
HAL Id: lirmm-00719986
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00719986

Submitted on 17 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Scan Attack on RSA in Presence of Industrial
Countermeasures

Jean da Rolt, Amitabh Das, Giorgio Di Natale, Marie-Lise Flottes, Bruno
Rouzeyre, Ingrid Verbauwhede

To cite this version:
Jean da Rolt, Amitabh Das, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre, et al.. A New
Scan Attack on RSA in Presence of Industrial Countermeasures. COSADE: Constructive Side-Channel
Analysis and Secure Design, May 2012, Darmstadt, Germany. pp.89-104, �10.1007/978-3-642-29912-
4_8�. �lirmm-00719986�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00719986
https://hal.archives-ouvertes.fr

A New Scan Attack on RSA in Presence of Industrial

Countermeasures

Jean Da Rolt *, Amitabh Das **, Giorgio Di Natale *, Marie-Lise Flottes *, Bruno

Rouzeyre *, and Ingrid Verbauwhede **

*LIRMM (Université Montpellier II /CNRS UMR 5506)

Montpellier, France, {darolt, dinatale, flottes, rouzeyre}@lirmm.fr

** Katholieke Universiteit Leuven, ESAT/COSIC, Leuven, Belgium, {amitabh.das,

ingrid.verbauwhede}@esat.kuleuven.be

Abstract. This paper proposes a new scan-based side-channel attack on RSA

public-key cryptographic implementations in the presence of advanced Design

for Testability (DfT) techniques. The attack is performed on an actual hardware

implementation, for which different test scenarios were conceived (response

compaction, X-Masking). The practical aspects of scan-based attacks on the

RSA cryptosystem are also presented. Additionally, a novel scan-attack security

analysis tool is proposed which helps in evaluating the scan-chain leakage resil-

ience of security circuits.

Keywords: Scan-attacks, public-key cryptography, DfT methods

1 Introduction

Security is a critical component of information technology and communication and is

one of the levers of its development because it is the basis for establishing confidence

to end users. Among the security threats, the vulnerability of electronic equipment

that implement cryptography which enable the necessary services of confidentiality,

identification and authentication, is perhaps the most important. Some fraudulent

access or "attacks" on the equipment to extract sensitive information, such as encryp-

tion keys, undermine the whole chain of secure transmission of information. One of

these attacks exploit the scan-chain Design for Test (DfT) infrastructure inserted for

testing the equipment. Testing acts like a double-edged sword. On one hand, it is very

important to test a cryptographic circuit thoroughly to ensure its correct operation, and

on the other hand, this test infrastructure may be exploited by an attacker to extract

secret information.

There have been many scan-attacks on cryptographic circuits proposed in the lit-

erature[1][2], which focus on extracting the stored secret key. Once the secret key is

retrieved, more confidential data may be stolen. These attacks rely on the observabil-

ity of intermediate states of the cipher. Even if the cryptographic algorithms are

proven to be secure, accessing their intermediate registers compromise their strength.

The process to mount a scan-attack is as follows: First the cipher plaintext input is set

to a chosen value, then the circuit is reset, followed by its execution in normal mode

for some cycles, and finally the circuit is switched to test mode and the scan contents

are shifted out. By repeating this multiple times with different chosen plaintexts, the

scan contents may be analyzed to find the secret key. In the case of scan-attacks the

basic requirement is that the cipher operation may be stopped at any moment, and the

contents of the intermediate registers can be scanned out, thus compromising the

hardware implementation of the cryptographic algorithm. A common technique

adopted by many smart-card providers is to disable the test circuitry (such as JTAG)

after manufacturing test. This solution may not be acceptable for systems which re-

quire test and debug facilities in-the-field. High quality test is only ensured by full

controllability and observability of the secure circuit, which may compromise secu-

rity. Another alternative is BIST, which is intrinsically more secure. However not all

the circuits are suited for BIST (e.g. microprocessors) and BIST provides just a

pass/fail signature which is not useful for diagnosis. Many countermeasures have

been proposed in the literature [3][4], however, each of them have their limitations

and there is no full-proof mechanism to deal with this leakage through the scan

chains.

One of the attacks proposed in the literature, concerns the RSA algorithm [5].

However it supposes that the design has a single scan chain. Unfortunately, this as-

sumption is not realistic, since more complex DfT methods are required for meeting

the design requirements and reducing the test cost. Techniques such as multiple scan

chains, pattern decompression [6], response compaction [7] and filters to increase the

tolerance to unknowns [8] are commonly inserted in the test infrastructure. These

structures are supposed to behave as countermeasures against scan attacks, due to the

apparent reduction on the observability of internal states, as proposed in [9].

In this paper we propose a new attack on RSA that works even in the presence of

advanced DfT methods. We describe all the issues on carrying out the attack, and how

to overcome them. Additionally, we prove its feasibility by actually performing the

attack on a RSA design. Moreover, the attack may be applied without knowledge of

the DfT structures, which makes the attack more realistic.

The outline of the paper is as follows. In section 2, we present the previous work

performed in the field of scan-attacks on symmetric and public-key ciphers and some

proposed countermeasures. The RSA scan-attack itself is described in section 3. Then

in section 4, we describe how we deal with the practical aspects of performing the

attack. The experimental results containing a discussion about the applicability of the

scan attack in the presence of industrial DfT methods and known scan-attack coun-

termeasures is presented in section 5. A comparison with the previous RSA scan-

attack is given in section 6. Finally, we conclude the paper with plans for future work

in section 7.

2 Previous Work

The first scan attack proposed in the literature [1] was conceived to break a Data En-

cryption Standard (DES) cipher. Karri et al. described a two phase procedure which

consists in first finding the position of the intermediary registers on the scan chain,

and then retrieving the DES first round key by applying only 3 chosen plaintexts.

Later the same authors proposed [2] an attack on the Advanced Encryption Standard

(AES). This one was based on the differential method, which analyses the differences

of scan contents instead of the direct value itself. By using this method, the prelimi-

nary step of identifying the position of the intermediary registers is no longer re-

quired. Advances were also made on proving that public-key implementations are

susceptible to scan attacks. RSA and Elliptic Curve Cryptography (ECC) keys are

retrieved by methods described in [5] and [10] respectively. Besides, some scan-

attacks were also proposed for stream ciphers, for example [8].

Binary exponentiation algorithm is used as the target algorithm for the RSA scan-

attack in [5], while the Montgomery Powering Ladder is used for the ECC attack in

[10]. Both the attack methods are based on observing the values of the intermediate

register of interest on the scan chain for each bit of the secret key (decryption expo-

nent for RSA, and scalar multiplier for ECC), and then correlating this value with a

previous offline calculation, which the authors refer to as ‘discriminator’. If the value

matches with this discriminator value, a corresponding decision is taken on the key

bit.

In order to secure the test structures, several countermeasures have been proposed.

They may be classified in three different groups: (1) methods to control the access to

the test facilities through the use of secure test wrappers [12]; (2) methods to detect

unauthorized scan operations [10] as probing and other invasive attacks; (3) methods

that provide confusion of the stream shifted out from the scan outputs [14]. Addition-

ally, it was suggested in [9] that advanced industrial DfT methods such as response

compression are enough to impede any attack. However, advanced attacks [15][16]

have been conceived to deal with those methods.

3 Principles of RSA Attack

3.1 RSA

The Rivest-Shamir-Adleman (RSA) algorithm is a widely used public-key crypto-

graphic algorithm, employed in a wide range of key-exchange protocols, such as the

popular Diffie-Hellman scheme. A brief description of the RSA algorithm is pre-

sented below:

Algorithm 1: RSA Key generation

● Random primes p and q

● N = p*q (1024 bit)

● e = random co-prime to φ(N)=(p-1)*(q-1)

● d = e
-1

 mod φ(N)

Algorithm 2: RSA Encryption & Decryption

● Ciphertext c = m
e
 mod N

● Decrypted plaintext m = c
d
 mod N

Both the above operations are large number modular exponentiations.

When RSA is implemented in hardware, there are various possible options and

many algorithms are available. Montgomery Exponentiation method is most often

used, owing to its efficient hardware implementation, as it does away with the expen-

sive division operation required for modular multiplications involved in an exponen-

tiation. Hence we choose the Montgomery method as the target for our scan-chain

attack.

The Montgomery product of two n-bit numbers A with B is denoted by:

A * B = A . B . R
-1

 mod N,

where ‘.’ denotes a modular multiplication, N is the modulus or prime number in

the modular multiplications, and R = 2
n
, with n being the number of bits of the RSA

algorithm used. In this case study, we are using 1024-bit RSA.

The algorithm for a Montgomery Exponentiation used in RSA can be presented as

follows [17]:

Algorithm 3: Montgomery exponentiation

INPUT: Prime m = (ml−1 … m0)b, R = b
l
, exponent e = (et … e0)2 with et = 1, and

an integer x, 1 ≤ x < m (l is the number of bits in the prime number, 1024 in our case,

b is the base, which is 2 for binary).

OUTPUT: x
e
 mod m.

1. xtilde ← Mont(x, R
2
 mod m), A ← R mod m. (R mod m and R

2
 mod m may be

provided as inputs.)

2. For i from t down to 0 do the following:

(a) A ← Mont(A, A).

(b) If ei = 1, then A ← Mont(A, xtilde).

3. A ← Mont(A, 1).

4. Return (A).

Mont (A, A) is known as the squaring (S) operation, while the Mont(A, xtilde) is

known as the Multiplication operation (M) for Montgomery Exponentiation. The

square and multiply operations are actually modular multiplications implemented

using the Montgomery multiplication algorithm [17]. Each iteration of the loop within

the algorithm consists either of a squaring and multiply operations if the key bit is 1,

or only a squaring operation if the key bit is 0.

In our proposed scan-based attack, we are focusing on the intermediary register (A,

in the algorithm above) which stores the value after each Montgomery multiplication.

Irrespective of how the RSA modular exponentiation is implemented, the intermediate

value will always be stored in a register. For instance, we may have a hard-

ware/software co-design for the RSA crypto-processor, where the Montgomery mul-

tiplier is implemented as a co-processor in hardware (for efficiency) and the control

logic or the algorithm for the Montgomery exponentiation implemented in software

on a microcontroller. In this case, the results of the intermediate Montgomery opera-

tions may be stored in an external RAM, but this value needs to be transferred and

stored in the registers inside the Montgomery multiplier datapath to allow the module

to perform the computations correctly.

3.2 Target RSA Hardware Implementation

We have made a hierarchical 1024-bit RSA hardware implementation (employing

Montgomery Exponentiation algorithm), which is the target of our proposed scan-

attack. It consists of an adder/subtractor arithmetic module, a Montgomery multiplier

block, and a RSA controller datapath for controlling the square and multiply opera-

tions involved in the exponentiation. This is shown in the block diagram below.

Gezel Hardware software co-design environment [18] was used to create the de-

sign, it was transformed into VHDL using the fdlvhd VHDL converter tool of Gezel,

and finally Synopsys Design Compiler v2009.06 was used to convert the VHDL file

into a gate-level netlist. Our implementation does not consider protection against

Simple Power Analysis (SPA), Differential Power Analysis (DPA) and Fault Attacks,

but test compression techniques supposedly acting as scan-attack countermeasures

have been included.

3.3 Assumptions of scan attacks

The leakage analysis as well as the attack methods implemented by this tool lies on

some assumptions:

─ the cipher algorithm is known as well as the timing diagrams. The designer in

charge of checking scan attack immunity should have this information;

─ the scan chain structure is not known by the attacker. The scan length, as the num-

ber of internal chains and the order of the scan flip-flops are also supposed to be

hidden. Although the input/output test pins (interface) are controllable;

─ it is possible to control the test enable pin and then switch from mission mode to

test mode, which allows the cipher operation to be “stopped” at any moment;

─ it is possible to control the input plaintexts (e.g. a design primary input) and to

observe the values related to the intermediate states by means of scan out;

It is important to notice that all these assumptions are shared among all the scan at-

tacks proposed in the literature. Additionally, these assumptions are fulfilled by ma-

jority of the test scenarios due to the fact that high testability is achieved by control-

ling and observing a huge number of design internal nodes.

RSA

Controller in

hardware

Montgomery

Multiplier

block

1024-bit

Adder/Subtractor

3.4 Attack basics: The Differential Mode

One of the main advantages of the attack proposed in our paper over the previous

RSA attacks is the fact that it works in the presence of industrial DfT structures. For

that purpose, the differential mode [2], [16] is used to deal with linear response com-

pactors which are inserted by majority of the DfT tools. Without compaction, the

values stored in the SFFs are directly observable at the test output while they are

shifted out. On the other hand, in the presence of compaction, each bit at the test out-

put depends on multiple SFFs. In the case of parity compactors, each output bit is the

XOR operation between the scan flip-flops on the same “slice”. It means that the ac-

tual value stored in one SFF is not directly observable. Instead, if it differs from the

value expected, the parity of the whole slice also differs, and so faults may be de-

tected. This difference may also be exploited by an attacker.

Fig. 1.a shows a crypto block, its cipher plaintext, and the intermediate register

which is usually the target of the scan attack. The rest of the circuit will be omitted for

didactic reasons. The differential mode consists of applying pairs of plaintexts, in this

example denoted by (M0, M1). The circuit is first reset and the message M0 is loaded.

Then after N clock cycles the circuit is halted and the intermediate register I0 is

shifted out. The same procedure is repeated for the message M1 for which I1 is ob-

tained. Let’s suppose that I0 differs from I1 in 6 bit positions as shown in 1.a, where a

bit flip is represented by a darker box. Let’s also suppose that the intermediate register

contains only 16 bits and the bits 0, 8, 10, 13, 14, and 15 are flipping. The parity of

the differences is equal to 0, since there is an even number of bit flips.

In Fig. 1.b, the flip-flops of the intermediary register are inserted as an example of

DfT scenario with response compaction. In this case there are four scan chains di-

vided in four slices. RX represents the test output corresponding to the slice X. As it

may be seen, if only the bit 0 flips in the first slice (an odd number) this difference is

reflected into a flip of R1. In slice 2, no bits flip and thus R2 remains the same. Two

flips occur in slice 3: 8 and 10. In this case, both flips mask each other, thus 2 flips

(even) result in 0 flips at the output R3. In slice 4, 3 bit flips are sensed as a bit flip in

R4.

The parity of flips in the intermediate register is equal to the parity of flips at the

output of the response compactor. This comes from a basic property of this kind of

response compactors: the parity of differences measured in the test output is equal to

the parity of differences in the intermediate register.

Fig. 1. a. Design with crypto block. b. example of DfT scheme

This property is valid for any possible configuration of the scan chains (number of

scans versus slices). Additionally it is also valid for compactors with multiple outputs.

In this case, the difference measured should consider all compactor outputs. Thus

using the differential mode, the attacker observes differences in the intermediate reg-

ister and then retrieves the secret key. Complex scenarios with other FFs of the circuit

are shown in Section 4.

3.5 Description of the Attack

As presented in sub-section 3.1, the Montgomery exponentiation consists of repeating

the Montgomery multiplication operations several times. The first multiplication in

the main loop, i.e., the squaring of A, is always performed independently of the value

of the secret key bit. The second multiplication, A times xtilde, is performed only if

the decryption key bit is 1. The main idea of the attack proposed here is to check if the

second operation is executed or not, by observing the value of A afterwards. If it does,

then the key bit is 1, otherwise it is 0. This procedure is repeated for the whole key

(1024 or 2048 bits).

In order to detect if the second multiplication was executed, the attacker must scan

out the value of A after each loop (timing issues detailed in Section 4). Additionally,

as explained in the previous sub-section, a pair of plaintexts is used to overcome the

obscurity provided by the response compactor. This pair must be properly chosen so

that a difference on the parity of A would lead to the decryption bit. For that, it is

important that we give a pair of specific message inputs to the algorithm. The process

to derive these ‘good’ pairs of messages is as follows:

First, a pair of random 1024-bit messages is generated using a software pseudo-

random number generator. We denote them here as (M0, M1). Then, the corresponding

output responses (after one iteration of the exponentiation algorithm) are computed on

each of these messages assuming the key bit to be both ‘0’ and ‘1’. Let (R00, R01, R10,

R11) be the responses for message M0 and M1 for key bit ‘0’ and ‘1’ respectively. Let

Parity(R00), Parity(R01), Parity(R10) and Parity(R11) be the corresponding parities on

these responses. Let P0 be equal to Parity(R00) XOR Parity(R10) and P1 be equal to

Parity(R01) XOR Parity(R11). If P0 != P1, then the messages are taken to be useful,

Fig. 2. Hypothesis Decision

otherwise they are rejected and the process is repeated till a pair of ‘good’ messages is

obtained.

After a good pair of messages is found, it may be applied to the actual circuit. For

both pairs of elements, the application is executed in mission mode for the number of

clock cycles corresponding to the targeted step (decryption key bit). For these pairs of

elements, the scan contents are shifted out and the parity of the difference at the test

output bitstream is measured. If the parity of differences is equal to P0, then the hy-

pothesis 0 is correct and the secret key bit is 0. If it is equal to P1, then the secret key

bit is 1. This procedure is repeated for all the bits of the decryption key.

4 Practical aspects of the Attack

Performing scan attacks on actual designs requires additional procedures which have

not been taken into consideration by some previous attacks proposed in the literature.

The two main practical issues consist of (1) dealing with the other flip-flops of the

design; (2) finding out the exact time to halt the mission mode execution and to shift

out the internal contents. The first issue is solved by analyzing the leakage of the FFs

of the intermediate register at the test output (described in sub-section 4.1). The sec-

ond issue is described in sub-section 4.2.

4.1 Leakage analysis

The scenario of Fig. 1 is commonly taken into consideration by scan attacks, however

in real designs other FFs of the design will be included in the scan chain. These addi-

tional FFs may complicate the attack if no workaround is taken into account. Fig. 2.a

shows a design containing three types of FF. We define here three types of scan flip-

flops (SFFs), depending on the value they store, as shown in Fig. 2.a. T1 SFFs corre-

spond to the other IPs in the design, that store data not dependent on the secret. T2

SFFs belong to the registers directly related to the intermediate register, that store

information related to the secret key and that are usually targeted by attackers (e.g.

AES round-register). T3 SFFs store data related to the cipher but not the intermediate

registers themselves (such as input/output buffers or other cipher registers). The leak-

age, if it exists, concerns the T2 type.

The goals of the leakage analysis is to find out if a particular bit of the intermediate

register (T2) can be observed at the test output, and locate which output bit is related

to it. Thus the analysis is focused on one bit per time, looking for an eventual bit flip

in T2. In order to do that, the pair (M0, M1) is chosen so that the value on T2N for M0

differs by a single bit from the value T2N for M1. Denoting T2N as the value stored in

T2 after N clock cycles while the design is running in mission mode from the plain-

text M0 (the first event in mission mode is a reset). In Fig. 2.a the darker blocks repre-

sent a bit that flips. Thus, in this case, the least significant bit of T2N flips. Since the

attack tries to verify if it is possible to observe a flip in the LSB of T2N, it is ideal that

there is no flip in T1N. To reduce the effect of the T1 flip-flops, all the inputs that are

not related to the cipher plaintext are kept constant. It means that T1N for M0 has the

same value of T1N for M1. However, the same method cannot be applied to reduce the

effects of T3. Since we suppose that the logic associated with T3 is unknown and

since its inputs are changing, the value T3N for M0 may differ from T3N for M1. In our

example, let us flip only three bits of T3.

Figure 2.b shows the result of these bit flips in the scan chain and consequently in

the test outputs. For didactic reasons, we suppose that the DfT insertion created 4 scan

chains, and placed a pattern decompressor at the input and a response compressor

with two outputs (R and L). As it may be seen, the slice 1 contains only T1 scan flip-

flops, meaning that after the response compressor, the values of R1 and L1 are not

supposed to flip (because T1N has the same value for M0 and M1). For slice 2, the

same happens. Slice 3 contains the only flipping bit of T2N and the other flip-flops in

the slice do not change. In this case, the bit flip of the first bit of T2N is observable in

R3. It means that an attacker could exploit the information contained in R3 to find the

secret key. Hence, this is considered a security leakage and may be exploited by the

attack described in Section 3.

Slice 4 and slice 5 contain flip-flop configurations that may complicate an attack.

For instance in slice 4, there are FFs of T1 and T2 that are not affected by a change

Fig. 3. a. Design illustrating the categories of FFs b. DfT scheme

from M0 to M1. However it contains one FF affected in T3. It implies that the L4

value flips, which may confuse the attacker (he expects a single bit flip caused by the

LSB of T2). In this case, the attacker is able to identify that the value of L4 is depend-

ent on the plaintext, but is not able to exploit this information, since the T3 related

logic is supposed to be unknown. Another complication is shown in the configuration

of slice 5. If the LSB of T2 is actually on the same slice as a flipping SFF of T3, the

flip is masked and no change is observed in L5. In this case, the attacker is not able to

exploit that bit

Next, the attacker repeats this method for each bit of the intermediary register (e.g.,

1024 times for RSA). If it detected some useful leakage (like R3), he proceeds with

the attack method explained in the Section 3.

4.2 Timing aspects

The scan-based attack on RSA is targeted at finding the decryption key (may be 1024

or 2048 bits long). It is very important to find the exact time to scan out the contents

of the intermediate registers using the scan chains. The integral timing aspects for the

attack are presented pictorially in Figure 4.

Since the same hardware is commonly used for both encryption and decryption in

RSA, we can run the hardware with a known encryption key in order to get the timing

estimations. For instance, the attacker must find out the number of clock cycles that a

Montgomery multiplication operation takes. With a known key, we know the number

of Montgomery multiplications required for the square and multiply operations of the

RSA modular exponentiation (Algorithm 1). Dividing the total time of execution for

this encryption by the number of operations gives the approximate time required for

one Montgomery operation. Then using repeated trial-and-error steps of the compar-

ing the actual output with the expected result after one Montgomery (presented in

Section 3), it may be possible to find out the exact number of clock cycles required.

This timing is utilized in our attack during the decryption process to find out the

decryption exponent. The RSA in hardware is run in functional mode for the exact

number of cycles needed to execute a predetermined number of Montgomery opera-

Fig. 4. Timing Estimation Tree

tions. Then the hardware is reset, scan enable is made high and the scan-chain con-

tents are taken out. Depending on whether the key bit was 0 or 1, either a squaring (S)

is performed or both square (S) and multiply (M) are performed respectively. In our

proposed attack, we always run the software implementation for two Montgomery

cycles taking the key bit as 0 and 1 (two hypothesis in parallel). If the first bit was 1,

both square (S0) and multiply (M0) operations are performed, otherwise two squar-

ings (S0 & S1) are performed. Then the actual result from the scan-out of the hard-

ware implementation after each key bit execution is checked with the results of the

simulation in software. If it matches with the first result (of S0 and M0), then the key

bit is 1, otherwise the key bit is 0. Now, for the next step starting with the right key

bit, again the decryption is performed in software assuming both 0 and 1 possibilities.

This time we run for one or two Montgomery cycles depending on whether the previ-

ous key bit was 0 or 1 respectively. If the previous key bit was 0, then Squaring on the

next key bit (S2) is performed for key bit 0 and a Multiply on the same key bit is per-

formed (M1) for present key bit 1. On the other hand, if the previous key bit was 1,

then Squaring on the same (S1) and next key bit (S2) is performed for present key bit

0 or a Square (S1) and Multiply (M1) on the same key bit is performed (M1). The

results are compared with the actual result from the scan-out of the hardware imple-

mentation, and the corresponding decision taken. The process is repeated in this way

until all the decryption key bits are obtained.

As an example, if the decryption key bits were 101…, the timing decision tree

would follow the path denoted within the dotted lines in the figure (S0, M0, S1, S2,

M2,…).

5 Attack Tool

In order to apply the attack to actual designs, we developed an attack tool. The main

goal of this tool is to apply the attack method proposed in Section 3, as well as the

leakage analysis proposed in Section 4, to many different DfT configurations, without

modifying the attack.

The scan analysis tool is divided in three main parts: the attack methods and ci-

phers (implemented in C++), the main controller (Perl), and the simulation part which

is composed by a RTL deck and ModelSIM, as it may be seen in Figure 1. In order to

use the tool the gate-level netlist must be provided by correctly setting the path for

both the netlist and technology files for ModelSIM simulations. Then the design is

linked to the RTL deck, which is used as an interface with the tool logic. This connec-

tion is automatically done by giving the list of input and output data test pins, as well

as the control clock, reset, and test enable pins. Additionally, other inputs such as

plaintext and ciphertext must be set in the configuration file.

Once the DUT is linked, the tool may simulate it by calling ModelSIM SE with the

values established by the main controller. This interface is achieved by setting envi-

ronment variables in the Perl script which are read by the ModelSIM Tcl script and

then passed on to the RTL deck via generics. For instance, the information being ex-

changed here is the plaintext (cipher specific), reset and scan enable timing (when to

scan and how long) and the value of the scan input (test specific). In return, the scan

output contents are stored in a file and they are processed by the main attack control-

ler in order to run the attacks.

On the left side of Figure 5, the software part is shown (attack method and cipher

description). The new RSA attack is implemented in C++ based on a RSA cipher

implemented in the same language. We previewed new attacks against other ciphers,

e.g. ECC. Scan-attacks on other similar cryptosystems may be conceived since the

tool was built in such a way that adding a new cipher is straight-forward.

The core of the tool is implemented by the attack controller (Perl) which calls the

attack method (using a SWIG interface). The attack controller ensures that the settings

are initialized and then it launches both the attack and the simulation. As a secondary

functionality, the controller handles some design aspects, like timing and multiple test

outputs, so that the attack method itself may abstract that information. For instance,

the attack method has no information on how many clock cycles it takes to execute a

Montgomery multiplication. Also, it finds out the number of scan cycles that the shift

operation must be enabled so all the scan length is unloaded.

6 Experimental Results

In order to test the effectiveness of the attack, we implemented a 1024 bits RSA al-

gorithm in hardware with separate datapaths for the Montgomery multiplier, ad-

der/subtractor block and the main controller for the Montgomery exponentiation.

Then we envisaged different scenarios to test the attack flexibility. The first scenario

is a single chain containing all the FFs of the design. Then, in the next subsection, we

used Synopsys DfT Compiler (v2010.12) to insert more complex configurations such

as decompression/compaction. Finally, in the last subsection, we implemented some

countermeasures proposed in the literature to verify if the attack is able to overcome

them. All the runs were performed on a 4 GB Intel Xeon CPU X5460 with four proc-

essors.

Fig. 5. High-level block diagram of the Attack tool

The total number of FFs in the design is 9260. Out of these, 4500 belong to the T1

type, 1024 consist of the intermediate register (T2 type) and 4096 belong to the T3

type (see Section 3). Therefore using Synopsys DfT Compiler we inserted a single

chain with all these FFs, and the design was linked with the tool. Then the leakage

analysis was run over this configuration. For identifying each bit of the RSA interme-

diate register (1024-bit long), the attack tool takes approximately 3.5 minutes per bit.

Then the tool proceeds with the attack method, in order to find the secret key. In this

phase, the tool takes again approximately 3.5 min per bit of secret key. Both the tim-

ing for the leakage analysis and the attack are strongly dependent on the server con-

figuration. Additionally, the C++ code takes approximately 5 seconds from the 3.5

minutes, meaning that the simulation limits the execution time.

For our test case, we required around 11 messages to find out the full 1024-bit

RSA exponent. This number is less than that required for the attack presented in [5]

(which takes around 30 messages).

6.1 In presence of DfT Methods

In order to test our scan-attack in the presence of industrial DfT methods, Synopsys

DFT Compiler was used to insert different DfT configurations in the RSA circuit. In

the first case, 120 scan chains were inserted, without compaction/compression. Since

the tool analyzes each scan output pin separately and independently, and since the

sensitive registers were converted to scan FFs, the attack with the tool was able to

find out the secret key. Changing the position of the sensitive FFs do not change the

result. The time taken to retrieve the key in this case is almost the same as that of the

previous case (with a single chain).

In a second scenario, pattern compaction and response compression were inserted.

Different compression ratios were tested, but as proposed in [16], linear response

compactors do not lead to any increase in the security. Since the test inputs are not

used in the pattern compactor (the plaintext is a primary input), it does not affect the

attack method and hence it is not taken into consideration. As the proposed methods

are all based on the differential mode, the linear compressors do not impede the attack

and also it does not imply significant increase in simulation time.

As a last scenario, the X-tolerant options were activated to add the masking logic

that deals with the unknowns present in the design. The masking blocks some scan

chains at the instant while the contents are shifted out if the test engineer believes that

there is an X that may corrupt the test output. This mask is controlled by the output of

the pattern decompressor, which is controller then by the test inputs. Since the mask is

controllable, it is just a matter of shifting in the right pattern which does not mask the

confidential data. Thus the masking can set when the sensitive data is shifted out.

Hence, our proposed scan-attach still works in the presence of masking.

6.2 In presence of proposed countermeasures

In presence of inverters. One of the countermeasures proposed in the literature is the

insertion of dummy inverters before some FFs of the scan chain [16]. This technique

aims at confusing the hacker, since the sensitive data observed at the scan chain may

be inverted. However, since these inverters are placed always at the same location in

the scan chain, they are completely transparent to the differential mode.

The effectiveness of the attack against this countermeasure was validated on the

RSA design containing multiple scan chains and compaction/compression module.

Two implementations were considered with 4630 and 6180 inverters (50% and 75 %

of the overall 9260 FFs in the design respectively) randomly inserted in the scan

chains. For both cases, the tool was able to find leakage points and then to retrieve the

secret key.

In presence of partial scan. Depending on the design, not all the flip-flops need to be

inserted in the scan chain in order to achieve high testability. As proposed in [4], par-

tial scan may be used for increasing the security of a RSA design against scan attacks.

However, the authors suppose that the attacker needs the whole sensitive register to

retrieve the secret key. As it was described in Section 3, the leakage analysis feature

can be used to find out which bits of the sensitive register are inserted in the scan

chain. Once these bits are identified, the attack can proceed with only partial informa-

tion, since each bit of the sensitive register is related to the key.

For evaluating the strength of the partial scan, we configured the DfT tool in such a

way so as to not to insert some of the sensitive registers in the scan-chain. In the first

case, half of the sensitive flip-flops were inserted in the chain. The tool was able to

correctly identify all the leaking bits and then to retrieve the secret key. Also in the

worst case situation, i.e., where only one secret bit was inserted in the chain, the tool

was still able to find out the correct secret key.

7 Comparison with previous RSA attacks

The approach taken in [4] is for a pure software attack which does not take into ac-

count the practical aspects of applying it to an actual cryptographic hardware imple-

mentation. The timing aspects are crucial to scan attacks on secure hardware, which

has been addressed in this paper. Our scan-attack analysis tool integrates the actual

hardware (in the form of a gate-level netlist with inserted DFT) with the software

emulation which allows us to perform the attack in real-time. The secret decryption

exponent key bits are deciphered on-the-fly using this combined approach.

Left-to-right binary exponentiation (employed in ordinary exponentiation) is used

as the target RSA algorithm for the attack in [4]. This is generally not implemented in

hardware owing to the expensive division operation involved in modular operations.

We target the Montgomery Exponentiation algorithm, which is by far the most popu-

lar and efficient implementation of RSA in hardware, as there are no division opera-

tions involved (owing to performing the squaring and multiply operations in the

Montgomery domain).

Moreover, an inherent assumption in the attack in [4] is that there are no other ex-

ponent key-bit dependent intermediate registers which change their value after each

square and multiply operation. This may not be the practical case in an actual hard-

ware implementation, where multiple registers are key dependent and change their

values together with the intermediate register of interest in the attack (for instance,

input and output buffers). These registers may mask the contents of the target inter-

mediate register after XOR-tree compaction (as shown in the leakage analysis in Sec-

tion 3). Our proposed scan-attack analysis takes the contents of other key-dependent

registers present in the scan chain, and presents ways to deal with this problem.

Finally, the attack in [4] cannot be applied to secure designs having test response

compaction and masking (which is usually employed in DfT for all industrial circuits

to reduce the test volume and cost). Our scan-attack analysis, on the other hand,

works in the presence of these scan compression DfT structures.

8 Conclusion

In this paper, we have presented a new scan-based attack on RSA cryptosystems. A

scan-chain leakage analysis for the algorithm is presented, along with the practical

aspects of mounting the attack on an actual hardware implementation of RSA. A

comparison with the previous RSA scan-attack proposal is also made. We present a

scan-chain leakage analysis tool and explain its use through the RSA attack. State-of-

the-art scan attack countermeasures and industrial test compression techniques, sup-

posed to behave as countermeasures are also evaluated for scan-leakage strength us-

ing RSA as a case study. We successfully attacked the RSA implementation in the

presence of these countermeasures.

As future work, we plan to extend the scope of this scan-based attack on RSA to El

Gamal and other similar public-key implementations based on large number modular

exponentiations. We will also extend the scope of our proposed attack on RSA im-

plementations with SPA and DPA countermeasures. This can also be an interesting

topic for future contributions in this domain.

Acknowledgement

This work has been supported in part by the European Commission under grant agree-

ment ICT-2007-238811 UNIQUE and in part by the IAP Programme P6/26 BCRYPT
of the Belgian State. Amitabh Das is funded by a fellowship from Erasmus Mundus

External Cooperation Window Lot 15.

References

1. B. Yang, K. Wu, and R. Karri. Scan Based Side Channel Attack on Dedicated Hardware

Implementations of Data Encryption Standard. Proceedings IEEE International Test Con-

ference (ITC) 2004.

2. B. Yang, K. Wu, and R. Karri. Secure Scan: A Design-for-Test Architecture for Crypto

Chips. Proceedings ACM/IEEE Design Automation Conference (DAC), June 2005, pp.

135–140.

3. G. Sengar, D. Mukhopadhayay, D. Chowdhury. An Efficient Approach to Develop Secure

Scan Tree for Crypto-Hardware, 15th International Conference on Advanced Computing

and Communications.

4. M. Inoue, T. Yoneda, M. Hasegawa, and H. Fujiwara. Partial Scan Approach for Secret In-

formation Protection. European Test Symposium, 2009, pp.143-148.

5. Ryuta Nara, Kei Satoh, Masao Yanagisawa, Tatsuo Ohtsuki, Nozomu Togawa. Scan-

Based Side-Channel Attack Against RSA Cryptosystems Using Scan Signatures. IEICE

Transaction Fundamentals, Vol. E93-A, No. 12, December 2010, Special Section on VLSI

Design and CAD Algorithms.

6. Wang, L.-T.; Xiaoqing Wen; Furukawa, H.; Fei-Sheng Hsu; Shyh-Horng Lin; Sen-Wei

Tsai; Abdel-Hafez, K.S.; Shianling Wu. VirtualScan: a new compressed scan technology

for test cost reduction. Test Conference, 2004. Proceedings. ITC 2004. International , pp.

916- 925, 26-28 Oct. 2004

7. Rajski, J.; Tyszer, J.; Kassab, M.; Mukherjee, N. Embedded deterministic test. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.23, no.5, pp.

776- 792, May 2004

8. Mitra S.; Kee Sup Kim. X-compact: an efficient response compaction technique for test

cost reduction. Proc. ITC 2002, pp. 311- 320.

9. C. Liu, Y. Huang. Effects of Embedded Decompression and Compaction Architectures on

Side-Channel Attack Resistance. 25th IEEE VLSI Test Symposium (VTS) 2007.

10. R. Nara, N. Togawa, M. Yanagisawa, T. Ohtsuki. Scan-Based Attack against Elliptic

Curve Cryptosystems, Asia South-Pacific Design Automatic Conference (ASPDAC) 2010.

11. Y. Liu, K. Wu, and R. Karri. Scan-based Attacks on Linear Feedback Shift Register

Based Stream Ciphers. ACM Transactions on Design Automation of Electronic Systems

(TODAES) 2011.

12. A. Das, M. Knezevic, S. Seys, and I. Verbauwhede. Challenge-response based secure test

wrapper for testing cryptographic circuits. IEEE European Test Symposium (ETS) 2011.

13. D. Hély, M. Flottes, F. Bancel, B. Rouzeyre, N. Berard, M. Renovell. Scan Design and Se-

cure Chip. 10th IEEE International On-Line Testing Symposium (IOLTS’04).

14. D. Hély, F. Bancel, M. Flottes, B. Rouzeyre. Test Control for Secure Scan Designs. Euro-

pean Test Symposium (ETS’05).

15. J. Da Rolt, G. Di Natale, M. Flottes, B. Rouzeyre. New security threats against chips con-

taining scan chain structures. Hardware Oriented Security and Trust (HOST) 2011.

16. J. Da Rolt, G. Di Natale, M. Flottes, B. Rouzeyre. Scan attacks and countermeasures in

presence of scan response compactors. 16th IEEE European Test Symposium (ETS) 2011.

17. A. Menezes, P. van Oorschot, and S. Vanstone. Chapter 14. Efficient Implementations.

Handbook of Applied Cryptography. CRC Press, 1996.

18. Gezel Hardware/Software Codesign Environment, http://rijndael.ece.vt.edu/gezel2/

View publication statsView publication stats

https://www.researchgate.net/publication/236134525

