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A Dual Model-Free Control of Underactuated Mechanical

Systems, Application to The Inertia Wheel Inverted Pendulum

S. Andary, A. Chemori, M. Benoit and J. Sallantin

Abstract— This paper deals with a new method
allowing recent model-free control technique to deal
with underactuated mechanical systems for stable
limit cycles generation. A model-free controller is de-
signed in order to track some parametrized reference
trajectories. A second model-free controller is then
designed using trajectories’ parameters as control
inputs in order to stabilize the internal dynamics.
The proposed method is applied to a real underac-
tuated mechanical system: the inertia wheel inverted
pendulum. Numerical simulations as well as real-time
experiments are presented showing the effectiveness
of the proposed control method and its robustness
toward external disturbances.

I. Introduction

Model-free control strategies has been recently pro-
posed in [1], [2] resulting in a breakthrough in nonlinear
control. This technique is based on recent results on fast
estimation and identification of nonlinear signals [3], [4].
The control scheme is based on local linear approxima-
tion of the controlled system dynamics which is valid for
a small time window. This approximation is updated in
an online fashion thanks to a fast estimator. The control
law proposed consists in a PID controller augmented with
compensating terms provided by the online estimation of
the system dynamics. The overall controller is called i -
PID (intelligent PID) controller. Comparison of such a
controller with classical PID controller can be found in
[5]. The main advantage of this control strategy is that
it doesn’t require neither prior knowledge of the system
dynamics, nor complex parameters tuning. It is therefore
easy to build a controller for an unknown system. Model-
free control has already been utilized in a number of most
practical case studies (see [6], [7], [8]).

Although this control method is smart, and has been
applied to resolve many control problems, it has however
some drawbacks. Aside it’s dependancy to quality of sen-
sors and sampling frequency on which relies the fast local
estimation, model-free control is not curently adapted
to the control of underactuated systems. Such systems
are often characterized by unstable internal dynamics. In
this paper we focus on stable limit cycles generation for
underactuated mechanical systems. A mechanical system
with less actuators than degrees of freedom is said to be
underactuated and unfortunately a vast majority of these
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systems are non-minimum phase. Therefore model-free
control technique cannot be applied as it has initially
been proposed. Some efforts have been made for two
particular cases of underactuated systems: the ball and
beam [9] (where the dynamics of the beam has not been
taken into account) and the Planar Vertical Take Off
and Landing (PVTOL) aircraft [10] where the adressed
control problem is limited to state regulation.

The main contribution of this paper is to design a new
control scheme based on model-free control approach to
deal with underactuated mechanical systems for stable
limit cycle generation. The proposed method is applied to
an inertia wheel pendulum with real-time experimental
results.

The inertia wheel pendulum was introduced in [11] as
a benchmark system for nonlinear control of underactu-
ated mechanical systems. The controller proposed by the
authors consists of two separates control laws: a swing-
up controller based on partial feedback linearisation and
energy shaping and a linear balancing controller. In [12],
swing-up and balance of the pendulum is achieved with
a single controller using interconnection and damping
assignment wich can be seen as a generalisation of
controlled Lagrangians method. This mechanical system
still shows recent interest among nonlinear control com-
munity. In [13], strong damping force on the inertia
wheel is taken into account in the design of the con-
troller. Stabilization is achieved via nested saturation
based controller. [14] solves the limit cycles generation
problem on the inertia wheel pendulum using virtual
holonomic constraint. Real-time experiments are carried
out showing the robustness of the approach. In [15],
collocated partial feedback linearization is performed to
exhibit the nonlinear core subsystem wich is stabilized
using an implicit control. The remaining subsystem is
stabilized using multiple sliding mode technique. In our
previous work (see [16], [17]), non-collocated partial feed-
back linearization is used; this gives arise to an unstable
internal dynamics, which is stabilized using trajectory
optimization and model based error estimation. All the
mentionned techniques require knowledge of the system
dynamics and parameters, furthermore only [14], [16]
present real-time experiments.

In order to achieve stable limit cycles on all coordinates
of the inertia wheel pendulum, we first design a family
of parametrized periodic trajectories for the pendulum
angle. Thoses trajectories are then tracked using control
inputs thanks to a classical model-free controller. Since
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the system is underactuated (non-minimum phase), the
internal dynamics of the system is unstable. Stable limit
cycles on the actuated coordinate are generated through
the control of trajectories’ parameters. To achieve this
control, we propose an other model-free controller us-
ing actuated coordinate as output and trajectories’ pa-
rameter as input. Note that this control scheme can
be extended to regulation control by carefully choosing
apropriate trajectories.

The rest of the paper is organised as follow. Section
II presents the proposed dual model-free controller. The
experimental testbed, numerical simulations as well as
real-time experiments are presented in Section III. Fi-
nally, conclusion and future work are discussed in the
Section IV.

II. Dual model-free controller

In our case, we are interrested in stable limit cycles
generation for under-actuated mechanical systems which
are generally nonlinear and non-minimum phase. In order
to simplify our presentation, we focus on 1-input 2-degree
of freedom mechanical systems which are the minimum
dimensions for a system to be underactuated. The dy-
namics of such systems takes the following lagrangian
matrix form [18], [19]:

M(q)q̈ + H(q, q̇) + G(q) = Ru (1)

where M ∈ R
2×2 is the inertia matrix of the system,

q ∈ R
2 is the vector of generalized coordinates. q̇, q̈ ∈

R
2 are respectively their first and second derivatives.

H ∈ R
2 is a vector containing centrifugal and Coriolis

forces terms and G ∈ R
2 is a vector of gravitational

terms. u ∈ R is the control input and R ∈ R
2×1 is a

matrix distributing the effects of u on the generalized
coordinates. Using a suitable partition q = [qa, qna]T

of the vector of generalized coordinates where qa is
the actuated coordinate and qna is the unactuated one,
equation (1) can be rewritten as:

m11(q)q̈a + m12(q)q̈na + h1(q, q̇) + g1(q) = u (2)

m21(q)q̈a + m22(q)q̈na + h2(q, q̇) + g2(q) = 0 (3)

with :

M =

[

m11 m12

m21 m22

]

; H =

[

h1

h2

]

; G =

[

g1

g2

]

We suppose that the state of the system is the vector
[qa qna q̇a q̇na]T .

A. Basic principle of the proposed method

Our goal is to generate stable limit cycles on both
actuated and unactuated coordinates. We first define a
family of p-parametrized τ -periodic reference trajectories
q∗na(p, τ, t) for the unactuated coordinate. Those trajec-
tories have the same boundary conditions for all p values,
allowing the controller to switch from one trajectory
to another while the overall trajectory remains smooth.
Thanks to the dynamic coupling existing between the
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Fig. 1: Schematic view of the dual model-free controller.

actuated and unactuated coordinates, it is possible to
control directly the unactuated coordinate using the
control input u (i.e. the torque on the actuated coor-
dinate) which allows those trajectories to be tracked on
the unactuated coordinate qna using the control input
u. Indeed, the dynamics (2)-(3) can be rewritten in a
form which explicits the relation between unactuated
coordinate and control input. First, equation (2) is solved
for q̈a (for clarity reason the dependancy in q and q̇ of
the terms involved is omitted in the notation):

q̈a = m−1
11 (−m12q̈na − h1 − g1 + u) (4)

Injecting this solution in equation (3) leads to:

m2q̈na + h2 + g2 = −m21m
−1
11 u (5)

where m2 = m22 − m21m
−1
11 m12, h2 = h2 − m21m

−1
11 h1

and g2 = g2 − m21m
−1
11 g1.

A model-free controller can then be designed to per-
form the tracking of reference trajectories on unactuated
coordinate using the control input u. In order to sta-
bilize the internal dynamics of the closed-loop system
(i.e. the inertia wheel dynamics) and to generate stable
limit cycles on both coordinates, a second controller is
designed. This second controller therefore takes the ref-
erence trajectory parameter p as control input, and uses
the actuated coordinate as output. At the end of each
period (of the cyclic reference trajectory), the second
controller chooses the right trajectory parameter p in
order to stabilize the actuated coordinate. The choosen
parameter p fixes the reference trajectory used by the
first controller for the duration of the whole next period.
The overall control scheme is illustrated in the block-
diagram of Fig. 1.

B. Parametrized reference trajectories generation

The first step of the proposed framework is to gener-
ate parametrized reference trajectories q∗na(p, τ, t) to be
tracked on the unactuated coordinate. Those trajectories
must fulfil some conditions. First of all, they have to be
continuous, derivable and periodic in order to generate
limit cycles. That leads us to design oscillatory shaped
trajectories which are splitted in half period, where we
will use symmetry to generate the whole cycle. The
parametrization of these trajectories must allow the con-
troller to update the parameter p (which corresponds to
the time at which the trajectory q∗na crosses zero) during
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tracking while the overall trajectory remains smooth.
This leads to some initial and final conditions of each half
period part. That is for a given period τ and amplitude
2A:

∀p ∈ P,







q∗na(p, τ, 0) = q∗na(p, τ, τ) = A
q∗na(p, τ, τ

2
) = −A

q̇∗na(p, τ, 0) = q̇∗na(p, τ, τ

2
) = q̇∗na(p, τ, τ) = 0

(6)

for some domain P ⊂ R (choosen to keep an oscillatory
shape). We propose to use a six-degree polynomial func-
tion parametrized with p such that:

∀p ∈ P, q∗na(p, τ, t = p) = 0 (7)

C. Proposed dual model-free controller

The design of the reference trajectories tracking con-
troller is based on a model-free controller. The unactu-
ated coordinate nonlinear dynamics (5) is replaced by the
local model according to model-free control principle:

q̈na = F1 + α1u (8)

where the constant parameter α1 is a design parameter.
F1 captures the nonlinearities in the unactuated coordi-
nate dynamics and is updated according to the following
equation at each sample time:

[F1(k)]e = [q̈na(k)]e − α1u(k − 1) (9)

The notation [.]e is the estimated value.
The tracking controller is obtained using numericaly

computed value of F1 in (9) using the first model-free
controller (i -PID):

u =
1

α1

(

−F1 + q̈∗na(p, τ, t) + Kp1e + Ki1

∫

e + Kd1ė

)

(10)

with PID gains Kp1, Ki1, Kd1 which can be chosen
using poles placement technique since nonlinearities of
the system dynamics are supposed to be compensated by
the F1 term. The unactuated coordinate follows therefore
the desired periodic trajectories q∗na(p, τ, t).

The parameter p, used in the tracking control input
(10), is constant over half a period ∀t ∈ [k τ

2 (k + 1) τ
2 [,

(k ∈ N) and is updated at the end of each half period
at time (k + 1) τ

2 by the second controller (13). The
unknown nonlinear dynamics of the actuated coordinate
is replaced by the local discrete model:

∆τva = F2 + α2p (11)

where ∆τva = q̇a(k τ
2 ) − q̇a((k − 1) τ

2 ) is the variation of
actuated articulation velocity va = q̇a measured between
half periods and the constant α2 is a design parameter.
The value of F2 is updated at the end of each half cycle
(t = k τ

2 for k ∈ N) using the principle of model-free
control:

[F2(k
τ

2
)]e = [∆τ q̇a(k

τ

2
)]e − α2p((k − 1)

τ

2
) (12)

Note that the actuated coordinate dynamics whithin
a half cycle t = [k τ

2 (k + 1) τ
2 ] is not taken into ac-

count in this local model since we only aim at limit

inclinometer

pendulum body

inertia wheel

active joint

passive joint

frame

Fig. 2: The inertia wheel inverted pendulum

θ2
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G

O

x
y

z

u

Fig. 3: Schematic view of the inertia wheel inverted
pendulum: the joint between the frame and the beam
is unactuated (passive), while the one between the beam
and the inertia wheel is actuated (active).

cycle generation and therefore it is only required that
the actuated coordinate trajectory be periodic. In other
words, the aim of the second controller is to bring the
actuated coordinate to a fixed desired state (q d

a , q̇ d
a ) at

the end of each half period, ensuring periodicity of the
actuated coordinate trajectory and therefore limit cycles
generation. The second model-free controller updates
the trajectory parameter p according to the following
formula:

p =
1

α2

(

−F2 + Kp2(q d
a − qa) + Ki2

∫

(q d
a − qa) + Kd2(q̇ d

a − q̇a)

)

(13)

where Kp2, Ki2, Kd2 are the PID gains. Notice that
since the desired state for actuated coordinate (q d

a , q̇ d
a ) is

constant, the (∆τ q̇a) d term is zero and is then ommited.

III. Application: the inertia wheel inverted

pendulum

The proposed control scheme is applied to an under-
actuated mechanical system: the inertia wheel inverted
pendulum (cf. Fig. 2), which consists of an inverted pen-
dulum equipped with a rotating wheel. The joint between
the pendulum body and the frame is unactuated whereas
the joint between the beam and the wheel is actuated.
The basis of its mechanical structure is depicted in figure
3.

The motor torque produces an angular acceleration
of the rotating wheel which generates, thanks to the
dynamic coupling between coordinates, a torque acting
on the pendulum’s passive joint; therefore this passive
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TABLE I: Description of dynamic parameters of the
inertia wheel inverted pendulum

Parameter Description Value Unit

m1 body mass 3.228 kg

m2 wheel mass 0.86422 kg

I1 body inertia 3.042 × 10−2 kg m2

I2 wheel inertia 7.986 × 10−4 kg m2

l1 body CoM position 6.354 × 10−4 m

l2 wheel CoM position 52 × 10−3 m

joint can be controlled through the acceleration of the
inertia wheel.

The goal of the proposed method is to generate stable
limit cycles on both coordinates using only input u, the
applied torque on the inertia wheel. The angular position
θ1 of the pendulum with respect to the vertical will be
controlled by the first tracking controller whereas the
angular velocity of the wheel will be controlled by the
second controller.

A. Dynamic model of the system

The nonlinear dynamic model [16] of the plant is
obtained using Lagrange formulation [20], and is given
by:

(I1 + I2) θ̈1 + I2θ̈2 − mlg sin θ1 = 0 (14)

I2

(

θ̈1 + θ̈2

)

= u (15)

where I1, I2 are respectively the moments of inertia of
the beam and the wheel. u is the torque generated by
the motor acting on the inertia wheel. ml = m1l1 +m2l2
with m1 and m2 being the masses of the pendulum and
the inertia wheel. l1, l2 are distances from origin O (cf.
Fig. 3) to the gravity centers of the pendulum and the
rotating mass (respectively).

Table I summarizes the dynamic parameters of the
inertia wheel inverted pendulum.

B. Numerical simulations

Reference trajectories are generated for the unactuated
coordinate θ1 as presented in section II-B. The trajecto-
ries amplitude is 2A = 6◦ and period is τ = 2 s.

Numerical simulations are performed using
Matlab/Simulink software of MathWorks. It is
worth noting that the dynamic model (14)-(15) is used
to simulate the dynamic behavior of the system, it is
not used in the controller design.

The following control design parameters were used:
α1 = −100, α2 = 50, the first controller gains Kp1 = 200,
Ki1 = 0 and Kd1 = 100, the second controller gains
Kp2 = Ki2 = 0 and Kd2 = 1. However, as the inertia
wheel is not limited by mechanical stops when rotating
around its axis, its angular position does not matter.
Consequently it is worth interesting only in its velocity.
The desired state, reduced to wheel velocity θ̇ d

2 , is set
to 0. The sampling frequency is set to 150Hz which is a
reasonable value for real-time implementation.

During this simulation, whose results are depicted in
Fig. 4, a disturbing torque is applied to the pendulum
beam at time t = 15 seconds of intensity 0.5 Nm. The
convergence to a stable limit cycle can clearly be observed
on the phase portrait of the pendulum angle θ1. The
controller reacts immediatly to the disturbance as we can
see a spike in control input (cf. Fig. 4(e)). This distur-
bance induces a deviation from the reference trajectories
of the pendulum angle position and velocity which is
immediatly compensated. Despite the big deviation of
the inertia wheel velocity oscillations at the beginning of
the simulation due to non zero initial conditions and just
after the disturbance, the second controller succesfully
brings back the inertia wheel velocity trajectory to the
limit cycle.

C. Real-time experiments

In this section experimental results are presented with
some implementation issues. It starts with a description
of the inverted pendulum testbed, then the obtained
results are presented.

1) Experimental platform: Real time experiments are
performed on the inertia wheel inverted pendulum
testbed (shown in Fig. 5) designed and developed at our
laboratory1. The pendulum angle θ1 is constrained to
remain within the interval [−10◦, 10◦] due to mechan-
ical stops. The actuator of the system is a Maxon EC-

powermax 30 DC motor, equipped with an incremental
encoder, allowing the measurement in real-time of the
inertia wheel angular position. In order to measure the
angle of the pendulum with respect to the vertical,
the system is equipped with an inclinometer FAS-G of
Micro strain. The system is controlled with a computer
equipped with a 2.4 GHz Intel processor. The control
approach is implemented using C++ language, and the
whole system is running under Ardence RTX real-time
OS.

2) Obtained results: Real-time experiments are caried
out thanks to the experimental testbed described in
previous section. Notice that the controller design param-
eters used for this experiment are different from those
used in simulation. The first controller parameters are
α1 = −150 and gains Kp1 = 70, Ki1 = 0 and Kd1 = 12.
The Second controller parameters are α2 = 70 and gains
Kp2 = 0, Ki2 = 0 and Kd2 = 1. Noise filtering was
performed through the use of an alpha-beta filter [21]
to correctly estimate the pendulum acceleration used in
equation (9).

In this experiment, external disturbances are intro-
duced by pushing the pendulum body in a punctual
fashion. Those external disturbances are introduced at
approximately t = 12 s and t = 23 s.

Fig. 6 shows the overall results. Noise in Measurement
is observable on all plots, particularily on the pendu-
lum velocity θ̇1 in Fig. 6(b). The effect of the external

1LIRMM: http://www.lirmm.fr
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Fig. 4: Simulation results. A punctual external disturbance is introduced as a torque applied at time t = 15 s to the
pendulum beam.
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Inclinometer

Pendulum
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Fig. 5: Inertia wheel inverted pendulum experimental testbed

disturbances can clearly be observed on the pendulum
trajectories in Fig. 6(a), and the control input in Fig.
6(e). The tracking controller brings back the pendulum
position and velocity to their respective reference trajec-
tories. The convergence to a stable limit cycle is clearly
visible on the phase portrait of the pendulum shown on
Fig. 6(c). The evolution the inertia wheel velocity can
be observed on Fig. 6(d) The introduced disturbances
induce a shift in the inertia wheel velocity trajectory
cycle. However thanks to the second controller reaction,
which is observable in Fig. 6(f), the inertia wheel velocity
converges back to the limit cycle in few periods.

IV. Conclusion and future work

In this paper, a dual model-free controller is proposed
to deal with control of underactuated mechanical systems

for stable limit cycles generation. This method inherits
the advantages of model-free control: mathematical mod-
elling of the controlled system is not required and no
complex parameters identification is needed. To illustrate
the effectiveness of the proposed control method, it is
applied on the inertia wheel inverted pendulum. Numer-
ical simulations and real time experimentations show the
effectiveness of the proposed control scheme as well as
its robustness towards external disturbances. Our future
work will be focused on the optimization of the tuning
parameters of the two controllers, it can also include the
generalization of the proposed method to underactuated
systems with more than one degree of unactuation.
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Fig. 6: Real-time results. Two external disturbances are introduced at t = 12 s and t = 23 s on the pendulum beam.
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avion à décollage vertical,” in Sixième Conférence Inter-
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