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L'objectif de cet article est de présenter un démonstrateur en automatique des systèmes mécaniques sous-actionnés. Il s'agit du pendule inversé stabilisé par volant d'inertie, qui dispose de deux degrés de liberté et un seul actionneur. La platforme expérimentale du système inclut une partie électronique comportant une alimentation, un variateur de vitesse, et un PC de commande, et une partie mécanique comportant le pendule inversé équipé d'un actionneur et de deux capteurs pour mesurer l'état du système à chaque instant d'échantillonnage. Différentes approches de commande ont été développées pour la commande d'un tel système telle que la commande optimale LQ et la commande prédictive généralisée LQG. Des résultats d'expérimentation de la GPC seront présentés pour illustrer la stabilisation du pendule inversé autour de son point d'équilibre instable.

Introduction

Les systèmes robotiques sont des systèmes mécaniques dotés d'actionneurs permettant de contrôler l'évolution du système dans le temps. Suivant le nombre de degrés de liberté et d'actionneurs du système, il en découle 3 classes de systèmes mécaniques, à savoir : (i) les systèmes mécaniques complètement actionnés, (ii) les systèmes mécaniques sous-actionnés, et (iii) les systèmes mécaniques sur-actionnés (ou redondants). Les systèmes mécaniques sous-actionnés [START_REF] Spong | Underactuated mechanical systems[END_REF][START_REF] Spong | Energy based control of a class of underactuated mechanical system[END_REF][START_REF] Coverstone-Carroll | Control algorithms for stabilizing underactuated robots[END_REF][START_REF] Reyhanoglu | Discontinuous feedback control of a special class of underactuated mechanical systems[END_REF][START_REF] Chemori | Nonlinear predictive control of under-actuated mechanical systems, application: the ECP 505 inverted pendulum[END_REF] sont définis comme étant des systèmes dont le nombre d'actionneurs est inférieur au nombre de degrés de liberté. C'est ainsi qu'un sous-ensemble de degrés de liberté du système ne dispose pas d'entrée de commande. Par conséquent, les commandes classiques de systèmes mécaniques complètement actionnés ne peuvent être mises en oeuvre pour de tels systèmes [START_REF] Fantoni | Non-linear control for underactuated mechanical systems[END_REF]. En effet, les entrées de commande ne permettent de contrôler complètement qu'une partie de la dynamique, l'autre partie, appelée dynamique interne [START_REF] Khalil | Nonlinear Systems[END_REF], dépend de l'évolution des coordonnées actionnées (à cause du couplage entre les coordonnées du système). Le système est dit à minimum de phase si sa dynamique interne est stable, dans le cas contraire, le système est à non minimum de phase. Le sous-actionnement est souvent introduit volontairement pour réduire le nombre d'actionneurs, et par conséquent le coût de construction des prototypes. Ce problème est d'un grand intérêt académique puisque les techniques classiques de commande des systèmes non linéaires ne sont plus valables pour ce genre de systèmes. De part sa complexité et sa richesse, la tâche de conception de lois de commande pour ce type de systèmes attire de plus en plus de chercheurs qui s'intéressent au développement de nouvelles techniques de commande. Le pendule inversé stabilisé par volant d'inertie est, du fait qu'il a moins d'actionneurs de degrés de liberté, un système mécanique sous-actionnés. Par ailleurs il est, du fait que sa dynamique interne est instable, à non minimum de phase. Différentes approches de commande ont été développées pour la stabilisation et la génération de cycles limites stables [START_REF] Andary | Stable limit cycle generation for underactuated mechanical systems, application: Inertia wheel inverted pendulum[END_REF][START_REF] Andary | Control of the underactuated inertia wheel inverted pendulum for stable limit cycle generation[END_REF][START_REF] Andary | Estimation-based disturbance rejection in control for limit cycle generation on inertia wheel inverted pendulum testbed[END_REF][START_REF] Garabedian | Etude de faisabilité d'un tramway monorail[END_REF] de ce système.

Description du démonstrateur

La maquette du pendule inversé stabilisé par roue d'inertie (cf. figure 1) est constituée de cinq composants principaux : un calculateur, un inclinomètre, un groupe moteur/variateur/réducteur et un codeur. 

Le calculateur

Appelé aussi PC de commande, le calculateur est le coeur du système de commande car c'est lui qui s'en charge d'interroger, en temps réel, les capteurs pour lire les mesures, et calculer la loi de commande à chaque instant d'échantillonnage.

Le variateur de vitesse

C'est un organe électronique permettant de fournir une puissance électrique maximale de 200W (caractéristiques du moteur), d'asservir le moteur et de fonctionner en mode 4 quadrants (essentiel pour recycler l'énergie réactive produite par le moteur en phase de freinage).

L'inclinomètre

C'est un capteur capable de mesurer, en temps réel, la position angulaire du pendule par rapport à la verticale. Pour respecter l'intégrité de la maquette, il était inconcevable d'incorporer un codeur incrémental ou absolu sur l'axe de rotation du pendule pour mesurer sa position angulaire (solution généralement utilisée pour ce type de mesures). Pour cela la solution consistant à utiliser un inclinomètre, fixé sur le corps du pendule, a été adoptée.

Le Moteur

Le dimensionnement et le choix du moteur actionneur est étroitement lié au dimensionnement du volant d'inertie, étant donné qu'il est dédié exclusivement à son entraînement. Le choix du moteur actionnaur utilisé dans le cas du pendule inversé stabilisé par volant d'inertie s'est porté sur le moteur Maxon EC-powermax 30. Plus qu'un simple actionneur, c'est un moteur couplé avec un réducteur et un codeur incrémental. Le réducteur permet de privilégier le couple au détriment de la vitesse de rotation. Le codeur incrémental, quant à lui, permet de mesurer sa position angulaire et par conséquent celle du volant d'inertie.

Le noyau temps-réel

Le temps d'exécution d'une tâche et sa répétitivité sont deux contraintes fortes dans le domaine de la commande temps-réel. Le non respect de l'une d'elles peut avoir des conséquences graves, aussi bien sur le comportement du système que sur son environnement direct. C'est à ce titre, que le système d'exploitation implémenté sur le calculateur doit être équipé d'un noyau temps-réel. Dans le cas de pendule inversé, le noyau temps réel utilisé est le RTX (Real-time Extension for Windows) de chez Ardence. RTX est une addition pour Windows dédiée aux applications tempsréel pour les systèmes de commande et systèmes embarqués. Elle apporte vitesse, réactivité et comportement déterministe.

Modélisation dynamique du système

Afin d'élaborer le modèle dynamique du pendule inversé stabilisé par volant d'inertie, les hypothèses suivantes sont considérées:

• Hypothèse 1: Les masses du pendule et de la roue d'inertie sont considérés comme étant des masses ponctuelles situées à leurs centres de gravité.

• Hypothèse 2: L'étude de la dynamique du pendule inversé est réalisée en négligeant les phénomènes mécaniques liés aux frottements.

• Hypothèse 3: La dynamique du moteur actionneur associé au volant d'inertie n'est pas prise en compte dans la modélisation du système.

Modèle dynamique non linéaire

Le modèle dynamique non linéaire du pendule inversé stabilisé par volant d'inertie est obtenu en appliquant le formalisme de Lagrange [START_REF] Spong | Robot Dynamics and Control[END_REF]. Cette approche nécessite le calcul du Lagrangien en fonction des énergies cinétiques et potentielles des différents composants du système en fonction des coordonnées généralisées. Le Formalisme de Lagrange repose sur l'équation de Lagrange :

d dt ∂L ∂ qi - ∂L ∂q i = Q i (1)
où L = T -V est le Lagrangien, avec T l'énergie cinétique, et V l'énergie potentielle. q i et qi sont les vecteurs de positions et vitesses généralisées. Q i est le vecteur des forces généralisées.

L'application d'un tel formalisme au cas du pendule inversé a conduit au modèle dynamique non linéaire : 

θ1 = 1 I τ 1 -τ 2 + mlg sin θ 1 (2) θ2 = 1 Ii 2 -i 2 τ 1 + (i 2 + I)τ 2 -i 2 mlg sin θ 1 ( 3 
) où I = m 1 l 2 1 + m 2 l 2 2 + i 1 et ml = m 1 l 1 + m 2 l 2 .
(I + i 2 ) θ1 + i 2 θ2 -mlg sin θ 1 = 0 (4) i 2 ( θ1 + θ2 ) = τ 2 (5) 

Modèle linéarisé et représentation d'état

Le pendule inversé stabilisé par volant d'inertie dispose de deux points d'équilibre (cf. figure 3). Le premier est point d'équilibre instable, il correspond à l'état dans lequel le pendule est pointé vers le haut. Ce point d'équilibre est dit instable car en l'absence de couple de commande, le pendule, sous l'effet de la moindre perturbation, est incapable de maintenir cette position indéfiniment. Le deuxième point, quant à lui, correspond à l'état dans lequel le pendule est dirigé vers le bas. En présence d'une perturbation agissant sur le pendule, si l'état du système est dans un voisinage de ce point, il y reste naturellement dans cet état. Ces deux points d'équilibre sont illustré sur la figure 3. Les objectifs de commande qu'on va aborder concerne particulièrement la stabilisation du système autour de son point d'équilibre instable. La linéarisation de la dynamique du système autour de ce point d'équilibre [START_REF] Garabedian | Etude de faisabilité d'un tramway monorail[END_REF] donne le système linéarisé (le couple perturbateur τ 1 est supposé null) :

ẋ = Ax + Bu y = Cx + Du (6) 
avec le vecteur d'état défini par x = [θ 1 θ1 θ2 ] T , les matrices du modèle d'état sont données par :

A =   0 1 0 mlg/I 0 0 -mlg/I 0 0   , B =   0 -1/I (I + i 2 )/i 2 I   , C = [1 0 0] , D = [ 0 ] (7) 
4 Approches de commande proposées

Commande optimale LQ

La commande optimale Linéaire Quadratique [START_REF] Sivan | Linear Optimal Control Systems[END_REF] (LQ ou LQR : 'Linear Quadratic Regulator') consiste en la recherche d'une matrice de gain de retour K, telle que, la commande par retour d'état u = -Kx minimise le critère :

min u(t)∈R m J(u) = 1 2 ∞ 0 [x T (t)Qx(t) + u T (t)Ru(t)]dt (8) Sous ẋ(t) = Ax(t) + Bu(t) (9) 
où Q et R sont des matrices de pondération définies positives. Ce problème LQ dispose d'une solution unique obtenue par l'utilisation des principe d'optimalité [START_REF] Sivan | Linear Optimal Control Systems[END_REF] et donnée par :

u(t) = -R -1 B T P x(t) = -Kx(t) (10) 
où K est le gain de Kalman et P ∈ R n×n est une matrice symétrique définie positive, solution de l'équation algébrique de Riccati :

A T P + P A -P BR -1 B T P + Q = 0 (11) 
L'un des intérêts de la commande optimale LQ consiste à garantir une bonne robustesse vis-à-vis des erreurs. Cependant il n'est pas possible d'imposer a priori les dynamiques en boucles fermées qui correspondent à l'optimalité d'un critère quadratique.

Commande prédictive généralisée GPC

La commande prédictive généralisée [START_REF] Maciejowski | Predictive control with constraints[END_REF] (GPC : Generalized Predictive Control) a été proposée par Clarke en 1987. Elle est capables de traiter plusieurs problèmes de commande pour une large gamme de systèmes.

L'idée de base de la commande GPC consiste à calculer, à chaque instant d'échantillonnage, une séquence de commandes futures de telle manière qu'une fonction coût à différentes variables soit minimisée sur un certain horizon de prédiction. L'indice de performance est généralement une fonction quadratique d'un terme de l'erreur entre la sortie prédite du système et la référence, et un terme de l'effort de commande.

Etant donné que le système à commander est linéaire et que le problème d'optimisation consiste à minimiser une fonction quadratique sans contraintes, par conséquent ce dernier dispose d'une solution analytique. Ceci constitue, entre autres, une spécificité de la commande GPC, outre le fait qu'elle soit compatible avec les systèmes instables ou à non minimum de phase et enfin la notion de glissement d'horizon de commande.

Résultats d'expérimentations

Dans la section précédente, les approches de commande proposées ont été introduites, a savoir la commande optimale LQ et la commande prédictive généralisée GPC. Ces deux approches on été appliquées en temps-réel sur le prototype du pendule inversé stabilisé par volant d'inertie. Les résultats obtenus par application de la deuxième approche seront présentés dans la suite.

Stabilisation par la commande prédictive GPC

La commande prédictive généralisée a été appliquée en temps-réel sur le prototype du pendule inversé stabilisé par volant d'inertie dans le but de sa stabilisation autour de son point d'équilibre instable. Pour cela les quatre scénarios d'expérimentation suivants ont été effectués:

• Cas nominal sans perturbations externes.

• Cas de rejet de perturbations ponctuelles.

• Cas de rejet de perturbations persistantes.

• Cas de combinaison des deux types de perturbations.

Les résultats d'expérimentation obtenus dans ces différents scénarios seront présenter et commenter par la suite.

Cas nominal sans perturbations externes

L'objectif de ce scénario est de stabiliser le pendule inversé à partir de la condition initiale x(0) = [θ 1 (0) θ1 (0) θ2 (0)] T = [18 • 0 0] T . Les paramètres du contrôleur GPC sont fixés à :

• début de l'horizon de prédiction N 1 = 1;

• fin de l'horizon de prédiction N 2 = 40;

• l'horizon de commande N u = 40;

• la pondération sur la commande λ = 40;

• la pondération sur les états Q = I(3, 3).

Les résultats obtenu dans ce cas sont illustrés sur la figure 4. Elle représente l'évolution des états du système, ainsi que l'entrée de commande (couple moteur). 

Cas de combinaison des deux types de perturbations

Dans ce dernier scénario, l'objectifs est de tester la robustesse du contrôleur GPC par rapport au rejet de la combinaison des deux types de perturbations (ponctuelle et persistantes). Les résultats obtenus dans le cas de ce scénario sont resprésentés sur la figure 9 qui montre que, malgré la combinaison des deux types de perturbations, le contrôleur est capable de les compenser et maintenir le système autour de son point d'équilibre.

Conclusion

Dans cet article un démonstrateur de systèmes mécaniques sous-actionnés est présenté. Il s'agit du pendule inversé stabilisé par volant d'inertie qui dispose de deux degrés de liberté et un seul actionneur. Le modèle dynamique Lagrangien du système est non linéaire et sa dynamique interne 
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 12 Figure 1: Vue de la plate-forme expérimentale du pendule inversé stabilisé par volant d'inertie
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 3 Figure 3: Illustration des points d'équilibre du système. (a): point d'équilibre instable, (b): point d'équilibre stable.
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 4 Figure 4: Résultats d'expérimentation de la GPC : cas nominal
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 56 Figure 5: Perturbation ponctuelle
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 7 Figure 7: Résultats d'expérimentation : Cas du rejet de perturbations ponctuelles
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 8 Figure 8: Résultats d'expérimentation : Cas du rejet de perturbations persistantes

  

Table 1 :

 1 Les différentes variables utilisées dans la modélisation sont regroupées dans le tableau 1. Récapitulatif des variables utilisées dans la modélisation Le tableau 2 récapitule l'ensemble des paramètres géométriques et dynamiques du système :

	Variable Description	Unité
	θ1	Position angulaire du pendule		rad
	θ1	Vitesse angulaire du pendule	rad/s
	θ1	Accélération angulaire du pendule	rad/s 2
	θ2	Position angulaire du volant		rad
	θ2	Vitesse angulaire du volant	rad/s
	θ2	Accélération angulaire du volant	rad/s 2
	τ 1	Couple perturbateur		N m
	τ 2	Couple appliqué du volant d'inertie sur le pendule	N m
	Paramètre Description	Valeur	unité
	m 1	Masse du pendule	3.30810	Kg
	m 2	Masse du volant	0.33081	Kg
	l 1	Distance pivot / centre de gravité du pendule	0.06	m
	l 2	Distance pivot / centre de gravité du pendule	0.044	m
	i 1	Moment d'inertie du pendule	0.0314683 Kgm 2
	i 2	Moment d'inertie du volant d'inertie	0.0004176 Kgm 2
	g	Accélération de la pesanteur	9.81	ms -2

Table 2 :

 2 Paramètres géométriques et dynamiques du système

Le couple perturbateur τ 1 est supposé null, la dynamique du pendule peut être réécrite :