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COMBINATORICS OF DISTANCE-BASED TREE INFERENCE

FABIO PARDI, OLIVIER GASCUEL

Abstract. Several popular methods for phylogenetic inference (or hierarchical clustering) are based
on a matrix of pairwise distances between taxa (or any kind of objects): the objective is to construct
a tree with branch lengths so that the distances between the leaves in that tree are as close as possible
to the input distances. If we hold the structure (topology) of the tree fixed, in some relevant cases
(e.g. ordinary least squares) the optimal values for the branch lengths can be expressed using simple
combinatorial formulae. Here we define a general form for these formulae and show that they all have
two desirable properties: first, the common tree reconstruction approaches (least squares, minimum
evolution), when used in combination with these formulae, are guaranteed to infer the correct tree
when given enough data (consistency); second, the branch lengths of all the simple (nearest neighbor
interchange) rearrangements of a tree can be calculated, optimally, in quadratic time in the size of
the tree, thus allowing the efficient application of hill climbing heuristics. The study presented here
is a continuation of that by Mihaescu and Pachter on branch length estimation (Mihaescu R, Pachter
L (2008) Proc Natl Acad Sci USA 105:13206-13211). The focus here is on the inference of the tree
itself, and on providing a basis for novel algorithms to reconstruct trees from distances.

Introduction

A task with several relevant applications is the use of a matrix of distances to construct a tree whose
leaves’ relative positions somehow reflect the given distances. This is useful both in evolutionary
biology, where the tree is intended to represent the evolution of a set of species, populations or genes,
and in cluster analysis, where the tree shows the similarities in a collection of objects. In evolutionary
biology, the distances are typically estimated from molecular sequences using probabilistic models of
sequence evolution [1, 2]. The resulting distances can be expected to be approximately additive; that
is, there exists a (phylogenetic) tree with branch lengths, so that the lengths of the paths between
its leaves (sequences) are approximately equal to the input distances. Finding this tree is the goal of
several popular distance-based tree reconstruction methods.

For phylogenetic reconstruction — which this paper concentrates on — the main advantage of distance-
based methods is their speed of execution, which is orders of magnitude faster than that of other
(potentially more accurate) approaches. As a consequence, distance methods are used whenever com-
putational efficiency is of critical importance: for the reconstruction of very large trees, or — as in the
case of bootstrapping — large collections of trees, or even to construct initial phylogenies for search
heuristics based on more sophisticated approaches. In fact, a general trend in bioinformatics and com-
putational biology is the growing demand for methods that can cope with massive datasets of DNA
sequences. Distance-based methods are a possible answer to this demand, not only for phylogenetic
inference, but also for related tasks such as sequence identification (e.g. in metagenomics) and gene
orthology inference (e.g. in functional genomics). A proof of this demand is the continuing success of
neighbor-joining (NJ) [3], which to-date remains the most cited algorithm in phylogenetics.

The advantage in speed of distance methods is counterbalanced by a lower accuracy than methods
that take full sequence information into account [4], such as maximum likelihood (ML), although it
has recently been shown that under a certain measure of statistical efficiency, some distance methods
are essentially as good as ML [5]. A limitation of distance-based methods lies in the fact that if the
distances are estimated from pairwise sequence comparisons only, then it may be impossible to infer
some parameters common to the evolution of all the sequences [6]. However, it is still possible to
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estimate these parameters from limited sequence samples by ML, and then use distance methods for
the whole sample.

If we consider the estimation of distances as a separate task, virtually all distance methods are based
on two components, corresponding to the two main unknowns in a phylogenetic tree: branch lengths
and topology. First, (i) we must define a method to assign lengths to the branches of any tree of fixed
topology, so that the distances between leaves are as close as possible to the input distances. Second,
(ii) we must choose a criterion to discriminate among the trees with different topologies obtained with
the step above. Distance-based algorithms then look for the tree that optimizes this criterion, typically
using heuristics such as successive agglomeration (e.g. NJ [3]) and hill climbing (e.g. FastME [7]).

For component (i), a weighted least squares (WLS) approach is usually adopted: the lengths of the
branches in a tree T are set to the values that minimize

(1)
∑

i,j

wij(δij − dTij)
2,

where the δij are the distance estimates, the dTij are the distances between the leaves of T , determined
by the lengths assigned to its branches, and the weights wij > 0 are intended to account for the
variances of the δij : the higher the variance, the lower the weight and the importance given to the
corresponding residual δij − dTij . Ideally, wij should be proportional to Var[δij ]

−1 (see Relationship
with WLS and the M&P formulae below), but in practice setting the weights is a delicate art, because
the variances are not known; for example, one trap to avoid is to assume zero variance (and therefore
an infinite weight) for the distance between two identical sequences [8]. An even more ideal approach
would be to also consider the covariances between distances for different pairs of taxa, which leads a
generalized least squares (GLS) optimization criterion [9]. The optimal branch lengths with respect to
(1), and even GLS, can be expressed succinctly in matrix form. However, despite some progress [10],
the matrix calculations involved are computationally expensive and remain a limiting factor for the
efficiency of the algorithms that use them (such as those implemented in PAUP* [11]).

As for component (ii), distance methods fall into two broad categories: (pure) least squares (LS)
methods [12, 13] use again a least squares criterion such as (1) to score trees; on the other hand,
minimum evolution (ME) methods [14, 15] aim to find the tree with minimum total length (which can
be defined in a number of different ways [14, 15, 8], see Statistical consistency for details), among those
whose branch lengths are fitted with component (i). The intuition underlying ME is the same as that
of maximum parsimony for character-based tree reconstruction: simpler (i.e. shorter) explanations are
preferable to more complicated ones.

An important realization has been that in some relevant cases the branch lengths that minimize (1)
can be expressed using simple “combinatorial” formulae, which allow to avoid slow matrix calculations.
The best-known cases are that with constant weights wij (ordinary least squares, OLS) [16, 17] and
that with weights proportional to 2−tij , where tij is the number of branches in the path between i
and j in T (the balanced case) [18]. These formulae allow to efficiently calculate branch lengths and
to efficiently update the tree length while performing a local search for the optimal tree with respect
to ME. For example, the balanced branch length formulae [19] can be used to calculate in O(n2) time,
for any tree with n leaves, not only all its branch lengths, but also the total lengths of all of its NNI
(nearest neighbor interchange) [7] and SPR (subtree pruning and regrafting) rearrangements [20, 21].

A key work on such combinatorial formulae for least squares branch lengths has appeared recently
[22]. The authors show that all the known formulae are particular cases of a more general framework:
whenever the weights wij (or, equivalently, the assumed variances w−1

ij ) have a particular “multiplica-

tive” form (see Relationship with WLS and the M&P formulae), then the optimal branch lengths with
respect to (1) can be calculated using simple formulae — such as those for OLS or the balanced case
— which here we refer to as the M&P formulae (from the authors Mihaescu and Pachter or the word
“multiplicative”). The multiplicative model is biologically and mathematically meaningful, as it can be
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shown that the variances of the distance estimates are approximately multiplicative for large distances
[23, 9, 22].

In the following, we use the seminal work by Mihaescu and Pachter [22] as a starting point. Whereas
these authors focused on the problem of branch length estimation, here we switch the focus to tree
reconstruction itself — namely the statistical and algorithmic consequences of the use of combinatorial
branch length formulae on tree reconstruction. Our results can be summarized as follows:

(1) We define a class of formulae for fitting branch lengths that generalizes the M&P formulae and
consequently also all known combinatorial formulae.

(2) We prove the statistical consistency of the main distance-based tree reconstruction principles
(LS and ME), when combined with our formulae. In other words the optimal tree with respect
to any of these principles converges to the correct tree as the input data become more and
more abundant and the estimated distances converge to their correct values. Particularly in
the case of ME, where it is problematic, this issue has received much attention (e.g., [17, 24,
25, 26, 27, 21]). This addresses the question by Mihaescu and Pachter ([22], p.13211) of “what
classes of semimultiplicative [a minor generalization of multiplicative] variance matrices result
in consistent tree estimates”, by showing that all multiplicative variance matrices have this
property.

(3) We investigate the computational efficiency of local search heuristics in combination with our
class of formulae. In particular, we describe an algorithm that calculates the branch lengths
determined by the adopted formulae not only for a fixed tree T , but also for all trees obtained
by performing one NNI on T . The entire calculation optimally requires O(n2) time. This
algorithm can be used as the basic component for local searches, and can be combined with
any classic tree reconstruction principle.

Preliminaries: Branch length formulae

We employ the standard terminology used in the phylogenetics literature [4, 28] (phylogenetic tree,
topology, branch lengths, internal and external branches etc.). For simplicity, we identify the leaves
of a phylogenetic tree with a set of taxa {1, 2, . . . , n} and we choose to consider only binary trees.
We say that two subsets of taxa A and B in a tree are separated by a branch e if any path between
an element of A and an element of B passes through e. A and B are k-separated when they are
separated by exactly k distinct branches. A proper subset of taxa A ! {1, 2, . . . , n} is a clade if A and
{1, 2, . . . , n} \ A are separated by some branch e; in fact, e is unique and is called the root branch of
A; the endpoint of e to the side of A is called the root node of A. A branch belongs to clade A if it lies
in the path between two elements of A.

We also adopt the following standard conventions for distance-based methods: δ denotes the n × n
input distance matrix and δij its element expressing the distance between taxa i and j (in the following,
indices i and j are always assumed to be elements of the set of taxa {1, 2, . . . , n}). The distances do
not necessarily form a metric, as only δij = δji and δii = 0 are assumed. Given a tree T with branch

lengths, dT denotes the distance matrix where dTij coincides with the length of the path between i and

j in T . When δ = d
T for some T , we say that δ is additive (with respect to T ) [29].

In the rest of this section, we introduce a new class of formulae that express the branch lengths of a
generic topology T over {1, 2, . . . , n} as a function of δ. This class is parameterized by some quantities
that we present using a probabilistic interpretation (see SI Appendix 1 for more details). Let T be a
binary tree topology. Assume that the rules for a random walk on T are defined in the following way:
if we enter an internal node from a branch e, we can then exit this node from its two other adjacent
branches, f and g, with probabilities γef and γeg = 1− γef , respectively. We require 0 < γef , γeg < 1
(note the strict inequalities). These parameters define a (non-zero) probability of reaching any branch
of T from any other branch of T .
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Figure 1. Standard naming of clades and branches when (a) e is external, and (b) e
is internal. (c) An NNI-neighbor (around e) of the tree in (b).
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This also defines a probability distribution over the leaves of any clade A: for any i ∈ A, let pi|A =
γe0e1 · γe1e2 · . . . · γek−1ek , where e0 is the root branch of A and e1, e2, . . . , ek are the branches on the
path between the root of A and i. (See SI Appendix 1 for a figure illustrating this.) Clearly, the
probabilities {pi|A | i ∈ A} form a distribution over A. We can then define the average distance δAB

between any two clades A and B as the expected distance between two taxa chosen at random from
A and B according to the distributions defined above:

δAB =
∑

i∈A

j∈B

pi|Apj|Bδij .

Note that the δAB so defined depend on the γef parameters, as well as on the underlying topology T ,
but for simplicity we do not indicate this in the chosen formalism. Also note that δAB = δBA. For
simplicity, we write δiA (or δAi) instead of δ{i}A.

In addition to the γef probabilities defined for each pair of adjacent branches (e, f), we introduce a
parameter λXY for each unordered pair {X,Y } of 3-separated clades in T (recall the definition of k-
separated clades above). We constrain these parameters so that, for every internal branch separating
clades A = A1 ∪ A2 and B = B1 ∪ B2 (see Fig. 1(b)), λA1B1

= λA2B2
> 0, λA1B2

= λA2B1
> 0

and λA1B1
+ λA1B2

= 1, meaning that only one parameter among λA1B1
, λA2B2

, λA1B2
and λA2B1

determines all the others. A possible interpretation for λXY is as the probability of drawing T so that
X and Y are consecutive in a clockwise ordering of the taxa (which explains why λA1B1

= λA2B2
,

λA1B2
= λA2B1

and λA1B1
+ λA1B2

= 1; see SI Appendix 1 for details).

In summary, we have three free parameters per internal node of T (γef , γfg and γge determine γeg, γfe
and γgf ) and one free parameter per internal branch (λA1B1

determines λA2B2
,λA1B2

and λA2B1
).

These parameters determine a set of formulae to estimate the length ℓ̂e of any branch in T :

(γT ,λT )-formulae. Let the vectors γT = (γef ) and λT = (λXY ) be defined for binary topology T ,
under the constraints described above. Then, for any branch e in T :

ℓ̂e(δ) =

{

1
2 (δiA + δiB − δAB) if e is external,
1
2 [λA1B1

(δA1B1
+ δA2B2

) + (1− λA1B1
)(δA1B2

+ δA2B1
)− δA1A2

− δB1B2
] if e is internal,

where, if e is external, we define A, B, i as in Fig. 1(a) and, if e is internal, we define A1, A2, B1,
B2 as in Fig. 1(b).

Note that because λA1B2
= λA2B1

= 1 − λA1B1
= 1 − λA2B2

, the formula above for internal branch
lengths is (as desired) independent of how we assign names A1, A2 to the two subclades of A = A1∪A2,
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and how we assign B1, B2 to the two subclades of B = B1 ∪ B2. An interpretation of the (γT ,λT )-
formulae as averages of simpler formulae is given in SI Appendix 1.

These formulae are a generalization of all the combinatorial formulae proposed in the past to fit the
branch lengths of a tree of fixed topology. In particular, the OLS branch lengths [16, 17] can be obtained

by setting λA1B1
= |A1||B2|+|A2||B1|

|A||B| (same clade naming as above), and by setting γef = |A1|
|A1|+|A2|

, for

every pair of adjacent branches e and f in the configuration of Fig. 1(b). Note that the γef parameters
thus defined ensure that {pi|X | i ∈ X} is uniform for any clade X (in fact the word “unweighted”
is often associated to OLS). Similarly, the balanced branch lengths [19] at the basis of the balanced
minimum evolution principle [7, 18, 30] are obtained by setting all parameters to 1

2 . The next section

shows that the (γT ,λT )-formulae also generalize the M&P formulae by Mihaescu and Pachter [22]. It

is easy to see that the (γT ,λT )-formulae still satisfy the independence of irrelevant pairs (IIP) property
introduced by those authors [22] as a basic requirement for their formulae.

Finally, we show that the (γT ,λT )-formulae above are correct, that is, they calculate the correct
values of the branch lengths of any given tree whenever the distances are additive with respect to that
tree (proof in SI Appendix 1). Naturally, because the input distances are only estimates of the real
evolutionary distances, they are usually only approximately additive. However, this property is an
important prerequisite of any branch length formula, as it ensures the statistical consistency of the
branch lengths assigned to the correct topology (see Statistical consistency below).

Theorem 1. Let T be a binary topology. For any given branch e in T , assign length ℓe to e, and

let δ be additive with respect to the resulting tree. Let ℓ̂e(δ) be the length that is assigned to e by a

(γT ,λT )-formula. Then, ℓ̂e(δ) = ℓe.

Relationship with WLS and the M&P formulae

The choice of the weights in (1) is a key factor for the accuracy of least squares tree estimates. The
weights wij should be proportional to Var[δij ]

−1, as this implies that the branch lengths that minimize
(1) have minimum variance among all linear unbiased estimators of the branch lengths (under the
assumption that the distance estimates are unbiased and uncorrelated for different pairs of taxa) [31].
In this section, we consider the case where the weights (and therefore the assumed variances) are
“multiplicative”: given a tree topology T and a collection of weights w = (wij) associated to pairs
of taxa in T , we say that these weights are multiplicative with respect to T , if we can assign to each
branch e of T a weight we > 0, so that, for every pair of taxa i and j, wij =

∏

e∈Pij(T ) we, where

Pij(T ) denotes the set of branches in the path between i and j in T . This condition generalizes several
well-known cases: that of constant weights (coinciding with OLS and obtained by setting we to 1 for
internal branches and to a constant for external ones), that of taxon-specific weights [26] (obtained
like for OLS but with we free to vary for external branches) and also that of weights exponentially
related to the number of branches separating each pair of taxa (which, when the base of the exponent
is b = 1/2, coincide with the balanced weights [19] and are obtained by setting we = b for internal
branches and to a constant for external ones).

Mihaescu and Pachter [22] have shown that if the assumed weights w are multiplicative with respect to
T , then the optimal branch lengths of T with respect to the WLS criterion (1) are given by their M&P
formulae. We refer to SI Appendix 2 for a description of these formulae. The following theorem shows
that the class of the M&P formulae is contained in that of the (γT ,λT )-formulae and, conversely, it

characterizes the values of γT and λT corresponding to M&P formulae.

Theorem 2. Let T be a binary topology. (i) Given any w multiplicative w.r.t. T , the corresponding

M&P formulae are also (γT ,λT )-formulae for some choice of γT and λT satisfying the properties P1

and P2 below. (ii) Given any γT and λT satisfying the properties P1 and P2 below, the corresponding

(γT ,λT )-formulae are also M&P formulae for some choice of w, multiplicative w.r.t. T .
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P1. For every internal node of T , if e, f and g are the three branches incident to it, then

γefγfgγge = (1 − γef )(1 − γfg)(1 − γge).

P2. For every pair of clades A and B separated in T by three branches a, e and b (with a being the
root branch of A, and b being the root branch of B), λAB = γea + γeb − 2γeaγeb.

Theorem 2, proved in SI Appendix 2, not only shows that the M&P formulae are particular types
of (γT ,λT )-formulae, but it also provides an alternative set of parameters to represent the M&P
formulae: instead of the branch-associated weights we, one can use a set of γef parameters satisfying
P1. This condition implies that any of γef , γfg and γge can be determined from the other two and P2
implies that all the λXY parameters are determined by the γef parameters. This reduces the number

of free parameters needed to describe the (γT ,λT )-formulae that are also M&P formulae to 2 per
internal node, that is 2n − 4. This is exactly one less than the 2n − 3 branch-associated parameters
we describing multiplicative weightings, which corresponds to the fact that multiplying all the we for
external branches by any positive constant results in equivalent weightings with respect to (1).

Theorem 2 establishes that the (γT ,λT )-formulae have enough “expressive power” to optimize the
least squares criterion (1), when the weights are multiplicative. It is therefore important to discuss
this assumption. First, multiplicative weights generalize the balanced weights, which have been ex-
perimentally demonstrated to behave well in combination with ME [18, 32]. Second, in the case of
distances estimated from molecular sequences, we note that for many models of sequence evolution
(for instance Jukes-Cantor [33]; see Chapter 13 in [4] or Appendix B in [2] for the general technique),
the variance of δij can be approximated by a function of the correct evolutionary distance dij that, for
small values of dij , behaves as a linear function of dij , and, for moderate-to-large dij , as an exponen-
tial of dij . This means that, for pairs of taxa separated by small dij , the variances of their distance
estimates will tend to be additive, whereas for pairs of taxa separated by moderate-to-large dij , the
variances will tend to be multiplicative. The additive model for the variances [34], or its variant with
variances proportional to d2ij [13], are used in practice with δij in place of dij , as the latter is unknown.
As a result, these approaches need some precautions for very small distance estimates, so as to avoid
an overconfidence in these estimates (for δij tending to 0, also the assumed variance tends to 0, and
wij tends to infinity): for example, one possibility is to add pseudocounts to the numbers of observed
differences between sequences [8] (known as “Laplace smoothing”). In this context, the multiplicative
model provides a simple and robust alternative for small distances (for δij → 0, the assumed variance
tends to a constant), and is mathematically justified for moderate-to-large distances.

The other important assumption here, common to all WLS methods, is that the δij are uncorrelated for
different pairs of taxa, which is clearly not true for distances estimated from molecular sequences [9].
As mentioned above, covariances between different distance estimates can be accounted for by adopting
a GLS criterion. However, setting the covariances and calculating the resulting branch lengths [10] are
difficult problems, which explains the lack (to the best of our knowledge) of practical implementations
of GLS for phylogenetic reconstruction.

Statistical consistency

A method for phylogenetic inference is said to be (statistically) consistent if the probability that
it reconstructs the correct tree (within any given accuracy) converges to 1 as more and more data
are analyzed. For distance-based methods, the consistency of tree inference usually depends in turn
on the consistency of the distance estimates, that is, the assumption that δ converges to a matrix
d
T containing the distances in the correct phylogenetic tree for the taxa under consideration. Even

though in reality the precise consistency of distance estimates cannot be expected to hold — because
the models used to obtain these estimates are only approximations of reality — the ability to infer the
correct tree in such a best-case scenario is an essential property of any phylogenetic inference method:
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it is a prerequisite for robust inference of the correct topology with real distance estimates, subject to
sampling errors and not perfectly consistent [24, 35, 36].

In this section, we state our main results on the statistical consistency of the tree reconstruction
methods using the (γT ,λT )-formulae. We leave the proofs to SI Appendix 3. We assume that, for any
binary topology T over the taxa of interest {1, 2, . . . , n}, a collection of parameters γT = (γef ) and

λT = (λXY ) is defined, thus defining in turn, for any such T , a set of (γT ,λT )-formulae for estimating
the branch lengths of T . We call this a branch length estimation scheme based on (γ,λ)-formulae.
(Note the absence of superscript.) We stress that, for the consistency results here, no connection

between (γT ,λT ) and (γT ′

,λT ′

) for different topologies T and T ′ needs to be assumed; in other
words, completely unrelated formulae can be used for any pair of topologies.

Now combine a branch length estimation scheme with an optimization principle, such as LS or ME,
that allows us to choose among all the topologically-distinct fitted trees over {1, 2, . . . , n}. We have
already described LS (but also see SI Appendix 3). As for ME, three variants of this principle have
been proposed, essentially differing for how tree length is defined in the presence of negative branch
lengths (which are allowed by many branch length estimation schemes, including those based on
(γ,λ)-formulae). We call them ME−1 [14], ME+1 [15, 37], and ME0 [8]. Assuming that a tree has

been assigned the branch lengths ℓ̂e, MEi defines its length as
∑

e:ℓe>0

ℓ̂e +
∑

e:ℓe<0

i · ℓ̂e.

The three versions of ME then differ in how they deal with negative branch lengths when calculating
tree length: ME+1 adds together all branch lengths irrespective of their sign, whereas ME0 ignores
negative branch lengths and ME−1 takes their absolute value. Gascuel et al. [25] previously named
ME+1, ME0 and ME−1, “all-BL”, “positive-BL” and “absolute-BL”, respectively. The following theorem

shows that for these three versions of ME, as well as for LS, tree inference is consistent when (γT ,λT )-
formulae are used.

Theorem 3. Assume that the input distances δ are consistent estimates of the correct evolutionary

distances dT∗

, where T ∗ is a binary tree with positive branch lengths. Adopt a branch length estimation
scheme based on (γ,λ)-formulae. Then, the optimal trees with respect to LS, ME+1, ME0 and ME−1

are statistically consistent estimates of T ∗.

Whereas the consistency of LS is a simple consequence of the correctness of the (γT ,λT )-formulae, and
is included here for sake of completeness, the result for ME is somewhat surprising, given that ME has
been proven to be inconsistent when combined with WLS branch lengths (for some particular values
of the weights wij) [25]. Furthermore, Theorem 3 generalizes all previously known cases of consistency
for the ME principle [17, 26, 18]. In particular, it demonstrates the statistical consistency of tree
reconstruction when using the formulae by Mihaescu and Pachter, thus answering their fundamental
question mentioned in the Introduction.

Computational efficiency

While the statistical consistency results above provide a theoretical basis for the use of (γT ,λT )-
formulae, we now consider a more practical advantage of these formulae: the fact that they can be
efficiently combined with hill climbing heuristics, a pervasive and successful tool for tree reconstruction.
Hill climbing consists of repeatedly applying small changes that improve the score of a candidate tree,
until no such change is possible anymore. The behavior of hill climbing is essentially determined by the
changes allowed at each step, or in other words by a notion of neighborhood defined over tree space.
Here, we consider the simplest such changes, known as nearest neighbor interchanges (NNIs), which
consist of swapping the positions of two 3-separated subtrees in a topology: for example, the topology
in Fig. 1(c) can be obtained from that in Fig. 1(b) by swapping clades A1 and B1. When topology
T ′ can be obtained from topology T in this way, we say that T and T ′ are NNI-neighbors. An NNI
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transforming T into T ′ is around e, if e is the middle branch among the three branches separating the
subtrees being swapped in T . While simple, NNIs can be used to efficiently implement more complex
changes (such as SPRs) that can be obtained via a series of NNIs [28, 21].

Clearly, the computational efficiency of a hill climbing heuristic depends crucially on the ability to
efficiently evaluate some/all neighbors of any candidate topology. For all distance-based optimization
principles, the evaluation is essentially done on the basis of some function of the assigned branch
lengths. It is then important to calculate efficiently the branch lengths of the neighbors that are
considered at each iteration. Here, we show that if (γT ,λT )-formulae are used for computing branch
lengths, and a natural relation between the γT parameters for NNI-neighbors is assumed, then the
O(n2) branch lengths of all the NNI-neighbors of a candidate topology can be calculated in O(n2)
time. This is optimal, because these O(n2) branch lengths depend on all the O(n2) input distances.

In order to express the required relation between the γT parameters for NNI-neighbors, we assume
that when performing an NNI around a branch e, all other branches keep their names. (For example,
see branches f , g, h and l in Fig. 1(b) and (c).) Then, when T ′ is obtained from T with an NNI

around branch e, we say that parameter sets γT = (γe1e2 ) and γT ′

= (γ′

e1e2
), defined for T and T ′,

respectively, are almost identical, if γe1e2 = γ′

e1e2
, for every pair of adjacent branches (e1, e2) in T such

that their common endpoint is not also an endpoint of e (in which case e1 and e2 are also adjacent

in T ′). The intuitive idea is that γT and γT ′

may only differ locally around the location of the NNI.
This requirement is a prerequisite for the efficient evaluation of T ′ from that of T . Note the difference
here with the approach in the previous section, where we assumed no relationship between parameter
sets for different topologies. Our result can now be stated as follows:

Theorem 4. Let T0 be a binary topology over taxa {1, 2, . . . , n} and T1, T2, . . . , T2(n−3) all its NNI-
neighbors. For all i ∈ {0, 1, . . . , 2(n − 3)}, assume that the branch lengths of Ti are defined by the

(γTi ,λTi)-formulae, with the constraint that γTi and γT0 are almost identical. Then,

(i) the branch lengths of T0 can be calculated in O(n2) time;

(ii) the branch lengths of all the NNI-neighbors of T0 can be calculated in O(n2) time.

We leave the proof of this result to SI Appendix 4. While point (i) merely generalizes further a
property already known for all M&P formulae [22], the result in (ii) is novel. It is related to, and
somehow explains the existence of a number of efficient hill climbing algorithms for distance-based
tree reconstruction. In particular, it predicts the efficiency of hill climbing for balanced minimum
evolution (BME), which assumes γT parameters always equal to 1/2 and therefore clearly having the
property of being almost identical for NNI-neighbors. The existing hill climbing algorithm for BME
[7] directly updates the total tree length, rather than the lengths of each branch, but the worst-case
time complexity for each iteration is still O(n2) and results in one of the most accurate and fast
distance-based methods [18, 32]. Theorem 4 also predicts the efficiency of hill climbing for OLS: the
γef parameters for OLS depend in fact on the sizes of the three clades to the sides of e, f and g (where
the latter is the branch adjacent to both e and f), and these do not change when performing an NNI
around a branch other than e, f and g, which implies the almost identity of the γef parameters for
NNI-neighbors.

Note that Theorem 4 has very wide applicability, not only because of the generality of the formulae
it assumes, but also because it makes no assumption on the optimization criterion used to score trees
(apart from its dependence on the branch lengths). This is unlike the hill-climbing algorithms we
mentioned above, which were only applicable to the classic version of ME (the one we call ME+1),
where all branch lengths are added together, irrespective of their sign.

Discussion

We presented here a framework unifying some of the most successful approaches for distance-based tree
reconstruction: for example, ordinary least squares methods for clustering [38] and balanced minimum
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evolution (BME, the optimization principle behind Neighbor-Joining [30]) for phylogenetic inference.
We have shown that all the methods that fit into this general framework have highly desirable statistical
properties (the consistency of the tree estimates) and algorithmic properties (efficiency of hill climbing
heuristics).

Our study opens the way for improvements of existing methods and the development of new ones.
Novel combinations of branch length formulae and tree optimization principles can be envisaged.
For example, our results enable the efficient implementation of hill climbing for the versions of ME
discouraging negative branch lengths (or at least not favoring them: see ME−1 and ME0 above), in
combination with any of the classic branch length estimation schemes (e.g. OLS or that used in BME).
Alternatively, our framework enables to explore novel, biologically-motivated ways of estimating branch
lengths, for example assuming multiplicative variance models based on the current tree estimate.

We conclude by noting that although the class of branch length formulae we consider here is inspired
by previous work on multiplicative variance models [22], nothing excludes that it may be applicable
to least squares criteria other than WLS with multiplicative weights. In fact, it is easy to construct
covariance models with nonzero covariances that result in GLS branch length estimators coinciding
with (γT ,λT )-formulae. Future research should aim to elucidate the full potential of our class of
formulae.
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SI Appendix 1

Here, we present an interpretation of the (γT ,λT )-formulae as averages over a large number of simple
branch length formulae, which allows us to prove Theorem 1: because these simple formulae are
correct, that is, they correctly provide the branch lengths of a tree whenever the input distances are
additive with respect to that tree, it follows that also the (γT ,λT )-formulae are correct. The detailed
arguments follow below.

Let ℓ̂e(δ) denote the length that is assigned to branch e by an adopted length estimation method.
Let T ∗ be a tree where e has length ℓe. The adopted method is correct if, for any such tree T ∗,

ℓ̂e(d
T

∗

) = ℓe.

Suppose e is an external branch, and define A, B, i as in Fig. 1(a) in the main text. Choose a taxon
a from A and a taxon b from B. Then calculate the length of e with:

ℓ̂abe (δ) =
1

2
(δia + δib − δab).

If instead e is an internal branch, let A1, A2, B1 and B2 be the four clades surrounding it, as in Fig.
1(b) in the main text. Choose taxa a1, a2, b1, b2 from A1, A2, B1, B2, respectively. It is clear that
any drawing of the tree on the plane either places A1 to the side of B1, and therefore A2 to the side of
B2 (as in Fig. S1(ii), top) or alternatively A1 to the side of B2 and A2 to the side of B1 (Fig. S1(ii),
bottom). We associate the former drawing with the following formula for the length of e:

ℓ̂a1b1a2b2
e (δ) =

1

2
(δa1b1 + δa2b2 − δa1a2

− δb1b2).

The alternative drawing is associated to the formula ℓ̂a1b2a2b1
e (δ). Note that ℓ̂abe (δ), ℓ̂a1b1a2b2

e (δ) and

ℓ̂a1b2a2b1
e (δ) are all trivially correct.

Figure S1. (i) pi|A = γe0e1 · γe1e2 · . . . · γek−1ek is the probability of ending up in i

when entering clade A from its root and following the random walk rules described
in the main text; (ii) λA1B1

= λA2B2
can be seen as the probability of drawing the

tree in the top configuration, whilst λA1B2
= λA2B1

= 1 − λA1B1
can be seen as the

probability of drawing the tree in the bottom configuration.
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e1 e2γ
e0e1

ek-1

ekγ
e1e2

γ
ek-1ek

The γT and λT parameters introduced in the main text can be interpreted as controlling a probability
distribution over all possible such formulae for calculating the length of a given branch e in T . First,

1



2

as illustrated in Fig. S1(i), the γT parameters determine the probability of choosing a given taxon out
of any given clade (a from A, b from B in the case of external branches, a1 from A1, a2 from A2, b1
from B1, b2 from B2 in the case of internal branches). Second, as illustrated in Fig. S1(ii), the λT

parameters determine the probability of choosing either of the two possible drawings for the clades

around an internal branch e, and therefore either of ℓ̂a1b1a2b2
e (δ) or ℓ̂a1b2a2b1

e (δ) for the length of e:
λA1B1

= λA2B2
is the probability of drawing A1 to the side of B1 and A2 to the side of B2, whereas

its complement λA1B2
= λA2B1

= 1− λA1B1
is the probability of drawing A1 to the side of B2 and A2

to the side of B1.

Given this probability distribution, let us take the resulting expected value of the length assigned to
e. In the (harder) case of an internal branch, this is given by

∑

a1∈A1,

a2∈A2,

b1∈B1
b2∈B2

pa1|A1
pa2|A2

pb1|B1
pb2|B2

[

λA!B1
ℓ̂
a1b1a2b2
e (δ) + λA!B2

ℓ̂
a1b2a2b1
e (δ)

]

=
1

2

∑

a1∈A1,

a2∈A2,

b1∈B1

b2∈B2

pa1|A1
pa2|A2

pb1|B1
pb2|B2

[λA!B1
(δa1b1 + δa2b2) + (1− λA1B!

)(δa1b2 + δa2b1)− δa1a2
− δb1b2 ]

=
1

2
[λA1B1

(δA1B1
+ δA2B2

) + (1− λA1B1
)(δA1B2

+ δA2B1
)− δA1A2

− δB1B2
] .

Thus what we obtain (also in the easier case of an external branch; not shown) are precisely the

(γT ,λT )-formulae. In other words, these formulae can be seen as providing the expected length of a
branch when this is assigned following the random procedure described above. Given this observation,
the correctness of the (γT ,λT )-formulae follows trivially from the correctness of the base formulae

ℓ̂abe (δ) and ℓ̂a1b1a2b2
e (δ). Theorem 1 is therefore proved.

We note that the approach of expressing a length estimator as the combination of several simple
formulae has already been considered by Willson [1]. His base formulae, however, express the length
of a path in the tree (as a function of the distances between three taxa) rather than a single branch

(which we express as a function of the distances between three or four taxa, for exterior and interior
branches, respectively). Moreover, the combination of his base formulae provide an estimate of the
total length of the tree (in the ME+1 sense).
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SI Appendix 2

Here, we prove the relationship between the M&P formulae [2] and our (γT ,λT )-formulae, as stated
in Theorem 2. We start by formally defining the M&P formulae (A2.1); then we introduce a few
additional formalisms and a useful observation (A2.2) and then prove separately the two parts of
Theorem 2 ((i) in A2.3 and (ii) in A2.4). This requires to show how to derive the parameters of each

class of formulae from the parameters of the other class (i.e. (γT ,λT ) from w, and vice versa).

A2.1 The M&P formulae. We assume that the weights w = (wij) are multiplicative w.r.t. a binary
topology T . Then, for any two clades A and B of T , define

ZAB =
∑

i∈A
j∈B

wij and δwAB =
1

ZAB

∑

i∈A
j∈B

wijδij .

Mihaescu and Pachter [2] have shown that the optimal branch lengths of T with respect to the WLS
criterion (1) are then given by the following formula, applicable to any branch e in T :

ℓ̂e(δ) =























1
2 (δ

w

iA + δwiB − δwAB) if e is external,

1
2

[

ZA1B2
+ZA2B1

ZAB
(δwA1B1

+ δwA2B2
)

+
ZA1B1

+ZA2B2

ZAB
(δwA1B2

+ δwA2B1
)− δwA1A2

− δwB1B2

]

if e is internal,

where, if e is external, we define A, B, i as in Fig. 1(a) in the main text and, if e is internal, we define
A1, A2, A = A1 ∪ A2, B1, B2, B = B1 ∪B2 as in Fig. 1(b) in the main text.

A2.2 Decomposition of ZXY . Extend the wij notation to any pair of nodes x and y (possibly
internal) in T :

(1) wxy =
∏

e∈Pxy(T )

we,

where we recall that the we are the branch-associated weights that compose the pairwise weights wij ,
and Pxy(T ) is the set of branches on the path between x and y in T . Then define the multiplicative
weight of X (a clade with root x) as:

(2) ZX =
∑

i∈X

wix.

We assume wxx = 1 for any node x, which implies Z{i} = 1, for any one-taxon clade {i}. It is then
easy to check that, if X and Y are any two disjoint clades in T , with roots x and y respectively, then

(3) ZXY = wxyZXZY .

A2.3 The M&P formulae are also (γT ,λT )-formulae.

Lemma 1. Given weights w = (wij) multiplicative w.r.t. a binary topology T , define, for each pair of
adjacent branches e and f :

(4) γef =
wfZA1

ZA

,

where A1 and A = A1 ∪ A2 are the clades having f and e as root branches, respectively, as in Fig.
1(b). Then,

(i) The resulting average distances between clades are such that δXY = δwXY , for any two disjoint clades
X and Y in T .

(ii) For any internal branch e, let A = A1 ∪A2 and B = B1 ∪B2 be the clades in the configuration of
Fig. 1(b); then (ZA1B2

+ ZA2B1
)/ZAB = γef + γeh − 2γefγeh.
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Proof. (i) Equation (3) allows us to express δwXY in a very similar form to that of δXY :

δwXY =
∑

i∈X

j∈Y

wij

ZXY

δij =
∑

i∈X

j∈Y

wix

ZX

wjy

ZY

δij ,

where x and y are the root nodes of X and Y , respectively. In order to have δXY = δwXY , it is then
sufficient to prove that, for any clade X with root x, and any taxon i ∈ X ,

pi|X =
wix

ZX

.

Let the path from x to i traverse branches e1, e2, . . . , ek (in this order), and let Xj be the subclade
of X having ej as root branch (0 ≤ j ≤ k, with X0 = X and e0 being the root branch of X); then,
Xk = {i} and

pi|X = γe0e1 · γe1e2 · . . . · γek−1ek =
we1ZX1

ZX

·
we2ZX2

ZX1

· . . . ·
wekZXk

ZXk−1

=
we1 · we2 · . . . · wek

ZX

Z{i} =
wix

ZX

.

(ii) Using again (3),

ZA1B2
+ ZA2B1

ZAB

=
wfwlZA1

ZB2
+ wgwhZA2

ZB1

ZAZB

= γefγel + γegγeh = γef + γeh − 2γefγeh.

Points (i) and (ii) are thus both verified. !

Setting γef as in (4) has a simple intuitive meaning: if we call g the root branch of A2 (as in Fig. 1(b)),
then ZA = wfZA1

+wgZA2
. The γef above can then be seen as the relative multiplicative weight of the

subtree corresponding to clade A1 in the subtree corresponding to clade A. The random walk defined
by these parameters is then “attracted” by the heavier subtrees, in a way that is directly proportional
to the weights of the subtrees.

Proof of Theorem 2, part (i). Given w multiplicative w.r.t. T , define the γT parameters as in (4).
Note that because we > 0 for any branch e, then ZX > 0 for every clade X . Moreover, for any three
adjacent branches e, f and g in the configuration of Fig. 1(b), we have wfZA1

+ wgZA2
= ZA and

wfZA1
, wgZA2

> 0, which imply γef + γeg = 1 and 0 < γef , γeg < 1. Therefore the definition of the
γT parameters is admissible and implies that δXY = δwXY (Lemma 1, part (i)).

As for the λT parameters, set λA1B1
= (ZA1B2

+ ZA2B1
)/ZAB, for every pair of clades A1 and B1

separated by 3 branches, and being in the configuration of Fig. 1(b) with A = A1∪A2 and B = B1∪B2.
It is easy to check that this implies λA1B1

= λA2B2
> 0, λA1B2

= λA2B1
> 0 and λA1B1

+ λA1B2
= 1,

and therefore the definition of the λT parameters is also admissible.

It is now easy to verify that the resulting (γT ,λT )-formulae coincide with the M&P formulae cor-
responding to w: for the external branches this is an immediate consequence of δXY = δwXY , while
for the internal branches we also use the above definition of λA1B1

and the fact that 1 − λA1B1
=

(ZA1B1
+ ZA2B2

)/ZAB. Finally, the γT and λT defined above satisfy properties P1 and P2: the first
can be verified by using (4) in P1 and the second is a direct consequence of Lemma 1, part (ii). !

A2.4 Characterization of the (γ,λ)-formulae that are also M&P formulae.

Proof of Theorem 2, part (ii).

The proof has the following structure: as an intermediate step, we introduce — for every three clades
A1, A2 and B whose respective root branches f , g and e are incident to the same internal node (as in
Fig. 1(b)) — three values ϕA1

, ϕA2
and ϕB such that ϕA1

+ ϕA2
+ ϕB = 1, 0 < ϕA!

,ϕA2
,ϕB < 1 and

(5) γef =
ϕA1

ϕA1
+ ϕA2

, γfg =
ϕA2

ϕA2
+ ϕB

, γge =
ϕB

ϕB + ϕA1

.

The existence of such values is guaranteed by property P1. In intuitive terms, we are requiring that
each clade has somewhat a “preference value”, such that the probabilities γef and γeg are proportional
to the preference values of the clades that f and g lead to. On the basis of these values, we then define
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a set of branch-associated weights we specifying a multiplicative model such that the preference values
can be obtained as

(6) ϕB =
weZB

weZB + wfZA1
+ wgZA2

.

(With A1, A2, B, f, g, e as above.) It is easy to see (shown below) that this implies that condition (4)

of Lemma 1, and therefore its conclusions, hold. This, together with the fact that the λT parameters
satisfy P2, implies that the M&P formulae for w coincide with the given (γT ,λT )-formulae.

Let us now look in detail at each step. First of all, property P1 implies that the determinant of the
coefficient matrix for the system of linear equations in ϕA1

, ϕA2
and ϕB corresponding to (5) is equal

to 0; this system is then solved by the following subspace of solutions:

(ϕB ,ϕA1
,ϕA2

) ∈

{(

x,
1− γge

γge

x,
1− γef

γef

1− γge

γge

x

)

|x ∈ R

}

.

If furthermore we impose ϕA1
+ ϕA2

+ ϕB = 1, it is easy to see that a unique solution is determined,
such that ϕA1

,ϕA2
,ϕB > 0 (and therefore also < 1).

Given the ϕX parameters, we now show how to define the branch-associated weights we. For any
internal branch e separating clades A and A, let

(7) we =

√

ϕA

1− ϕA

ϕA

1− ϕA

.

As for the external branches, which for simplicity we call with the same names as the taxa they are
incident to (e.g. branch i being the one incident to taxon i), we assign their weight in the following
way: choose arbitrarily w1 > 0 and then, for any other external branch i ∈ {2, 3, . . . , n} define

(8) wi = w1

√

γ
∗

1i

γ
∗

i1

1− ϕ1

ϕ1

ϕi

1− ϕi

,

where γ
∗

ef = γee1 · γe1e2 · . . . · γekf , for any pair of branches e, f linked by a path composed of the

ordered sequence of branches (e1, e2, . . . , ek), and for simplicity we write ϕ1 and ϕi instead of ϕ{1} and
ϕ{i}.

The weights thus defined determine a multiplicative weighting w = (wij) that satisfies (6). In order
to show this, we first show that, for every clade A (whose root branch we call e) such that |A| < n− 1
(i.e. the endpoint of e on the other side of A is not a leaf),

(9) weZA = w1

√

γ
∗

1e

γ
∗

e1

1− ϕ1

ϕ1

ϕA

1− ϕA

.

We prove this by induction on the size of A. If A consists of a single taxon, then either this is taxon
1, in which case both sides of the equation reduce to w1, or this is another taxon i, in which case (9)
coincides with (8). In both cases (9) trivially holds. If |A| > 1, let A1, A2, B, f and g be as in Fig.
1(b). Then, by inductive hypothesis, (9) holds for wfZA1

and wgZA2
and we have:

ZA = wfZA1
+ wgZA2

= w1

√

1− ϕ1

ϕ1

(√

γ
∗

1f

γ
∗

f1

ϕA1

1− ϕA1

+

√

γ
∗

1g

γ
∗

g1

ϕA2

1− ϕA2

)

Now note that

(10)
γ
∗

1f

γ
∗

f1

=
γ
∗

1e

γ
∗

e1

ϕA1
(1− ϕA1

)

ϕB(1− ϕB)
and

γ
∗

1g

γ
∗

g1

=
γ
∗

1e

γ
∗

e1

ϕA2
(1− ϕA2

)

ϕB(1− ϕB)
,

which can be verified by noting that, depending on the position of taxon 1 (in A1, A2 or B), γ∗

1f/γ
∗

f1 can

either be equal to (γ∗

1e/γ
∗

e1)(γef/γfe) or (γ∗

1e/γ
∗

e1)(γgfγeg)/(γgeγfg), and γ
∗

1g/γ
∗

g1 can either be equal
to (γ∗

1e/γ
∗

e1)(γeg/γge) or (γ∗

1e/γ
∗

e1)(γfgγef )/(γfeγgf ). The equations in (10) can then be obtained from
these expressions by making the substitutions γxy = ϕY /(1−ϕX) (equivalent to (5)) for x, y ∈ {e, f, g},
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where X,Y are the clades separated by and having x, y as root branches, respectively. If now we use
(10) in the expression above for ZA, we obtain after obvious simplifications

(11) ZA = w1

√

γ∗

1e

γ∗

e1

1− ϕ1

ϕ1

1− ϕB

ϕB

.

If now we use (7) and (11) to express we and ZA in weZe, what we obtain is precisely (9), which
therefore is proven.

We are now ready to prove (6). Note that (11) holds for any ’composite’ clade A (i.e. one that that
can be decomposed into two other clades A1 and A2). Then,

weZB

weZB + wfZA1
+ wgZA2

=
weZB

weZB + ZA

=

√

ϕB

1−ϕB

√

ϕB

1−ϕB

+
√

1−ϕB

ϕB

= ϕB ,

where for the second equality we have used both (11) and (9).

But this implies that, for every composite clade A = A1 ∪ A2 in the configuration of Fig. 1(b),

(12)
wfZA1

ZA

=
wfZA1

wfZA1
+ wgZA2

=
ϕA1

ϕA1
+ ϕA2

= γef .

Condition (4) of Lemma 1 is therefore verified. But this ensures that δXY = δwXY , for any two disjoint

clades X and Y (Lemma 1, part (i)), while the fact that the λ
T parameters satisfy P2 implies (Lemma

1, part (ii)) that λA1B1
= (ZA1B2

+ ZA2B1
)/ZAB for every pair of 3-separated clades A1, B1 in the

configuration of Fig. 1(b). That is, the M&P formulae for w coincide with the given (γT ,λT )-formulae,
which is what we set out to prove. !
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SI Appendix 3

Here, we prove that the main criteria to score trees, LS and ME (in all their common variants),
are statistically consistent when used in combination with our branch length formulae, as stated in
Theorem 3. We start by showing that the consistency of any distance-based principle is essentially
determined by its behavior on perfect data (A3.1). Next, we move on to proving the consistency of
LS (A3.2) and then that of ME: for the latter, first we show a useful dependency property between
different variants of ME (A3.3), and then we prove the consistency on perfect data of the classic version
of ME (A3.4), which is the key nontrivial result of this appendix and allows us to conclude the proof
of Theorem 3 (A.3.5).

We recall that a branch length estimation scheme is a method that, for any binary topology over the set
of taxa under consideration {1, 2, . . . , n} (n ≥ 3), determines how to fit the length of its branches on the
basis of an n×n distance matrix δ. We say that a branch length estimation scheme is continuous [linear ]

if, for any branch e in any binary topology, the function ℓ̂e(δ) giving its fitted length is continuous
[linear] in δ. A branch length estimation scheme is correct if, for any branch e in any binary tree

with branch lengths, ℓ̂e(δ) returns the length of e whenever δ is additive with respect to that tree
(as in Theorem 1). The branch length estimation schemes that we consider here are those based on

(γ,λ)-formulae, whereby a collection of γT and λT parameters is chosen for each binary topology T ,

thus determining a set of (γT ,λT )-formulae for T ’s branch lengths (with no assumed relation between
the values of these parameters across different topologies). It is clear that the resulting branch length
estimation schemes are linear (thus continuous) and correct (Theorem 1).

Any branch length estimation scheme can be combined to a number of principles identifying an optimal
tree among all the topologically-distinct fitted trees. The optimization principles we consider here are
defined by a tree score function, which can depend on the topology of the tree, the assigned branch
lengths and (in the case of LS, but not ME) the input distances. An optimization principle M then
consists of seeking the fitted tree(s) that minimize this function, and we denote this tree (or set of
trees) with M(δ). We say that M is statistically consistent if M(δ) converges (in probability) to the
correct tree.

The following assumption (the consistency of the distance estimates and the positive additivity of the
correct evolutionary distances) applies to all the propositions that follow, and we state it here so that
we do not have to repeat it in every statement.

Assumption 2. Let the correct phylogenetic tree for the taxa under consideration, T ∗, be a binary

tree with positive branch lengths. Assume that the input distances δ converge (in probability) to d
T

∗

.

A3.1 Consistency for perfect data implies statistical consistency.

The following is a well-known sufficient condition for consistency, which has been proven for ME with
the same continuity arguments (e.g. [3]). It can be applied to most tree optimization principles (LS,
ME, possibly combinations of the two or even totally different criteria).

Proposition 3. Adopt a continuous branch length estimation scheme. Let M be an optimization
principle based on a tree score function that is continuous in all its continuous parameters (i.e. all but

the topology). If M(dT
∗

) is unique and coincides with T ∗, then M is statistically consistent.

Proof. To any binary topology, M assigns a score by first assigning branch lengths to it, and then
applying the adopted tree score function. Note that because both the branch length estimation scheme
and the tree score function are continuous, then also the score associated to any particular topology

is continuous in δ. Because M(dT
∗

) = T ∗ is unique, when δ = d
T

∗

the score of the topology of T ∗

must be strictly smaller than the score of all other binary topologies. But then, because the scores of
topologies are continuous in δ and finite in number, this must still hold for every δ in a neighborhood

of dT
∗

; that is, for every δ in this neighborhood, M(δ) is unique and has the same topology as T ∗.
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But, because δ
p
→ d

T∗

, the probability that δ belongs to this neighborhood, and consequently M(δ)
has the same topology as T ∗, converges to 1. Finally, when M(δ) has the same topology as T ∗, the
continuity of the branch length estimation scheme implies that the branch lengths in M(δ) converge

in probability to those in M(dT∗

) = T ∗. We can then conclude that both the topology and branch
lengths of M(δ) consistently converge to T ∗. !

A3.2 Consistency of Least Squares.

We have briefly defined LS methods in the Introduction. Here we assume the most general form for LS
and prove its consistency under very general conditions (Proposition 4 below). We define LS methods
as those that use a tree score function with the following form:

(13) Q(T, δ) = (δ − d
T )tWT,δ(δ − d

T ),

where T is the tree fitted using the assumed branch length estimation scheme, δ is a column vector
with the

(

n

2

)

input distances and WT,δ is a
(

n

2

)

×
(

n

2

)

matrix which may depend on the topology of
T and, continuously, on δ and the branch lengths of T . Additionally, we assume that, for any T and
δ, the matrix WT,δ is positive-definite. (WT,δ should be interpreted as the inverse of the assumed
covariance matrix for δ.)

Note that whereas the dependence of WT,δ on δ is common (e.g. the version of WLS by Fitch and

Margoliash [4] uses a diagonal matrix with Wij,ij = δ
−2

ij ), the dependence on T is non-standard, and

we have included it here for completeness. (But for example the balanced version of WLS [5] at the
basis of the balanced branch lengths [6] does assume a variance model that depends on tree topology.)
Also recall that the criterion Q(T, δ) above is used to score trees with already-fitted branch lengths,
so the dependence on the branch lengths does not cause any computational problem.

Proposition 4. Adopt any correct and continuous branch length estimation scheme. Then, LS is

consistent.

Proof. We prove that for LS, the hypotheses of Proposition 3 are satisfied and therefore LS is consistent.
First, the branch length estimation scheme is continuous (by hypothesis) and the score function in (13)

is a continuous function of both δ and of the branch lengths assigned to T (note that d
T is linear,

and thus continuous, in the branch lengths). It remains then to show that, for δ = d
T∗

, LS uniquely

identifies T ∗ as optimal. Because WT,δ is positive definite, Q(T,dT∗

) = 0 if and only if dT∗

− d
T = 0,

that is, if and only if T = T ∗, whereas for all other trees W $= T ∗, Q(W,dT∗

) > 0. Moreover, because
the branch length estimation scheme is correct, T ∗ is precisely what is obtained when fitting its branch
lengths. Therefore T ∗ uniquely minimizes the score function Q and is returned by LS. !

Corollary 5. Adopt a branch length estimation scheme based on (γ,λ)-formulae. Then, LS is con-

sistent.

A3.3 Dependency between the consistencies of different variants of Minimum Evolution.

Recall that MEi reconstructs the fitted tree that minimizes the following tree score function, where

ℓ̂ = (ℓ̂e) denotes the branch lengths in the fitted tree:

(14) Li(ℓ̂) =
∑

e:ℓe>0

ℓ̂e +
∑

e:ℓe<0

i · ℓ̂e.

In the main text, we assume i ∈ {−1, 0,+1}, but here we consider, more generally, MEx with x being
any real number. We do this not only for the sake of mathematical completeness, but also to include
variants of ME that may be considered in the future (e.g. ME−∞, which corresponds to avoiding at
all costs trees which are assigned negative branch lengths). The following proposition shows that if we
can prove the consistency of MEy using Proposition 3, then the same can be done for any MEx with
x < y.
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Lemma 6. Adopt any correct branch length estimation scheme and let x < y. If MEy(d
T∗

) = T ∗,

then also MEx(d
T∗

) = T ∗.

Proof. We adapt a line of reasoning appeared elsewhere [7, 3]. Because of the correctness of the branch

length estimation scheme, when the branches of the topology of T ∗ are fitted using d
T∗

, their lengths
are set to their correct values. Because these are all positive, the scores assigned by MEx and MEy

to T ∗ equal precisely the sum L∗ of all branch lengths in T ∗. Now let ℓ̂ denote the branch lengths

assigned to an incorrect topology using d
T∗

; x < y implies that Lx(ℓ̂) ≥ Ly(ℓ̂), and because MEy(d
T∗

)

is unique and equal to T ∗, we also have Ly(ℓ̂) > L∗. But then Lx(ℓ̂) > L∗ for any incorrect topology.

Because L∗ coincides with the score assigned to T ∗ by MEx, we can then conclude that MEx(d
T∗

) is
unique and coincides with T ∗. !

A3.4 Consistency of the classic version of Minimum Evolution.

We now concentrate on the consistency of ME+1, which because of Lemma 6, implies that of MEx for
any x < +1. We use a standard framework for investigating the consistency of ME+1 (e.g. [1]), which
consists in verifying a property (“Willson’s condition”) of branch length estimation in the presence of
a special kind of binary distance matrix. In the following, we introduce and state Willson’s condition
(A3.4.1), then prove some properties of the (γT ,λT )-formulae that are useful to verify it (A3.4.2), and

finally prove the consistency of ME+1 via Willson’s condition (A3.4.3). For simplicity, we write L̂T (δ)

as a shorthand for L+1(ℓ̂T (δ)), that is, the tree length (sensu ME+1) resulting from fitting the branch
lengths of T using δ.

A3.4.1. Willson’s condition [1].

In order to state it (Lemma 7 below), we denote by d
S|S (where S ⊆ {1, 2, . . . , n} and S = {1, 2, . . . , n}\

S) the following collection of
(

n
2

)

distances, indexed by i #= j:

d
S|S
ij =

{

1 if |S ∩ {i, j}| = 1,

0 otherwise.

Lemma 7. Adopt any linear branch length estimation scheme such that, for any binary topology T

and any proper and nonempty subset S of taxa from T ,

L̂T (dS|S)

{

= 1 if S is a clade in T,

> 1 otherwise.

Then ME+1(d
T∗

) = T ∗.

Informally, this holds because d
T∗

is a weighed sum of all dS|S corresponding to the clades in T ∗, the
coefficients of this weighted sum being the branch lengths of T ∗. The linearity of L̂T then implies that,

in turn, L̂T (dT∗

) is a weighted sum of the branch lengths of T ∗, where the coefficients are now either
1 or strictly greater than 1, depending on whether or not the corresponding S is a clade in T . Clearly
this weighted sum is minimized when all the clades in T ∗ are also clades in T , that is for T = T ∗.

A3.4.2 Tools to verify Willson’s condition.

Given any subset of taxa S ⊆ {1, 2, . . . , n} and any clade X in a binary topology T for which a set

of (γT ,λT )-formulae is defined, define pS|X as the probability of picking an element of S from the

random distribution over X defined by the γT parameters. That is,

pS|X =
∑

i∈X∩S

pi|X .

Moreover, a clade X is monochromatic (w.r.t. S) if either X ⊆ S or X ⊆ S = {1, 2, . . . , n} \ S. In this
case it is clear that pS|X ∈ {0, 1}.
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Lemma 8. Assume that the branch lengths of T are assigned with (γT ,λT )-formulae using the input

distances in d
S|S, for some S ⊆ {1, 2, . . . , n}. Then,

(i) For any two clades X and Y in T , the average distance between them d
S|S
XY = pS|XpS|Y +pS|XpS|Y .

(ii) If branch e belongs to a monochromatic clade, it is assigned length ℓ̂e = 0.

(iii) If adjacent branches f and g separate (and are the only ones to separate) two monochromatic

clades A1 and A2, with A1 ⊆ S and A2 ⊆ S, then ℓ̂f + ℓ̂g = 1.

Proof. (i) d
S|S
XY =

∑

i∈X
j∈Y

pi|Xpj|Y d
S|S
ij =

∑

i∈X∩S

j∈Y ∩S

pi|Xpj|Y +
∑

i∈X∩S
j∈Y ∩S

pi|Xpj|Y = pS|XpS|Y + pS|XpS|Y .

(ii) Branch e is either internal or external. We consider here only the case where it is internal, as the
external case is analogous (and simpler). We assume clades A1, A2, B1 and B2 are defined as in Fig.
1(b). Because e belongs to a monochromatic clade, at least three clades out of A1, A2, B1 and B2

are all subsets of S or all subsets of S. Without loss of generality, we assume that A1, A2, B1 are all

subsets of S. Applying part (i), it is easy to see that this implies d
S|S
A1A2

= d
S|S
A1B1

= d
S|S
A2B1

= 0 and

d
S|S
A1B2

= d
S|S
A1B2

= d
S|S
A1B2

= pS|B2
. But then,

ℓ̂e =
1

2

[

λA1B1
(d

S|S
A1B1

+ d
S|S
A2B2

) + (1 − λA1B1
)(d

S|S
A1B2

+ d
S|S
A2B1

)− d
S|S
A1A2

− d
S|S
B1B2

]

=
1

2

[

λA1B1
pS|B2

+ (1− λA1B1
)pS|B2

− pS|B2

]

= 0.

(iii) Let B = {1, 2, . . . , n}\(A1∪A2), as in Fig. 1(b). In a way analogous to part (ii), it is easy to check

that, independently of f being internal or external, ℓ̂f = pS|B and, similarly, ℓ̂g = pS|B. Therefore,

ℓ̂f + ℓ̂g = pS|B + pS|B = 1.

Points (i), (ii) and (iii) are thus all verified. !

A3.4.3 Consistency of ME+1 with perfect data.

Proposition 9. Adopt a branch length estimation scheme based on (γ,λ)-formulae. Then, ME+1(d
T∗

) =
T ∗.

Proof. We show that any branch length estimation scheme based on (γ,λ)-formulae satisfies Willson’s

condition (i.e. the hypotheses of Lemma 7), and therefore we must have ME+1(d
T∗

) = T ∗.

First, it is trivial to see that any such branch length estimation scheme is linear. Second, it is correct

(Theorem 1), which implies L̂T (dS|S) = 1 whenever S is a clade of T : in this case, in fact, dS|S is
additive with respect to a tree with topology T and with all branches of length 0 except the root
branch of S, which has length 1; because of their correctness, the (γT ,λT )-formulae result in assigning

T precisely these branch lengths and therefore a total length L̂T (dS|S) = 1.

It remains to prove that L̂T (dS|S) > 1 whenever S is not a clade of T — for any branch length
estimation scheme based on (γ,λ)-formulae. We do this by induction on the size of T .

For n = 3 taxa, this is trivially true, as all proper, nonempty sets of {1, 2, 3} are clades of T .

For n > 3, if S is not a clade of T , it is always possible to find a pair of 2-separated clades A1, A2

such that A1 ! S and A2 ! S, i.e. such that A1 and A2 are monochromatic, but A1 ∪ A2 and
B = {1, 2, . . . , n} \ (A1 ∪ A2) are not monochromatic. To see this, consider the tree T (S) that is
obtained by substituting every monochromatic clade in T with a taxon; because S is not a clade of T ,
then T (S) must have at least two cherries (i.e., pairs of 2-separated taxa); any of these corresponds to
a pair of clades A1, A2 in the original tree T with the required properties. Let e, f and g be the root
branches of B, A1 and A2, respectively, and a their common endpoint, as in Fig. 1(b). Because A1
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and A2 are monochromatic, it is clear that all branches belonging to these clades are assigned length

0 when the input distances are d = d
S|S (Lemma 8, part (ii)).

Now let T ′ be the topology that is obtained by deleting from T all branches belonging to A = A1∪A2,
so that a is a leaf of T ′. It is clear that there is one-to-one correspondence between the branches/clades
of T ′ and a subset of the branches/clades of T . When calculating the branch lengths in T ′, we assume
that the γef and λXY parameters are the same as those for the corresponding branches/clades in T .
Now define the following distances over {1, 2, . . . , n} ∪ {a} \A, i.e. the taxa in T ′:

d
(1) = d

(S∪{a}\A1)|(S\A2),

d
(2) = d

(S\A1)|(S∪{a}\A2),

d
′ = γefd

(1) + γegd
(2).

Note that d
′ coincides with d except for the distances that involve a. For these, we have

d′aj = γefd
(1)
aj + γegd

(2)
aj ,

for every j ∈ {1, 2, . . . , n} \ A. Note also that d
(1)
aj = dA1j and d

(2)
aj = dA2j , which imply d′aj = dAj .

This in turn implies that, for any disjoint clades X and Y in T ’,

(15) d′XY =

{

dXY if a /∈ X ∪ Y,

dX′Y if a ∈ X and where X ′ = X ∪ A \ {a},

that is, the average distances between disjoint clades remain the same when going from (T,d) to
(T ′,d′). To see this, note that the first case is a simple consequence of the fact that d

′ coincides with
d for the distances that do not involve a. As for the second case, it is a consequence of combining
d′aj = dAj (shown above) with the first case (and it can be easily proved by induction on the size of

X).

The important consequence of (15) is that the lengths of branches belonging to B — which only
depend on average distances between disjoint clades in T ′ — remain constant when going from (T,d)
to (T ′,d′). Therefore, the only difference between the two tree lengths will come from the lengths of
branches e, f and g:

(16) L̂T (d) = L̂T ′

(d′) + ℓ̂f + ℓ̂g + ℓ̂e − ℓ̂′e,

where ℓ̂b and ℓ̂′b represent the lengths assigned to branch b for (T,d) and (T ′,d′), respectively.

Because for ME+1 the tree length is a linear function of the branch lengths and the branch lengths

themselves are linear functions of the input distances, L̂T ′

(d′) is then linear in d
′ and we can write

L̂T ′

(d′) = γef L̂
T ′

(d(1)) + γegL̂
T ′

(d(2)).

Because d(1) and d
(2) are equal to some dS′|S′

where S′ is a proper and nonempty subset of the n′(< n)

taxa in T ′, we can apply the induction hypothesis and infer that L̂T ′

(d(1)) ≥ 1 and L̂T ′

(d(2)) ≥ 1

(where equality is achieved when S′ is a clade of T ′). Therefore L̂T ′

(d′) ≥ 1.

In order to prove that the tree length in (16) is strictly greater than 1, we then just need to prove that

ℓ̂f + ℓ̂g + ℓ̂e − ℓ̂′e > 0.

First, because of Lemma 8, part (iii), ℓ̂f + ℓ̂g = 1. In order to calculate ℓ̂e and ℓ̂′e, it is useful to note
that dA1A2

= 1 and, for any clade B′ ⊆ B, dA1B′ = pS|B′ = 1 − pS|B′ and dA2B′ = pS|B′ (Lemma 8,

part (i)). Then,

ℓ̂e =
1

2

[

λA1B1
(1− pS|B1

+ pS|B2
) + (1− λA1B1

)(1 − pS|B2
+ pS|B1

)− 1− dB1B2

]

=
1

2

[

(1 − 2λA1B1
)(pS|B1

− pS|B2
)− dB1B2

]

.
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Similarly,

ℓ̂′e =
1

2

[

d′aB1
+ d′aB2

− d′B1B2

]

=
1

2
[dAB1

+ dAB2
− dB1B2

]

=
1

2
[γef (dA1B1

+ dA1B2
) + (1− γef )(dA2B1

+ dA2B2
)− dB1B2

]

=
1

2

[

γef (2− pS|B1
− pS|B2

) + (1 − γef )(pS|B!
+ pS|B2

)− dB1B2

]

= γef +
1

2

[

(1− 2γef )(pS|B!
+ pS|B2

)− dB1B2

]

.

Then,

ℓ̂f + ℓ̂g + ℓ̂e − ℓ̂′e = 1− γef + pS|B1
(γef − λA1B1

) + pS|B2
(γef − (1− λA1B1

)) .

But this is a linear function of (pS|B1
, pS|B2

) in the square [0, 1]2, and is thus minimized in one of its

four vertices. In (0, 0), (0, 1), (1, 0) and (1, 1), the function has values 1− γef , λA1B1
, 1− λA1B1

, γef ,

respectively. Since these are all strictly greater than 0 by hypothesis, then so is ℓ̂f + ℓ̂g + ℓ̂e − ℓ̂′e and

therefore L̂T (d) > 1. !

A3.5 Wrapping it all together.

By applying Proposition 9, Lemma 6 and Proposition 3, we then conclude:

Corollary 10. Adopt a branch length estimation scheme based on (γ,λ)-formulae. Then, for any

x ≤ +1, MEx is consistent.

Which, together with Corollary 5 and Assumption 2, completes our proof of Theorem 3.
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SI Appendix 4

Here, we prove the efficiency of calculating branch lengths with our formulae in hill climbing heuristics,
as stated in Theorem 4. We start by showing that efficient branch length calculations essentially depend
on the availability of the average distances between (some) clades in the current tree, and that these
can be calculated in quadratic time, which allows us to prove Theorem 4, part (i) (A4.1). When
performing an NNI, calculating the new branch lengths can be done efficiently by recalculating only
some of these average distances, which leads us to prove Theorem 4, part (ii) (A4.2). Finally, we show
that updating the average distances following an NNI can also be done efficiently (A4.3), which is not a
claim of Theorem 4, but is nevertheless potentially useful. The results and proofs here are inspired by
those of Desper and Gascuel [8]. However, their results were specific to the balanced and OLS branch
lengths in combination with the ME+1 optimization principle. A key property of these estimators
is that, when performing an NNI, the sum of the branch lengths in each of the four corner subtrees
around the location of the NNI remains constant. Thanks to this property, the difference between the
ME+1 lengths of any two NNI neighbors T and T ′ can be efficiently calculated using simple formulae.

This property does not hold in general for (γT ,λT )-estimators, and so we have to recalculate all branch
lengths every time we perform an NNI. The good news is that (1) the complexity of each iteration in
a hill climbing heuristics for ME (computing the length of all NNI neighbors of a given topology and
updating the data structures for the new best topology), which for BME was quadratic in the worst
case, remains quadratic in the size of the tree, and that (2) recalculating all branch lengths makes it
possible to use optimization principles such as ME0, ME−1 and ME−∞.

In the following, T , T ′ and Ti always denote binary topologies, and γT , γT ′

and γTi , collections of
γef parameters defined for them, in the way described in the main text.

A4.1 Computing the branch lengths of a fixed topology.

Lemma 11. Adopt a set of (γT ,λT )-formulae for the branch lengths of T . Given δ and δXY for every

pair of 3-separated clades X, Y in T , the length of any branch in T can be calculated in O(1) time.

Proof. The (γT ,λT )-formulae are simple linear combinations of average distances δXY between 2- and
3-separated clades X and Y and can be computed in O(1) once these average distances are available.
Since we assume that the average distances between 3-separated clades are given, it remains to show
that δXY between any pair X , Y of 2-separated clades can be obtained in O(1). But this is trivial:
either both X and Y consist of one taxon only, i.e. X = {i} and Y = {j}, in which case δXY = δij , or
at least one of the two clades, say X , is such that X = X1 ∪ X2, where both X1 and X2 are clades,
in which case δXY = γefδX1Y + γegδX2Y , where e, f and g are the root branches of X, X1 and X2,
respectively, and both δX1Y and δX2Y are known, as Xi and Y are 3-separated (for i ∈ 1, 2}). !

Although the one above is a straightforward observation, it determines the minimum amount of infor-
mation necessary to determine any branch length in T in constant time. Motivated by it, we define
∆

T (γT ) as a data structure holding all the average distances δXY between pairs of disjoint clades in
T , and make explicit its dependence on γT . Note that ∆T (γT ) specifies the average distances between
3-separated clades as a particular case.

Lemma 12. Given δ, T and γT , the calculation of ∆T (γT ) requires O(n2) time.

Proof. Consider any total ordering A1, A2, . . . , A2(2n−3) of the clades in T , such that if Ak = Ai ∪ Aj

then i < k and j < k. Finding one such ordering is trivial and can be done in a number of ways, for
example by sorting the clades in ascending order of depth [2], or by rooting the tree in one of its leaves
and then performing a postorder traversal, listing the clades oriented away from the root, followed
by a preorder traversal, listing the clades oriented towards the root. The following procedure then
calculates δXY for all pairs of clades (including non-disjoint ones):

For i = 2, . . . , 2(2n− 3),
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for j = 1, . . . , i− 1,

(17) δAiAj
=











δxy if Ai = {x} and Aj = {y},

γefδAi1
Aj

+ γegδAi2
Aj

if Ai = Ai1 ∪Ai2 for some clades Ai1 , Ai2 ,

γefδAiAj1
+ γegδAiAj2

if Aj = Aj1 ∪ Aj2 for some clades Aj1 , Aj2 .

In the second case of (17) we assume that e, f, g are the root branches of Ai, Ai1 , Ai2 , respectively,
whereas in the third case they are the root branches of Aj , Aj1 , Aj2 , respectively. Note that these two
cases are not mutually exclusive, and the result is the same independently of which case is applied.
Moreover, because of the way the ordering is defined, we must have i1, i2 < i, in the second case, or
j1, j2 < j, in the third case, which means that δAi1

Aj
and δAi2

Aj
(second case), or δAiAj1

and δAiAj2

(third case) have already been calculated and are available when we calculate δAiAj
. Because each

δAiAj
can be calculated in constant time, the whole calculation requires O(n2) time. !

The complexity we obtain in Lemma 12 is optimal. Even if we restrict the calculation to 3-separated
clades, we still cannot do better than O(n2), as the average distances between such pairs of clades still
depend on O(n2) input distances.

Proof of Theorem 4, part (i). Combining Lemma 12 with Lemma 11 yields that the branch lengths

determined by a set of (γT ,λT )-formulae for a binary topology T can be calculated in O(n2) time. !

A4.2 Computing the branch lengths of the NNI neighbors of a given topology.

Lemma 13. Let T and T ′ be NNI-neighbors and let γT and γT ′

be almost identical. Let δXY and
δ′XY denote the average clade distances in ∆

T (γT ) and ∆
T ′

(γT ′

), respectively. Then, given ∆
T (γT ),

the calculation of δ
′

XY for every pair of 3-separated clades X,Y in T ′, requires O(n) time.

Proof. We assume that T is as in Fig. 1(b) and T ′ as in Fig. S2. Let the elements of γT and γT ′

be
denoted by γe1e2 and γ′

e1e2
, respectively.

First, we show that δ′XY is straightforward to obtain in the case of pairs of 3-separated clades in T ′ such
that none or 1 of the 3 branches separating X and Y belongs to one of the corner clades A1, A2, B1, B2.
Let A1 = A′

1
∪ A′′

1
, A2 = A′

2
∪ A′′

2
, B1 = B′

1
∪ B′′

1
and B2 = B′

2
∪ B′′

2
, where all the sets involved are

also clades of T ′ (and therefore T ). It is trivial to verify that

(18)

δ′A1A2
= δA1A2

, δ′B1B2
= δB1B2

, δ′A1B1
= δA1B1

, δ′A2B2
= δA2B2

,

δ′A′

1
B2

= δA′

1
B2

, δ′A′′

1
B2

= δA′′

1
B2

, δ′A1B
′

2

= δA1B
′

2
, δ′A1B

′′

2

= δA′

1
B′′

2
,

δ′A′

2
B1

= δA′

2
B1

, δ′A′′

2
B1

= δA′′

2
B1

, δ′A2B
′

1

= δA2B
′

1
, δ′A2B

′′

1

= δA2B
′′

1
,

as γT and γT ′

are the same within all the clades in the subscripts above. Now observe that A1 ∪B2

and A2 ∪B1 are clades in T ′ but not in T . Their average distances with other 3-separated clades must
then be obtained with expressions such as

(19) δ′A′

1
A2∪B1

= γ′

e′gδA′

1
A2

+ γ′

e′hδA′

1
B1

.

(Similar formulae are easy to obtain for δ′A′′

1
A2∪B1

, δ′B′

2
A2∪B1

, δ′B′′

2
A2∪B1

and δ′A′

2
A1∪B2

, δ′A′′

2
A1∪B2

,

δ′B′

1
A1∪B2

, δ′B′′

1
A1∪B2

.) We have therefore proved that these δ′XY can be obtained from one or two

corresponding entries in ∆
T (γT ) in O(1) time.

We still have to show how to derive δ′XY when 2 or all 3 of the branches separating X and Y belong
to a corner clade. Without loss of generality, we assume this clade to be A1. If both X,Y ⊂ A1, then
we trivially have δ′XY = δXY . Assume then Y ⊇ B1 ∪B2 ∪A2. Let clades Y1, Y2, . . . , Yk be defined as
in Fig. S2 (and note that if Y = B1 ∪B2 ∪ A2, no such Yi clade is defined). Also, if clade Y contains
clade Y ′ in T , define pY ′|Y as the probability that the random walk defined by the γT parameters
reaches Y ′, assuming that it enters Y from its root branch: pY ′|Y = γe0e1 · γe1e2 · . . . · γek−1ek , where
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Figure S2. Illustration for the proof of Lemma 13.

e0 is the root branch of Y and e1, e2, . . . , ek are the branches on the path between the roots of Y and
Y ′. Define p′

Y ′|Y similarly for T ′ and γT ′

. Then,

δ′XY = p′Y1|Y
δ′XY1

+ · · ·+ p′Yk|Y
δ′XYk

+ p′B1|Y
δ′XB1

+ p′B2|Y
δ′XB2

+ p′A2|Y
δ′XA2

= p′Y1|Y
δ′XY1

+ · · ·+ p′Yk|Y
δ′XYk

+ p′B1∪B2∪A2|Y
(γ′

fe′γ
′

e′hδ
′

XB1
+ γ′

flδ
′

XB2
+ γ′

fe′γ
′

e′gδ
′

XA2
)

= pY1|Y δXY1
+ · · ·+ pYk|Y δXYk

+ pB1∪B2∪A2|Y (γ
′

fe′γ
′

e′hδXB1
+ γ′

flδXB2
+ γ′

fe′γ
′

e′gδXA2
),

where the last equality uses the almost identity of γT and γT ′

. Similarly,

δXY = pY1|Y δXY1
+ · · ·+ pYk|Y δXYk

+ pB1∪B2∪A2|Y (γfeγehδXB1
+ γfeγelδXB2

+ γfgδXA2
).

Therefore,
(20)
δ′XY − δXY = pB1∪B2∪A2|Y

[

(γ′

fe′γ
′

e′h − γfeγeh)δXB1
+ (γ′

fl − γfeγel)δXB2
+ (γ′

fe′γ
′

e′g − γfg)δXA2

]

.

It is easy to derive similar equations for the cases where (a) X ⊂ A2, Y ⊇ B1 ∪B2 ∪A1, (b) X ⊂ B1,
Y ⊇ A1∪A2∪B2, (c) X ⊂ B2, Y ⊇ A1∪A2∪B1, which allow us to derive δ′XY in O(1) time from four
entries in ∆

T (γT ) (including δXY ) and pB1∪B2∪A1|Y , pA1∪A2∪B2|Y , pA1∪A2∪B1|Y for cases (a), (b), (c),
respectively. Now consider the following procedure:

(1) For every clade Y ⊇ B1 ∪B2 ∪ A2, calculate pB1∪B2∪A2|Y .

(1a, 1b, 1c) Do the same as above, for every clade Y ⊇ B1 ∪B2 ∪A1, for every Y ⊇ A1 ∪A2 ∪B2 and
for every Y ⊇ A1 ∪ A2 ∪B1.

(2) Use (20), or similar equation, to derive δ′XY for all 3-separated clades X,Y in T ′ such that 2 or all
3 of the branches separating X and Y belong to a corner clade A1, A2, B1, B2.

(3) Use the simple equations in (18) and (19) to calculate δ′XY for the remaining 3-separated clades.

Step (1) can be done in O(n) time, by starting with the smallest clades including B1 ∪ B2 ∪ A2 and
using the derived values to calculate those for the larger clades. The same holds for steps (1a, 1b, 1c).
Then, each δ′XY can be calculated in O(1) time. Since there are O(n) 3-separated pairs of clades, the
entire algorithm runs in O(n) time and thus Lemma 13 is proved. !

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4, part (ii). Recall that all the branch lengths in T0 and its NNI-neighbors

T1, T2, . . . , T2(n−3) are defined by (γTi ,λTi)-formulae, with the constraint that γTi and γT0 are al-
most identical. We wish to prove that the branch lengths of T1, T2, . . . , T2(n−3) can be calculated in

O(n2) time. Let δ
(i)
XY denote the average clade distances in ∆

Ti(γTi). Because of Lemma 12, ∆T0(γT0)

can be calculated in O(n2) time. From this, the calculation of δ
(i)
XY for every pair of 3-separated clades
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in Ti, requires O(n) time (Lemma 13). Combining this to Lemma 11 yields that all O(n) branch
lengths in Ti can be calculated in O(n) time. Since there are O(n) neighbors of T and each is treated
in O(n) time, the whole calculation requires O(n2) time. !

A4.3 Updating the accessory information when performing an NNI. The proof of Lemma
13 above suggests a related result which may also be useful for hill climbing, when the best NNI-
neighbor T ′ of T has been identified and we need to calculate ∆

T ′

(γT ′

) in order to explore efficiently
the NNI-neighborhood of T ′. Define diam(T ), the diameter of T , as the maximum number of branches
separating any two leaves of T .

Proposition 14. Let T and T ′ be NNI-neighbors and let γ
T and γ

T ′

be almost identical. Given

∆
T (γT ), its update into ∆

T ′

(γT ′

) requires O(n · diam(T )) time.

Proof. Let T be as in Fig. 1(b) and T ′ as in Fig. S2. Let δXY and δ′XY denote average clade distances

from ∆
T (γT ) and ∆

T ′

(γT ′

), respectively. In order to obtain ∆
T ′

(γT ′

) from ∆
T (γT ), one needs to

calculate the entries of ∆
T ′

(γT ′

) that have no corresponding entry in ∆
T (γT ) or those that have

changed. These are the δ′XY for all pairs of clades X,Y in T ′ such that some of the branches f, g, h, l

belong to X or Y . The only case where both X and Y have at least one of f, g, h, l belonging to them
is that where X = A1 ∪ B2 and Y = A2 ∪ B1. In this case, δ′XY can be obtained from ∆

T (γT ) with
δ′XY = γ′

e′fγ
′

e′gδA1A2
+ γ′

e′fγ
′

e′hδA1B1
+ γ′

e′gγ
′

e′lδA2B2
+ γ′

e′hγ
′

e′lδB1B2
.

All the other cases correspond to a pair of clades X,Y such that one of them, say X , is included in
one of the four corner clades A1, A2, B1, B2 and the other, Y , includes two or three of the other clades
(see e.g. Fig. S2, where X ⊂ A1 and Y ⊇ B1 ∪ B2 ∪ A2). It is clear that for any such X , the number
of possible choices for Y equals the number of branches in the path starting with e′ and ending in
the root of X . In other words, there are O(n) possible choices for X , each of which corresponds to
diam(T ) choices for Y . Therefore we need to consider O(n diam(T )) pairs of clades. For each of these
pairs, we now prove that δ′XY can be calculated in O(1) time from ∆

T (γT ), once steps (1, 1a, 1b, 1c)
from the proof of Proposition 13 have been executed (in O(n) time): if Y = A2 ∪B1 or Y = A1 ∪B2,
then it is straightforward to obtain δ′XY as γ′

e′gδXA2
+γ′

e′hδXB1
or as γ′

e′fδXA1
+γ′

e′lδXB2
, respectively;

otherwise, if Y includes three of A1, A2, B1, B2, it is easy to see that (20), and similar equations for
X ⊂ A2, B1, B2, still hold (without the assumption, made in the proof of Lemma 13, that X and Y

are 3-separated). It is then possible to calculate each δ′XY in constant time. !
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