naturally yields a recurrence. It can be argued that re-
currences are as important to Theoretical Computer Science as differential equa-
tions are to Physics. Over the years, elegant techniques for solving various types
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of linear recurrences (i.e., recurrences for which the function f mentioned above
is a linear function) have been developed, and are now part of most standard
undergraduate and graduate algorithm theory courses [3]. However, much less is
known about how to solve nonlinear recurrences, and no general technique that
works for all types of nonlinear recurrences exists. Instead, people have focused
on asymptotically bounding the values of Tn as n → ∞ for various special cases
such as minimization recurrences of the form Tn = min1≤i<n{Ti+Tn−i}+ g(n),
where g is some auxiliary function, and maximization recurrences that use the
max-function [5,9,12,13,15]. Interestingly, such recurrences have shown up in
many different problems concerning random trees, Huffman coding, binomial
group testing, dynamic programming, dichotomous search problems, the design
of electrical circuits, binary search trees, quicksort, parallel divide-and-conquer
algorithms, computational geometry, and tree-drawing.

In this paper, we contribute to the existing repertoire of tools for analyzing
nonlinear recurrences. To be precise, we develop a technique for bounding the
asymptotic behavior of a new type of maximization recurrence, defined as follows.
Let k be a positive integer and pk(x) a polynomial of degree k satisfying pk(0) =
0. Define A0 = 0 and for n ≥ 1, let

An = max
0≤i<n

{
Ai + nk pk(

i
n )
}

We also consider two closely related maximization recurrences Sn and S′
n, defined

as S0 = S′
0 = 0, and for n ≥ 1,

Sn = max
0≤i<n

{
Si +

i(n−i)(n−i−1)
2

}

and

S′
n = max

0≤i<n

{
S′
i +

(
n−i
3

)
+ 2i

(
n−i
2

)
+ (n− i)

(
i
2

)}

where
(
x
y

)
= 0 if x < y. (At this point, the reader may like to verify that some

consecutive values of S′
n are: S′

0 = 0, S′
1 = 0, S′

2 = 0, S′
3 = 2, S′

4 = 7, S′
5 = 16,

S′
6 = 32, S′

7 = 55, S′
8 = 87, S′

9 = 130, S′
10 = 184, . . . , and this sequence does

not appear to follow any regular pattern.)
Below, we derive non-trivial, constant values of the expressions lim

n→∞An/n
k,

lim
n→∞Sn/n

3, and lim
n→∞S′

n/3
(
n
3

)
.

1.1 Motivation

Our motivation for studying the maximization recurrences in this paper orig-
inates from a combinatorial problem in Bioinformatics related to phylogenetic
networks and rooted triplets consistency. This subsection describes the back-
ground; for further technical details, see [2] and [11].

One of the many objectives of Bioinformatics is to develop new concepts
and tools that can help researchers visualize the evolutionary history of a set
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of species. Traditionally, phylogenetic trees (rooted, unordered, distinctly leaf-
labeled trees in which every internal node has at least two children) have been
used for this purpose [4]. As might be expected, it is computationally prohibitive
in general to infer a reliable phylogenetic tree for a large set of species directly.
A promising alternative is the supertree approach [1,8] which first infers highly
accurate phylogenetic trees for many small, overlapping subsets of the species
and then applies a combinatorial algorithm to merge them into a single phyloge-
netic tree. One variant of the supertree approach takes as input a set R of rooted
triplets (binary phylogenetic trees with exactly three leaves each) whose leaf la-
bel sets overlap, and tries to construct a phylogenetic tree that is consistent with
the maximum possible number of rooted triplets from R, where a rooted triplet t
is said to be consistent with a phylogenetic tree T if t is an embedded subtree
of T . Ga̧sieniec et al. [6] presented a polynomial-time algorithm that outputs a
phylogenetic tree which is consistent with at least 1/3 of the rooted triplets in
any input set R, and also showed that for a particular set R of rooted triplets,
no phylogenetic tree can be consistent with more than 1/3 of its elements (to
see this, just take the set Rn of all 3

(
n
3

)
rooted triplets over a fixed leaf label

set of cardinality n, for any n ≥ 3). In this sense, the algorithm of Ga̧sieniec et
al. [6] is worst-case optimal for phylogenetic trees.

Due to certain evolutionary events such as hybridization that sometimes occur
in nature, not all evolution is treelike. Therefore, the phylogenetic tree model
was recently extended to phylogenetic networks that permit nodes to have more
than one parent (see, e.g., the surveys in [10,14]). One important special type of
phylogenetic network, introduced by Wang et al. [16] and later termed “galled-
tree” by Gusfield et al. [7], requires all cycles in the underlying undirected graph
to be node-disjoint. (Galled-trees are also known in the literature as “level-1
networks” [10,11,14].) Obviously, galled-trees can express more complicated evo-
lutionary relationships than phylogenetic trees. To measure how much more
powerful galled-trees really are, we can compare the optimal 1/3 bound stated
above for phylogenetic trees to the corresponding bound for galled-trees, and
this leads to the recurrence S′

n studied in the present paper. More precisely,
Jansson et al. [11] proved that for any n ≥ 3, no galled-tree can be consistent
with more than a fraction of S′

n/3
(
n
3

)
of the elements in the set Rn of all rooted

triplets over a fixed leaf label set of cardinality n. Later, Byrka et al. [2] gave a
polynomial-time algorithm that constructs a galled-tree consistent with at least
S′
n/3

(
n
3

)
of the rooted triplets in any input set R.

Jansson et al. [11] showed that for large enough values of n, it holds that
S′
n/3

(
n
3

)
< 0.4883. On the other hand, Byrka et al. [2] proved that S′

n/3
(
n
3

)
>

0.4800 for all n. However, both groups of authors were unable to derive tight
asymptotic bounds on S′

n/3
(
n
3

)
, and this has been one of the remaining open

problems for galled-trees. Computations have suggested that S′
n/3

(
n
3

)
is closer

to the upper bound 0.4883 than the lower bound 0.4800, and indeed, we settle the

issue in Section 3 by proving that lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033... Observe

that this improves the 5/12-ratio mentioned on p. 311 of [10] and the 48%-ratio
mentioned on p. 135 of [14].
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The other two recurrences introduced in this paper, Sn and An, were studied
because of their connections to S′

n. As shown in Lemma 2 in Section 2 below,
the bound for S′

n/3
(
n
3

)
follows immediately from the bound for Sn/n

3, which is
slightly easier to compute. An is a special case of a generalization of Sn.

1.2 Related Work

The appearance of nonlinear recurrence relations eluding exact solutions in di-
verse fields of study has motivated many previous papers, including [5,9,12,13,15],
to investigate their asymptotic properties on a case-by-case basis. For exam-
ple, Fredman and Knuth [5] considered minimization recurrences of the form
Tn = min1≤i<n{a ·Ti+ b ·Tn−i}+ g(n), and Kapoor and Reingold [12] extended
their results and also studied analogous maximization recurrences. In [13], Li
and Reingold considered exact solutions and upper bounds for a special type
of recurrence of the form Tn = max1≤i<n{Ti + Tn−i + min{g(i), g(n − i)}}
involving minimization and maximization simultaneously, and in [9], Hwang
and Tsai derived asymptotic approximations of this recurrence for more gen-
eral auxiliary functions g. Saha and Wagh [15] studied a recurrence of the form
Tn = min1≤i<n{max{Ti + a · i, Tn−i} + b}. Nevertheless, due to the irregular
and often unpredictable behavior of nonlinear recurrences, general techniques
for analyzing them still seem far from reach.

1.3 Main Results and Organization of the Paper

We establish the relationships among the three recurrences An, Sn, and S′
n in

Section 2. Then, in Section 3, we prove that lim
n→∞

Sn

n3 = 2
√
3−3
6 ≈ 0.077350... and

that lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033... Next, in Section 4, we consider the ratio

An/n
k. We show that lim

n→∞
An

nk = sup{ pk(x)
1−xk : 0 ≤ x < 1}. Finally, Section 5

discusses generalizations of our techniques and an open problem.

2 Preliminaries

The two recurrences Sn and S′
n are related as follows.

Lemma 1. For all n ≥ 0, it holds that Sn = S′
n − (

n
3

)
.

Proof. By induction on n. For n = 0, we have S0 = S′
0 = 0.

Next, suppose that Sk = S′
k − (

k
3

)
for all k < n. Then, since

(
n
3

)
=

(
n−i
3

)
+

i
(
n−i
2

)
+ (n− i)

(
i
2

)
+

(
i
3

)
for every 0 ≤ i < n, we can rewrite S′

n as S′
n =

(
n
3

)
+

max
0≤i<n

{i(n−i
2

)
+S′

i−
(
i
3

)}. By the induction hypothesis: S′
n−

(
n
3

)
= max

0≤i<n
{i(n−i

2

)
+

S′
i −

(
i
3

)} = max
0≤i<n

{i(n−i
2

)
+ Si} = Sn. ��

Lemma 2. lim
n→∞

S′
n

3(n3)
= lim

n→∞
2Sn

n3 + 1
3 .
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Proof. From Lemma 1, we have lim
n→∞

S′
n

3(n3)
= lim

n→∞
Sn

3(n3)
+ 1

3 = lim
n→∞

2Sn

n3 + 1
3 . ��

Next, we consider the relationship between the recurrences Sn and An. Another
(equivalent) way to write Sn is:

Sn = max
0≤i<n

{
Si + n3 · p3( i

n
) + n2 · p2( i

n
)
}
,

where p3(x) =
x(1−x)2

2 and p2(x) =
−x(1−x)

2 . Looking at Sn defined in this way,
we are tempted to extend it to a more general type of recurrence as follows. Let
k be a positive integer and let p0(x), p1(x), . . . , pk(x) be polynomials such that
pd(x) is a polynomial of degree d for every d ∈ {0, 1, . . . , k}. Set G0 = p0(0), and
for n ≥ 1, define:

Gn = max
0≤i<n

{
Gi +

k∑

d=0

ndpd(
i

n
)
}
.

Now, if we restrict the recurrence Gn to the special case where pd(x) = 0 for all
d ∈ {0, 1, . . . , k − 1} and pk(0) = 0, we obtain precisely the recurrence An.

3 The Asymptotic Behavior of Sn and S′
n

In order to analyze the asymptotic behavior of Sn/n
3, we define sn = Sn/n

3

and rewrite Sn in terms of sn. This gives s0 = 0, and for n ≥ 1:

sn = max
0≤i<n

{sn,i}, where sn,i = p3(
i

n
) +

1

n
· p2( i

n
) + si · ( i

n
)3.

Here, p3 and p2 are the polynomials p3(x) = x(1−x)2

2 and p2(x) = −x(1−x)
2 ,

introduced in Section 2. Consider the function p3(x)
1−x3 . It has a unique maximum

value on the interval [0, 1). Call this value α and let β be the point where α is

obtained, i.e., p3(β)
1−β3 = α. By straightforward calculations, we have α = 2

√
3−3
6 ,

β =
√
3−1
2 . In this section, we shall prove that lim

n→∞ sn = α.

First, we introduce two sequences ln, un (n ≥ 0) and show that they provide a
lower bound and an upper bound, respectively, on each term in the sequence sn.
Let l0 = u0 = 0 and, for n ≥ 1, define:

⎧
⎨

⎩

ln = max
0≤i<n

{ln,i}, where ln,i = p3(
i
n ) +

1
np2(

i
n ) + α( i

n − 1
n )

3,

un = max
0≤i<n

{un,i}, where un,i = p3(
i
n ) +

1
np2(

i
n ) + α( i

n )
3.

In the next four lemmas, we show that the following chain of inequalities holds
for every integer n ≥ 1:

α(1 − 1

n
)3 ≤ ln ≤ sn ≤ un ≤ α.
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Lemma 3. For all n ≥ 0, un ≤ α.

Proof. By the definition of α, we have p3(x)
1−x3 ≤ α, for 0 ≤ x < 1. This yields

p3(x) + αx3 ≤ α, for 0 ≤ x < 1. Since un is defined as max
0≤i<n

{p3( i
n ) +

1
np2(

i
n ) +

α( i
n )

3} and p2(x) ≤ 0 for all 0 ≤ x < 1, we have un ≤ α. ��
Lemma 4. For all n ≥ 0, sn ≤ un.

Proof. By induction on n. For n = 0, u0 = s0 = 0. Next, suppose sm ≤ um for all
m < n. For each integer 0 ≤ i < n, by Lemma 3, we have sn,i − un,i = si(

i
n )

3 −
α( i

n )
3 ≤ si(

i
n )

3 − ui(
i
n )

3 = (si − ui)(
i
n )

3 ≤ 0. Therefore,sn = max
1≤i<n

{sn,i} =

max
1≤i<n

{un,i + (sn,i − un,i)} ≤ max
1≤i<n

{un,i} = un. ��

Lemma 5. For all n ≥ 1, ln ≥ α(1− 1
n )

3.

Proof. For n ≤ 15, the inequality can be verified by computation. For n ≥ 16,
we show that ln ≥ α(1 − 1

n )
3. First note that:

(*1) Since β − 1
n ≤ �βn	

n ≤ β =
√
3−1
2 < 1

2 and p2(x) is decreasing on [0, 1
2 ],

we have p2(
�βn	
n ) ≥ p2(β).

(*2) We have p3(x) ≥ p3(β) for x ∈ [0.302, β]. For n ≥ 16, �βn	
n > β − 1

n ≥
β − 1

16 > 0.302, therefore we have p3(
�βn	
n ) > p3(β).

Then, it follows that:

ln − α(1 − 1

n
)3 ≥ ln,�βn	 − α(1 − 1

n
)3

=p3(

βn�
n

)−p3(β) + α(1 − β3)
︸ ︷︷ ︸

=0

+
1

n
p2(


βn�
n

) + α((

βn�
n

− 1

n
)3 − (1− 1

n
)3)

= p3(

βn�
n

)− p3(β)
︸ ︷︷ ︸

≥0, by (∗2)

+α((

βn�
n

− 1

n
)3 − β3 + 1− (1− 1

n
)3) +

1

n
p2(


βn�
n

)

≥α((

βn�
n

− 1

n
)3 − (β− 2

n
)3 +

3−6β2

n
+

12β−3

n2
− 7

n3
) +

1

n
· p2(
βn�

n
)

︸ ︷︷ ︸
≥p2(β), by (∗1)

≥α((

βn�
n

− 1

n
)3 − (β − 2

n
)3)

︸ ︷︷ ︸
≥0

+
α

n
(3− 6β2 +

p2(β)

α
+

12β − 3

n
+

−7

n2
︸ ︷︷ ︸

≥0, for n≥3

) ≥ 0.

��
Lemma 6. For all n ≥ 1, sn ≥ ln.

Proof. By induction on n. For n = 0, s0 = l0 = 0. Next, suppose sm ≥ lm,
for all m < n. For each integer 0 ≤ i < n, by Lemma 5, we have sn,i − ln,i =
si(

i
n )

3 − α( i
n − 1

n )
3 = si(

i
n )

3 − α(1 − 1
i )

3( i
n )

3 ≥ (si − li)(
i
n )

3 ≥ 0. Therefore,
max
0≤i<n

{sn,i} ≥ max
0≤i<n

{ln,i}, which gives sn ≥ ln. ��
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We now obtain the main result of this section:

Theorem 1. lim
n→∞

Sn

n3 = lim
n→∞ sn = α = 2

√
3−3
6 ≈ 0.077350....

Proof. By Lemmas 3–6, we have α(1− 1
n )

3 ≤ sn ≤ α. Therefore, α = lim
n→∞α(1−

1
n )

3 ≤ lim
n→∞ sn ≤ α, i.e., lim

n→∞ sn = α. ��

Finally, using Theorem 1 together with Lemma 2 gives:

Corollary 1. lim
n→∞

S′
n

3(n3)
= 2(

√
3−1)
3 ≈ 0.488033....

Remark. Corollary 1 gives a strengthening of the inapproximability bound in
Theorem 8 in [11]; just change the “0.4883” to any real number strictly larger

than 2(
√
3−1)
3 , for example “0.488034”. Moreover, we can strengthen Lemma 5

in [2] (which says that S′
n/3

(
n
3

)
> 0.4800) and the resulting approximation ratio

in Theorem 2 in [2] by observing that S′
n/3

(
n
3

)
= 2·Sn

n3· n2

(n−1)(n−2)+
1
3 ≥ 2·α·(n−1

n )3·
n2

(n−1)(n−2) +
1
3 by Lemmas 5 and 6, and then rewriting it as 2α · (n−1)2

(n−2)n + 1
3 >

2α+ 1
3 = 2(

√
3−1)
3 . In other words, S′

n/3
(
n
3

)
> 2(

√
3−1)
3 ≈ 0.488033....

4 The Asymptotic Behavior of An

The asymptotic behavior of An depends on the properties of pk(x)/(1−xk). We
define αp = sup{pk(x)/(1 − xk) : 0 ≤ x < 1}, when sup{pk(x)/(1 − xk) : 0 ≤
x < 1} < ∞.1 There are four possible cases:

(C1) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = ∞.

(C2) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp < ∞, and limx→1−
pk(x)
1−xk = αp.

(C3) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp = 0, and pk(0)
1−0k

= αp = 0.

(C4) sup{pk(x)/(1 − xk) : 0 ≤ x < 1} = αp < ∞, and there exists a βp, where

0 < βp < 1, such that
pk(βp)
1−βk

p
= αp.

The definition of An is max
0≤i<n

{nkpk(
i
n ) + Ai}, for n > 0. If we substitute An

(m− 1) times recursively, we get

An = max
0≤i2<i1<n

{nkpk(
i1
n
) + ik1pk(

i2
i1
) +Ai2} = · · ·

= max
0≤im<···<i1<i0

{
m−1∑

t=0

ikt pk(
it+1

it
) +Aim}.

1 Note that we use “sup” instead of “max” for the following reason. For some pk(x),

e.g., k = 3, p3(x) = −x3 + x, there is no maximum value for pk(x)

1−xk , 0 ≤ x < 1.

However, there exists an upper bound for pk(x)

1−xk , 0 ≤ x < 1.
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By choosing it = n− t, we define Ln with L0 = 0, and for n ≥ 1,

Ln = nkpk(
n− 1

n
) + Ln−1.

We substitute Ln (m− 1) times, which gives: Ln =
∑n−1

t=0 (n− t)kpk(
n−t−1
n−t ).

Since An is taking the maximum value among all parameters {it}, we have
An ≥ Ln. For case (C1), we show that lim

n→∞
Ln

nk = ∞ in Lemma 7. It follows that

lim
n→∞

An

nk = ∞. For case (C2), we show that lim
n→∞

Ln

nk = αp and An also has an

upper bound αp. Therefore, lim
n→∞

An

nk = αp.

Lemma 7. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = ∞, then lim

n→∞
An

nk = ∞.

Proof. Assume that pk(x) =
k∑

i=1

cix
i. We observe that (n − t)kpk(

n−t−1
n−t ) is a

polynomial of (n − t) with degree at most k. Furthermore, the coefficient of

(n− t)k in (n− t)kpk(
n−t−1
n−t ) =

k∑

i=1

ci(n− t− 1)i(n− t)k−i equals
k∑

i=1

ci = pk(1).

For the reason that lim
x→1−

pk(x)
1−xk = ∞, we have pk(1) > 0.

Since Ln =
n−1∑

t=0
(n− t)kpk(

n−t−1
n−t ), Ln is a polynomial of n with degree k+ 1.

Therefore, lim
n→∞

An

nk ≥ lim
n→∞

Ln

nk = ∞. ��

Lemma 8. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = αp < ∞ and lim

x→1−
pk(x)
1−xk = αp, then

lim
n→∞

An

nk = αp.

Proof. The proof of the upper bound of An is at most αp is similar to that of
Lemma 4.

Assume that pk(x) =
k∑

i=1

cix
i. The coefficient of (n− t) in (n− t)kpk(

n−t−1
n−t )

equals pk(1). However, for the reason that lim
x→1−

pk(x)
1−xk = αp, we have pk(1) = 0.

Hence, Ln is a polynomial with degree at most k.

Furthermore, the coefficient of (n − t)k−1 in (n − t)kpk(
n−t−1
n−t ) =

k∑

i=1

ci(n −

t− 1)i(n− t)k−i is
k∑

i=1

−ici = −p′k(1). We have the coefficient of nk in Ln equals

that in
n−1∑

t=0
−p′k(1) · (n− t)k−1. Then the coefficient of nk in Ln equals

−p′
k(1)
k .

Since (x− 1) is a factor of pk(x), let qk(x) =
pk(x)
x−1 . Then d

dxpk(x) =
d
dx (qk(x)

(x− 1)) = qk(x) + (x− 1) d
dx(qk(x)). Hence, p

′
k(1) = qk(1). Moreover,

αp = lim
x→1−

pk(x)

1− xk
= lim

x→1−

(x− 1)qk(x)

1− xk
= lim

x→1−

−qk(x)

1 + x+ · · ·+ xk−1
=

−qk(1)

k
.
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Finally, we have lim
n→∞

L(n)
nk =

−p′
k(1)
k = −qk(1)

k = αp. Then, lim
n→∞

An

nk = αp. ��

Lemma 9. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = 0, then An = 0.

Proof. By induction on n. For n = 0, it holds that A0 = 0. Next, suppose that
Am = 0 for all m < n. Then, since αp = 0, we have pk(x) ≤ 0, for 0 ≤ x ≤ 1,
therefore

An = max
0≤i<n

{nkpk(
i

n
) +Ai} ≤ max

0≤i<n
{Ai} = 0. ��

To study the asymptotic value of An/n
k in case (C4), we define an = An/n

k,
and rewrite the recurrence for An in terms of an as follows. Let a0 = 0 and, for
n ≥ 1,

an = max
0≤i<n

{an,i}, where an,i = pk(
i

n
) + ai(

i

n
)k.

To find a lower bound of an, we rewrite an by recursively substituting it (m− 1)
times, for some value of m to be specified later.

an = max
0≤i1<n

{pk( i1
n
) + (

i1
n
)kai1} = max

0≤i2<i1<n
{pk( i1

n
) + (

i1
n
)k(pk(

i2
i1
) + (

i2
i1
)kai2)}

= · · · = max
0≤im<···<i1<i0=n

{(
m−1∑

t=0

(
it
n
)kpk(

it+1

it
)) + (

im
n
)kaim}.

By choosing it = 
βt
pn� for an, we define ln,m = (

m−1∑

t=0
(
�βt

pn	
n )kpk(

�βt+1
p n	

�βt
pn	 )) +

(
�βm

p n	
n )kaim . For the condition that 
βt−1

p n� > 
βt
pn� with t < m to hold, we

need m to satisfy βm−1
p n ≥ βm

p n+1, i.e., n > 1
βm−1
p (1−βp)

. Since an is taking the

maximum value among all parameters {it}, we have an ≥ ln,m.
To show that ln,m converges to αp, we replace αp by pk(βp) +αpβ

k
p (m − 1)

times and find an expression for αp which looks similar to the formula for ln,m.

αp =pk(βp) + αpβ
k = pk(βp) + βk

p (pk(βp) + αpβ
k
p ) = · · ·

=(

m−1∑

t=0

βtk
p pk(βp)) + βmk

p αp.

In the next lemma, we show that ln,m is close to αp based on two observations:
(1) βmk

p αp is very small for sufficiently large m; and (2) when 
βt
pn� is large,

�βt+1
p n	

�βt
pn	 is close to βp and then we have βtk

p pk(βp) is close to (
�βt

pn	
n )kpk(

�βt+1
p n	

�βt
pn	 ).

Lemma 10. If sup{ pk(x)
1−xk : 0 ≤ x < 1} = αp < ∞ and there exists a βp, where

0 < βp < 1, such that
pk(βp)
1−βk

p
= αp, then lim

n→∞
An

nk = αp.

Proof. The proof of αp being the upper bound of an is similar to that of
Lemma 4. To pave the way for the lower bound of an, we introduce two no-
tations M1 and M2.
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Consider the Taylor series expansion for pk(x) in βp: pk(x) = pk(βp) +
∑k

i=1
f(i)(βp)

i! (x− βp)
i. For 0 ≤ x < 1, we have

|pk(x)− pk(βp)| ≤(x− βp)

k∑

i=1

|p
(i)
k (βp)

i!
(x − βp)

i−1|

≤(x− βp)

k∑

i=1

|p
(i)
k (βp)

i!
| (because 0 < x, βp < 1)

≤(x− βp)M1, where M1 =

k∑

i=1

|p
(i)
k (βp)

i!
|. (1)

Since pk(x) is a polynomial, there exists a maximum value of pk(x) on the interval
[0,1]. Let

M2 = max
0≤x≤1

{pk(x)}. (2)

Furthermore, for the reason that 0 < β < 1, we have:

βtk
p (βp −


βt+1
p n�


βt
pn�

) ≤ βtk
p


βt
pn�

≤ 2βtk
p

βt
pn

≤ 2β
t(k−1)
p

n
≤ 2

n
, and (3)

βtk
p − (


βt
pn�
n

)k = (βt
p −


βt
pn�
n

)

k−1∑

i=0

((βt
p)

i(

βt

pn�
n

)k−1−i) ≤ k

n
. (4)

Since M1,M2, αp and βp are fixed values, for all ε > 0, there exists a positive
integer m such that:

βmk
p (2mM1 + kmM2 + αp) < ε. (5)

For n ≥ max{� 1
βmk
p


, � 1
βm−1
p (1−βp)


}, we have

|αp − an|
≤|αp − ln,m| (because ln,m ≤ an ≤ α)

≤|
m−1∑

t=0

(βtk
p f(βp)− (


βt
pn�
n

)kpk(

βt+1

p n�
[βt

pn]
))|+ |βmk

p αp − (

βm

p n�
n

)kam|

≤|
m−1∑

t=0

(βtk
p pk(βp)−βtk

p pk(

βt+1

p n�

βt

pn�
) + βtk

p pk(

βt+1

p n�

βt

pn�
)

︸ ︷︷ ︸
=0

−(
[βt

pn]

n
)kpk(


βt+1
p n�


βt
pn�

))|

+ βmk
p αp
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=

m−1∑

t=0

|βtk
p (pk(βp)− pk(


βt+1
p n�


βt
pn�

)) + (βtk
p − (


βt
pn�
n

)k)pk(

βt+1

p n�

βt

pn�
)|+ βmk

p αp

≤
m−1∑

t=0

(|βtk
p (βp −


βt+1
p n�


βt
pn�

)M1|+ |(βtk
p − (


βt
pn�
n

)k)M2|) + βmk
p αp (by (1), (2))

≤ 1

n

m−1∑

t=0

|2M1 + kM2|+ βmk
p αp (by (3), (4))

≤βmk
p (m(2M1 + kM2) + αp) ≤ ε (by n ≥ � 1

βmk
p


 and (5)) ��

Combining Lemmas 7 – 10, we obtain the following result.

Theorem 2. limn→∞ An

nk = sup{ pk(x)
1−xk : 0 ≤ x < 1}.

Remark. When we take k = 3 and p3(x) = x(1−x)(1−x)
2 in An, we have

limn→∞ An/n
3 = (2

√
3 − 3)/6, which is equal to limn→∞ Sn/n

3. We can see
that the term p2(x) in Sn has no effect on the asymptotic behavior of Sn.

5 Concluding Remarks

We note that to analyzeminimization recurrences analogous to An, we can apply
our technique from Section 4 as follows. Suppose that Bn = min

0≤i<n
{nkpk(

i
n )+Bi}.

Let An = −Bn. Then An = max
0≤i<n

{nk · (−pk(
i
n )) +Ai}, and Theorem 2 gives:

Corollary 2. lim
n→∞

Bn

nk = inf{ pk(x)
1−xk : 0 ≤ x < 1}.

We conclude this paper by mentioning two open problems. First, to derive a
closed-form expression for the exact value of Sn or to determine that such a
formula does not exist is an open problem. Second, for the general case of Gn

(see Section 2), we can set gn = Gn/n
k and rewrite the recurrence relation as:

gn = max
0≤i<n

{
(

k∑

d=0

1

nk−d
pd(

i

n
)) + gi(

i

n
)k
}
.

For d < k, the term pd(
i
n ) is multiplied by 1

nk−d . For sufficiently large n, the

part pd(
i
n ) has a small effect on gn, for d < k. Hence, we conjecture that the

asymptotic behavior of gn is the same as that of an.
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