N
N

N

HAL

open science

Pi and pid regulation approaches for

performance-constrained adaptive multiprocessor

system-on-chip

Gabriel Marchesan Almeida, Remi Busseuil, Luciano Ost, Florent Bruguier,
Gilles Sassatelli, Pascal Benoit, Lionel Torres, Michel Robert

» To cite this version:

Gabriel Marchesan Almeida, Remi Busseuil, Luciano Ost, Florent Bruguier, Gilles Sassatelli, et al..

Pi and pid regulation approaches for performance-constrained adaptive multiprocessor system-on-
chip. IEEE Embedded Systems Letters, 2011, 3 (3), pp.77-80. 10.1109/LES.2011.2166373 . lirmm-
00725660

HAL Id: lirmm-00725660
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00725660

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00725660
https://hal.archives-ouvertes.fr

PI and PID Regulation Approaches for
Performance-Constrained Adaptive Multiprocessor
System-on-Chip

Gabriel Marchesan Almeida, Student Member, IEEE, Rémi Busseuil, Luciano Ost, Florent Bruguier,
Gilles Sassatelli, Member, IEEE, Pascal Benoit, Member, IEEE, Lionel Torres, and Michel Robert

Abstract—Adaptive multiprocessor systems are appearing as a
promising solution for dealing with complex and unpredictable
scenarios. Given the large variety of possible use cases that these
platforms must support and the resulting workload variability, of-
fline approaches are no longer sufficient because they do not allow
coping with time changing workloads. This letter presents a novel
approach based on the utilization of PI and PID controllers, widely
used in control automation, for optimizing resources utilization
in Multiprocessor System-on-Chip (MPSoC). Several architec-
ture characteristics such as response time during frequency
changing, noise and perturbations are modeled and validated
in a high-level model and results are compared to information
obtained on a homogeneous MPSoC platform prototype. Power
and energy consumption figures are discussed and two controllers
are proposed: 1) PI-; and 2) PID-based controllers. Results show
the system capability of adapting under disturbing conditions
while ensuring application performance constraints and reducing
energy consumption.

Index Terms—Closed loop system, linear feedback control sys-
tems, multiprocessing systems, multitasking, system-on-a-chip.

1. INTRODUCTION

DAPTATION is increasingly regarded as a promising

technique to further optimizing a number of rele-
vant parameters in future embedded systems, such as power
consumption, quality of service, or even reliability. In multipro-
cessor systems, adaptation is often realized through dynamic
task mapping, load balancing. Such techniques increase system
efficiency through better use of processing and communication
resources. These system-level adaptation strategies often rely on
a centralized controller that performs the decision-making, and
applies resulting decisions with typical latencies in the order of
milliseconds. At lower-level, there also exist opportunities such
as dynamic voltage and frequency scaling (DVFS). However,
because of the distributed nature of the targeted systems, DVFS
is either: 1) decided at design-time on a scenario-driven basis
(frequency associated to a given system configuration); or 2)
performed at run-time by means of distributed decision-making

The authors are with Laboratory of Informatics, Robotics, and Microelec-
tronics of Montpellier (LIRMM), University of Montpellier II, Montpellier
34095, France (e-mail: gmalmeida@ieee.org; remi.busseuil@lirmm.fr;
ost@lirmm.fT; florent.bruguier @lirmm.fr; gilles.sassatelli @lirmm.fr;
pascal.benoit@lirmm.fr; lionel.torres @lirmm.fr; michel.robert@lirmm.fr).

strategies as centralized approaches would incur a prohibitive
latency (local monitoring and 2-way communication with the
centralized unit).

DVFES techniques have been used in portable embedded sys-
tems in order to reduce the energy consumption and tempera-
ture of such systems. Most existing DVFS are defined at de-
sign time, where they are typically based on predefined profiling
analysis (e.g., application data) that attempts at defining an op-
timal DVFS configuration [1], [2]. Puschini et al. [3] propose a
scalable multiobjective approach based on game theory, which
adjusts at run-time the frequency of each PE while reducing tile
temperature and maintaining the synchronization between ap-
plication tasks. Due to the dynamic variations in the workload
of these systems and its impact on energy consumption, other
adaptation techniques such as proportional-integral-derivative
(PID)-based control have been used to dynamically scale the
voltage and the frequency of processors [4], [5], and recently,
of networks-on-chip (NoCs) [6], [7]. These techniques differ in
terms of adopted control parameters (e.g., task deadline, temper-
ature) and response times (period necessary to stabilize a new
voltage/frequency). In [5], authors propose an analytic (queue-
domain network) approach that explores the use of a PID con-
troller, which adjusts the multiple clock domain (MCD) pro-
cessor frequency according to the workload change. In turn, Zhu
et al. [5] combine a PID-based controller with a DVS scheduler
in order to make the system adaptive to varying workload, while
reducing the power consumption.

Ogras et al. [6] propose an adaptive control technique for
a multiple clock domain NoC, which considers the dynamic
workload variation aiming at decreasing the power consump-
tion. Besides, the proposed control technique ensures the
operation speed and the frequency limits of each island (clock
domain, defined according to a given temperature). The ef-
fectiveness of the proposed adaptive control technique was
evaluated considering different scenarios (e.g., comparison
with a PID controller) for a MPEG-2 encoder. In [7], a PID
controller is used to provide a predetermined throughput for
multiple voltage-frequency/voltage-clock NoC architectures.
The proposed PID-based controller sets the voltage and fre-
quency of each NoC island by reserving virtual channels
weights (primary control parameter) in order to provide the
necessary throughput for different application communications,
while saving energy. In [8], we have proposed a PID-based
approach for ensuring application performance requirements.
However, only PI components were used and no consideration
about power and energy consumption is taken into account.

P

THROUG.

MONIT. :

qd i

PID CTRL F PID CTRL :

i

!

i

i

THROUG. THROUG. :

MONIT. MONIT. i

.
Fs PID CTRL Fs PID CTRL

SETPOINT

Fig. 1. Architectural overview of the MPSoC platform with PID controllers.

The present letter presents the following contributions:
1) power and energy consumption are considered when tuning
processor frequency; and 2) a Pl-only controller is proposed
and compared to a PID-controller;

The work presented in this letter relies on an open-scale
MPSoC system that has been proposed in [9]. It aims at
devising a smart distributed frequency scaling strategy that
makes it possible to meet real-time application requirements in
the presence of perturbations originated from various sources
among which the application-related time-changing workloads
and especially the continuous adaptation process that the system
undergoes, such as task migrations. This letter is organized
as follows. Section II illustrates the proposed strategy while
Section III discusses experimental results and conclusions are
drawn in Section IV.

II. PROPOSED STRATEGY

Fig. 1 gives an overview of the proposed approach. As it can
be observed, one PID controller is devoted to each task in the
system that must ensure soft-real time constraints. In this ex-
ample, there is one task per network processing unit (NPU), so
one PID controller for each processor is required. In the case
where multiple tasks are executed in the same NPU, a system
with multiple PID controllers in the same NPU could be pro-
posed. In this case, a simple heuristic would choose the highest
frequency calculated by the different PID controllers in order to
avoid deadline misses. The PID controller is implemented as a
service in the operating system and it represents an overhead of
less than 1% in terms of total occupied memory footprint.

Monitoring information such as task throughput is fed into
the PID controller module that will match the actual throughput
with the desired throughput (setpoint) and will then calculate
an error value (e). This e value is used for calculating P, I and
D components and as result the PID controller will indicate a
frequency such as to reach a given setpoint according to reac-
tiveness factor initially set. It is important to observe that the
PID management and calculation is performed at run-time. In
cases where actual throughput is lower than the setpoint, the
PID controller will indicate a frequency superior to the actual
one in order to reach the sefpoint and to satisfy application
performance constraints. On the other hand, when the actual
throughput is much higher than the expected one, the controller
will sign to a lower frequency in order to save platform resources
and consequently energy.

Application: m
’—> P er(t)

erroR»| | K fe@dr
)

X, de(t)
dt

:
i
H
E
outeuT |
-
©
-
.
i
!

2400

2200 -

2000

1800 [

1600 —&— SIMULINK - THROUGHPUT (KB/s)
SIMULINK - FREQUENCY (MHz)

—©&— PLATFORM - THROUGHPUT (KB/s

——— PLATFORM - FREQUENCY (MHz)

——— SETPOINT (KB/s)

#UNITS

1400

1200 [

1000 {{
800

600 - 4

i

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
TIME (s)

400G
0

Fig. 2. System behavior—simulink versus MPSoC platform.

The proposed strategy consists in deciding controller compo-
nents on a task basis. To this purpose, a SystemC/TLM-based
MPSoC simulation is executed in order to obtain the step-re-
sponse of the process (see right box in Fig. 1) which corresponds
to the NPU executing the task it hosts. In this scenario, pro-
cessor frequency is changed from 55 MHz to 1005 MHz and
task throughput is monitored. The system is linear, that means
the system’s behavior remains the same under such frequency
change. Based on the high-level model, a number of different
configurations of controllers can be explored. Each one exhibits
different features such as speed, overshoot and static error. Once
the process is modeled, PID components are fine tuned by using
Simulink and the values of P, I and D are fed as input to the
MPSoC platform. Fig. 2 presents the cycle-accurate simulation
results showing both high-level model and platform behaviors.
It is important to observe a very close match between the two
models. In this scenario a PI-based model was used and compo-
nents have been set to P = 478 and I = 211, 118.

Fig. 3 illustrates the network processing unit represented in a
high-level model. The system is mainly composed of:

1) process: represented by the DISCRETE FILTER in Fig. 3. It
characterizes the system behavior based on the step-re-
sponse process previously described;

2) noise generator: it represents system throughput variations
of a given application;

FREQUENCY_SCOPE

4»

ERROR

GENERATOR

NOISE PERTURBATION

GENERATOR

THROUGHPUT SCOPE

A

///7 \\\\ G_lin ™ (1-exp(-Te/tau))(z
+ P PID >

SETPOINT STEP = DISCRETE PID CONTRQLLE

—

DISCRETE FILTER

—

frequency_out

h 4

ERROR SCOPE IDEAL FREQUENCY

t—Pithroughput_out_wn

THROUGHPUT

*'*b\hvoughput out_won

THROUGHPUT WO NOISE

Fig. 3. High-level model of a network processing unit with PID controller, system characterization, and perturbation generator.

TABLE I
REPRESENTATION OF THREE DIFFERENT PERTURBATION SCENARIOS WITH
THEIR RESPECTIVE IMPACT

Average Average
c Perturb. Processor | Through. Thr(?u gh. Impact
ase Level Frequency Before After Factor
(MHz) Perturb. Perturb.
(KB/s) (KB/s)
P1 low 425 1,050 610 42%
P2 | medium 425 1,050 540 49%
P3 high 425 1,050 440 58%

3) nerturbation generator: it reproduces the system behavior
in the occurrence of perturbation in the system such as task
migration, application’s workload changes, etc;

4) PID controller: represented by the DISCRETE PID CON-
TROLLER in Fig. 3. It symbolizes both PI and PID con-
trollers used for tuning processor frequency according to
application constraints.

In the perturbation scenario, an application task is mi-
grated from a different processor generating a perturbation in
the system. Once our operating system is implemented in a
thread-based way where CPU processing resources are shared
among applications, whenever there is a new task running on
it, the task will consume CPU power and then the applica-
tion performance of the tasks previously running on it will
decrease. The process modeling is composed of three steps: 1)
perturbation scenario is implemented and validated in a real
platform and performance figures are obtained; 2) based on this
information, platform behaviors are modeled in a high-level
model and perturbation amplitude in terms of performance
are considered; and the last step consists in 3) matching both
high-level model results in order to calibrate and fine adjust
high-level model components.

III. CASE STUDY AND RESULTS

The following scenarios are based on a MJPEG video decoder
application composed of five tasks running on a processor and
a different application (a synthetic application implemented in
such way that it requires a considerable amount of processing
power) is migrated to the processor, disturbing the MJPEG ap-
plication performance. Three different perturbation scenarios
(P1, P2 and P3) are created based on different perturbation fac-
tors defined respectively as follows: 1) low; 2) medium; and 3)
high, represented in Table I.

PERTURBATION REPRESENTATION (Pl vs NO PI)
1800 T T

—o6— THROUGHPUT - PI (KB/s)
—&— THROUGHPUT - NO PI (KB/s)
FREQUENCY - PI (MHz)
——— FREQUENCY - NO PI (MHz)
—— SETPOINT (KBJs) §
PERTURBATION START
PERTURBATION END

1600

1400 -

1200

1000

#UNITS

8 i :
0 0102030405060.70809 1 1.112131415161.71.819 2 2122
TIME (s)

Fig. 4. Perturbation representation—PI versus no PI.

Fig. 4 depicts the system response under perturbation con-
dition (P3). Application performance is analyzed for two
approaches: 1) no adaptation is done and processor frequency
keeps constant; and 2) processor frequency is tuned at real-time
according to PID controller output values. The perturbation
is configured as follows: 1) perturbation start: 300 ms; 2)
perturbation period: 700 ms; and 3) application performance
impact factor: 58%.

Itis possible to observe that when there is no PI controller, the
task throughput is reduced to approximately 440 KB/s during
the perturbation period. If we consider soft-real time applica-
tions where performance constraints must be ensured, this sce-
nario could imply on, for instance, freezing a video during the
decoding process or having frame losses during the perturbation
period. By adopting our proposed strategy it is possible to no-
tice that the PI controller takes only 100 ms to react and reach
the initial setpoint, that represents the minimal performance re-
quirements of a given application. When perturbation is over,
we can clearly observe that task throughput increases due to the
fact that the processor is running in a high frequency in order to
compensate the previous existing perturbation. Thus, the PI con-
troller starts decreasing the processor frequency in order to save
platform resources, getting back close to the initial setpoint.

In Table II, the application performance considering three
different perturbation scenarios is presented. For each scenario
we have analyzed three different configurations: 1) no PI-/PID-

TABLE II
APPLICATION PERFORMANCE FOR THREE DIFFERENT SCENARIOS

Max. Min. Aver. Max. Min. Aver.

Case | Version Thr. Thr. Thr. Freq. | Freq. Freq.
(KB/s) | (KB/s) | (KB/s) | (MHz)| (MHz)| (MHz)

No PID | 1,756 | 1,011 | 1,416 710 710 710

S1 Pl 1,317 726 1,000 716 392 497

PID 1,301 766 1, 000 731 369 198

No PID | 2,040 | 1,047 | 1,548 800 800 800

S2 PI 1,451 693 1,000 | 809 370 523

PID 1,440 685 1,000 | 834 336 523

No PID | 2,440 979 1,675 | 980 980 980

S3 PI 1,727 599 1,000 | 980 334 567

PID 1,752 609 1,000 | 1005 282 583

TABLE III

NETWORK PROCESSING UNIT (NPU) POWER CONSUMPTION USING
STMICROELECTRONICS DESIGN KIT FOR 65 NM TECHNOLOGY

Librar Voltage | Static Power Dynamic Frequency
Y (V) (mW) Power (mW) | (MHz)
Nominal 1 0.14 7.46 50

based controller is used and processor frequency keeps con-
stant; 2) PI- and; 3) PID-based controllers are implemented.
We can observe that in scenario S3, where perturbation im-
pact factor is higher, the average task throughput when using
PI-/PID-based controllers is of 1,000 KB/s, resulting on get-
ting the desired performance, represented by the setpoint. When
using the approach that does not apply PI-/PID-based controller,
we can observe that the average throughput is of 1,675 KB/s,
representing a waste of platform resources. This is due to the
fact that it is necessary to configure the processor to run in a
higher frequency to be capable of dealing with scenarios under
perturbation conditions. The metric used for choosing the pro-
cessor frequency consists in selecting the lowest possible fre-
quency where processor can guarantee soft real-time applica-
tion requirements under perturbation conditions.

In order to obtain the network processing unit power con-
sumption as precisely as possible, we have synthesized the pro-
cessor on a 65 nm CMOS technology. The design kit is pro-
vided by STMicroelectronics and two libraries are used: high
voltage threshold (HVT) is used on the critical path of the cir-
cuit and low VT (LVT) is used on the remaining of the circuit.
The power consumption measurements were obtained from an
execution of an embedded operating system’s boot loader on a
processor running at 50 MHz. Note that, the memory consump-
tion is not considered due to the fact that its operating frequency
does not change with the processor frequency. The network pro-
cessing unit power consumption is presented in Table III.

Table IV presents the power and energy consumption for
three different perturbation scenarios. We can clearly see
that power and energy consumption are significantly reduced
when using PI- and PID-based controllers. In S1, the energy
consumption is reduced by 32% while power consumption
is reduced by 42% in S3. It is important to observe that the
energy/power consumption saving can be much higher in
scenarios with longer perturbation periods and where impact
factor of perturbations over applications is higher. We empha-
size that by using our proposed approach it is possible not only

TABLE IV
NPU POWER AND ENERGY CONSUMPTION REPRESENTATION FOR THREE
DIFFERENT SCENARIOS USING 65 NM TECHNOLOGY

. } Dynamic Total) Energy Time
Case | Version Power Power mJ) (s)
(mW) (mW)
No PID 295.50 295.64 802.10
S1 PI 206.90 207.04 545.10
PID 207.10 207.24 545.70
No PID 333.00 333.14 903.80
52 PI 217.70 217.84 573.70 2.56
PID 217.90 218.04 574.10
No PID 407.90 408.04 1,107.10
S3 PI 236.00 236.14 620.70
PID 242.90 243.04 638.70

complying with application performance constraints and saving
energy/power but also it is possible to reduce waste of platform
resources in order to reach an optimal solution.

IV. CONCLUSION

This letter has presented a novel approach based on the
utilization of PID controllers for energy consumption reduc-
tion while ensuring application performance constraints. The
strategy does not rely only on preventing application dead-
line-misses but also attempts to save energy, once the processor
frequency is adjusted at real-time according to application re-
quirements. We claim that our approach can be easily integrated
to linear systems and, as result, platform resources utilization
can be optimized. Moreover, by using PID controllers it is
possible to save up to 42% in terms of power by tuning pro-
cessor frequency according to application needs. The letter
also presents: 1) PI- and; 2) PID-based controllers. As can be
observed, PID-controllers are intended to react faster under
disturbing conditions when compared to PI-only controllers,
however its power consumption is higher. The good choice
of which controller to use in multiprocessor system-on-chip
platforms will be a trade-off between power consumption and
the desired system’s reactiveness.

REFERENCES

[1] G. Magklis et al., “Profile-based dynamic voltage and frequency
scaling for a multiple clock domain microprocessor,” SIGARCH
Comput. Archit. News, vol. 31, pp. 14-27, May 2003.

[2] F. Xie et al., “Compile-time dynamic voltage scaling settings: Oppor-
tunities and limits,” SIGPLAN Not., vol. 38, pp. 49-62, May 2003.

[3] D. Puschini et al., “A game-theoretic approach for run-time distributed
optimization on MP-SoC,” Int. J. Reconfig. Comput., 2008.

[4] Q. Wu et al., “Formal online methods for voltage/frequency control in
multiple clock domain microprocessors,” SIGARCH Comput. Archit.
News, vol. 32, pp. 248-259, Oct. 2004.

[5] Y. Zhu and F. Mueller, “Feedback edf scheduling exploiting hardwar-
eassisted asynchronous dynamic voltage scaling,” SIGPLAN Not., vol.
40, pp. 203-212, Jun. 2005.

[6] U. Y. Ogras et al., “Variation-adaptive feedback control for net-
works-on-chip with multiple clock domains,” in Proc. 45th Annu. Des.
Autom. Conf. (DAC’08), Jun. 2008, pp. 614-619.

[7]1 A. Sharifi et al., “Feedback control for providing qos in NoC based
multicores,” in Proc. Conf. Des., Autom. Test Eur. (DATE’10), Mar.
2010, pp. 1384-1389.

[8] G. M. Almeida et al., “Predictive dynamic frequency scaling for
multi-processor systems-on-chip),” in IEEE Int. Symp. Circuit. Syst.
(ISCAS’2011), May 2011.

[9] G. M. Almeida et al., “An adaptive message passing MPSoC frame-
work,” Int. J. Reconfig. Comput., Oct. 2009.

