Phan Nhat
email: nhat-hai.phan@teledetection.fr

Pascal Poncelet
email: pascal.poncelet@lirmm.fr

Maguelonne Teisseire
email: maguelonne.teisseire@teledetection.fr

GET MOVE: An Efficient and Unifying Spatio-Temporal Pattern Mining Algorithm for Moving Objects

Keywords: Spatio-temporal pattern, frequent closed itemset, trajectories

Recent improvements in positioning technology has led to a much wider availability of massive moving object data. A crucial task is to find the moving objects that travel together. Usually, they are called spatio-temporal patterns. Due to the emergence of many different kinds of spatio-temporal patterns in recent years, different approaches have been proposed to extract them. However, each approach only focuses on mining a specific kind of pattern. In addition to the fact that it is a painstaking task due to the large number of algorithms used to mine and manage patterns, it is also time consuming. Additionally, we have to execute these algorithms again whenever new data are added to the existing database. To address these issues, we first redefine spatio-temporal patterns in the itemset context. Secondly, we propose a unifying approach, named GeT Move, using a frequent closed itemset-based spatio-temporal pattern-mining algorithm to mine and manage different spatio-temporal patterns. GeT Move is implemented in two versions which are GeT Move and Incremental GeT Move. Experiments are performed on real and synthetic datasets and the experimental results show that our approaches are very effective and outperform existing algorithms in terms of efficiency.

Introduction

Nowadays, many electronic devices are used for real world applications. Telemetry attached on wildlife, GPS installed in cars, sensor networks, and mobile phones have enabled the tracking of almost any kind of data and has led to an increasingly large amount of data that contain moving objects. Therefore, analysis on such data to find interesting patterns is attracting increasing attention for applications such as movement pattern analysis, animal behavior study, route planning and vehicle control.

Recently, many spatio-temporal patterns have been proposed [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF][START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF][START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF][START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF][START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF][START_REF] Mamoulis | Mining, Indexing, and Querying Historical Spatiotemporal Data[END_REF][START_REF] Jensen | Continuous clustering of moving objects[END_REF]. In this paper, we are interested in the querying of patterns which capture 'group' or 'common' behaviour among moving entities. This is particularly true to identify groups of moving objects for which a strong relationship and interaction exist within a defined spatial region during a given time duration. Some examples of these patterns are flocks [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF][START_REF] Mr | On-line Discovery of Flock Patterns in Spatio-Temporal Data[END_REF], moving clusters [START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF][START_REF] Jensen | Continuous clustering of moving objects[END_REF], convoy queries [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF], closed swarms [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF][START_REF] Li | Movemine: Mining moving object databases[END_REF], group patterns [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF], periodic patterns [START_REF] Mamoulis | Mining, Indexing, and Querying Historical Spatiotemporal Data[END_REF], etc... To extract these kinds of patterns, different algorithms have been proposed. Naturally, the computation is costly and time consuming because we need to execute different algorithms consecutively. However, if we had an algorithm which could extract different kinds of patterns, the computation costs will be significantly decreased and the process would be much less time consuming. Therefore, we need to develop an efficient unifying algorithm. Additionally, in real world applications (e.g. cars), object locations are continuously reported by using Global Positioning System (GPS). Thus, new data is always available. If we do not have an incremental algorithm, we need to execute again and again algorithms on the whole database including existing data and new data to extract patterns. This is of course, cost-prohibitive and time consuming. An incremental algorithm can indeed improve the process by combining the results extracted from the existing data and the new data to obtain the final results.

With the above issues in mind, we propose GeT Move: a unifying incremental spatio-temporal pattern-mining approach. The main idea of the algorithm and the main contributions of this paper are summarized below.

• We re-define the spatio-temporal patterns mining in the itemset context which enable us to effectively extract different kinds of spatio-temporal patterns. • We present approaches, called GeT Move and Incremental GeT Move, which efficiently extract FCIs from which spatio-temporal patterns are retrieved. • We present comprehensive experimental results over both real and synthetic databases.

The results demonstrate that our techniques enable us to effectively extract different kinds of patterns. Furthermore, our approaches are more efficient compared to other algorithms in most of cases.

The remaining sections are organized as follows. Section 2 discusses preliminary definitions of the spatio-temporal patterns and the related work. The properties of these patterns are provided in an itemset context in Section 3. We introduce the GeT Move and Incremental GeT Move algorithms in Section 4. Experiments testing effectiveness and efficiency are shown in Section 5. Finally, we draw our conclusions in Section 6.

2 Spatio-Temporal Patterns

Preliminary Definitions

The problem of spatio-temporal patterns has been extensively addressed over the last years. Basically, spatio-temporal patterns are designed to group similar trajectories or objects which tend to move together during a time interval. Recently, many patterns have been defined such as flocks [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF][START_REF] Mr | On-line Discovery of Flock Patterns in Spatio-Temporal Data[END_REF], convoys [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF], swarms, closed swarms [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF][START_REF] Li | Movemine: Mining moving object databases[END_REF], moving clusters [START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF][START_REF] Jensen | Continuous clustering of moving objects[END_REF], group pattern [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF] and even periodic patterns [START_REF] Mamoulis | Mining, Indexing, and Querying Historical Spatiotemporal Data[END_REF]. In this paper, we focus on proposing a unifying approach to effectively and efficiently extract all these different kinds of patterns. First of all, we assume that we have a group of moving objects O DB = {o 1 ,o 2 ,...,o z }, a set of timestamps T DB = {t 1 ,t 2 ,...,t n } and at each timestamp t i ∈ T DB , spatial information3 x, y for each object. For example, Table 1 illustrates an example of a spatio-temporal database. Usually, in spatio-temporal mining, we are interested in extracting a group of objects staying together during a period. Therefore, from now, O = {o i1 ,o i2 ,...,o ip }(O ⊆ O DB) stands for a group of objects, T = {t a1 ,t a2 ,...,t am }(T ⊆ T DB) is the set of timestamps within which objects stay together. Let ε be a user-defined threshold standing for a minimum number of objects and min t a minimum number of timestamps. Thus |O| (resp. |T |) must be greater than or equal to ε (resp. min t). In the following, we formally define all the different kinds of patterns.

Informally, a swarm is a group of moving objects O containing at least ε individuals which are closed each other for at least min t timestamps. To avoid this redundancy, Zhenhui Li et al. [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF] propose the notion of closed swarm for grouping together both objects and time. A swarm (O, T) is object-closed if when fixing T , O cannot be enlarged. Similarly, a swarm (O, T) is time-closed if when fixing O, T cannot be enlarged. Finally, a swarm (O, T) is a closed swarm if it is both object-closed and time-closed. Then swarm and closed swarm can be formally defined as follows:

Definition 1 Swarm and Closed Swarm [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF]. A pair (O, T) is a swarm if:

   (1) : ∀t ai ∈ T,∃c s.t. O ⊆ c, c is a cluster. (2) : |O|≥ε. (3) : |T |≥min t .
(1)

A pair (O, T) is a closed swarm if:    (1) : (O, T) is a swarm. (2) : O s.t. (O ,T) is a swarm and O ⊂ O . (3) : T s.t. (O, T) is a swarm and T ⊂ T . (2)
For example, as shown in Figure 1a, if we set ε =2and min t =2 , we can find the following swarms

({o 1 ,o 2 }, {t 1 ,t 3 }), ({o 1 ,o 2 }, {t 1 ,t 4 }), ({o 1 ,o 2 }, {t 3 ,t 4 }), ({o 1 ,o 2 }, {t 1 ,t 3 ,t 4 }).
We can note that these swarms are in fact redundant since they can be grouped together in the following closed swarm ({o 1 ,o 2 }, {t 1 ,t 3 ,t 4 }).

A convoy is also a group of objects such that these objects are closed each other during at least min t time points. The main difference between convoy and closed swarm is that convoy lifetimes must be consecutive: Definition 2 Convoy [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF]. A pair (O, T), is a convoy if:

(1) : (O, T) is a swarm.

(2) : ∀i, 1 ≤ i<|T |, t ai ,t ai+1 are consecutive.

(

) 3
For instance, on Figure 1b, with ε =2 , min t =2we have two convoys

({o 1 ,o 2 }, {t 1 ,t 2 ,t 3 ,t 4 }) and ({o 1 ,o 2 ,o 3 }, {t 3 ,t 4 }).
Until now, we have considered that we have a group of objects that move close to each other for a long time interval. As shown in [START_REF] Han | Mining Moving Object, Trajectory and Traffic Data[END_REF], moving clusters and different kinds of flocks virtually share essentially the same definition. Basically, the main difference is based on the clustering techniques used. Flocks usually consider a rigid definition of the radius while moving clusters and convoys apply a density-based clustering algorithm (e.g. DBScan [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF]). Moving clusters can be seen as special cases of convoys with the additional condition that they need to share some objects between two consecutive timestamps [START_REF] Han | Mining Moving Object, Trajectory and Traffic Data[END_REF]. Therefore, in the following, for brevity and clarity sake we will mainly focus on convoy and density-based clustering algorithms.

In [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF], Hwang et al. propose a general pattern, called a group pattern, which essentially is a combination of both convoys and closed swarms. Basically, group pattern is a set of disjointed convoys which are generated by the same group of objects in different time intervals. By considering a convoy as a timepoint, a group pattern can be seen as a swarm of disjointed convoys. Additionally, group pattern cannot be enlarged in terms of objects and number of convoys. Therefore, group pattern is essentially a closed swarm of disjointed convoys. Formally, group pattern can be defined as follows: Definition 3 Group Pattern [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF]. Given a set of objects O, a minimum weight threshold min wei , a set of disjointed convoys T S = {s 1 ,s 2 ,...,s n }, a minimum number of convoys min c . (O, T S) is a group pattern if:

(1) : (O, T S) is a closed swarm with ε,min c . (e.g. |T S |≥min c)

(2) :

|T S | i=1 |si| |T DB | ≥ min wei . (4)
For instance, see Figure 2a, with min t =2and ε =2we have a set of convoys

T S = {({o 1 ,o 2 }, {t 1 ,t 2 }), ({o 1 ,o 2 }, {t 4 ,t 5 })}. Additionally, with min c =1we have ({o 1 ,o 2 },T S) is a closed swarm of convoys because |T S | =2≥ min c , |O|≥ε and (O, T S) cannot be enlarged. Furthermore, with min wei =0 .5, (O, T S) is a group pattern since |[t1,t2]|+|[t4,t5]| |T DB | = 4
5 ≥ min wei . Previously, we overviewed patterns in which group objects move together during some time intervals. However, mining patterns from individual object movement is also interesting. In [START_REF] Mamoulis | Mining, Indexing, and Querying Historical Spatiotemporal Data[END_REF], N. Mamoulis et al. propose the notion of periodic patterns in which an object follows the same routes (approximately) over regular time intervals. For example, people wake up at the same time and generally follow the same route to A group pattern example.

A periodic pattern example.

Fig. 2. Group pattern and periodic patten example.

their work everyday. Given that an object's trajectory N is decomposed into N T P subtrajectories. T P is data-dependent and has no definite value. For example, T P can be set to 'a day' or 'a year' depended on different applications. Essentially, a periodic pattern is a closed swarm discovered from N T P sub-trajectories. For instance, in Figure 2b, we have 3 daily sub-trajectories and from them we extract the two following periodic patterns {c 1 ,c 2 ,c 3 ,c 4 } and {c 1 ,c 3 ,c 4 }. As we have provided the definition of a closed swarm, we will mainly focus on closed swarm mining below.

Related Work

As we mentioned before, many approaches have been proposed to extract patterns. The interested readers may refer to [START_REF] Han | Mining Moving Object, Trajectory and Traffic Data[END_REF] where short descriptions of the most efficient or interesting patterns and approaches are proposed. For instance, Gudmundsson and van Kreveld [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF], Vieira et al. [START_REF] Mr | On-line Discovery of Flock Patterns in Spatio-Temporal Data[END_REF] define a flock pattern, in which the same set of objects stay together in a circular region with a predefined radius, Kalnis et al. [START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF] propose the notion of moving clusters, while Jeung et al. [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF] define a convoy pattern.

Jeung et al. [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF] adopt the DBScan algorithm [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] to find candidate convoy patterns. The authors propose three algorithms CMC,CuTS,CuTS * that incorporate trajectory simplification techniques in the first step. The distance measurements are performed on trajectory segments of as opposed to point based distance measurements. Then, the authors proposed to interpolate the trajectories by creating virtual time points and by applying density measurements on trajectory segments. Additionally, the convoy is defined as a candidate when it has at least k clusters during k consecutive timestamps.

Recently, Zhenhui Li et al. [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF] propose the concept of swarm and closed swarm and the ObjectGrowth algorithm to extract closed swarm patterns. The ObjectGrowth method is a depth-first-search of all subsets of O DB through a pre-order tree traversal. To speed up the search process, they propose two pruning rules. Apriori Pruning and Backward Pruning are used to stop traversal the subtree when we find further traversal that cannot satisfy min t and closure property. After pruning the invalid candidates, a ForwardClosure checking is used to determine whether a pattern is a closed swarm.

In [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF], Hwang et al. propose two algorithms to mine group patterns, known as the Apriori-like Group Pattern mining algorithm and Valid Group-Growth algorithm. The former explores the Apriori property of valid group patterns and extends the Apriori algorithm to mine valid group patterns. The latter is based on idea similar to the FP-growth algorithm. Recently in [START_REF] Romero | Mining moving flock patterns in large spatio-temporal datasets using a frequent pattern mining approach[END_REF], A. Calmeron proposes a frequent itemset-based approach for flock identification purposes.

Even if these approaches are very efficient they suffer the problem that they only extract a specific kind of pattern. When considering a dataset, it is quite difficult, for (a) An illustrative example.

(b) A swarm from the illustrative example.

Fig. 3. An illustrative example. Table 2. Cluster Matrix

TDB t1 t2 t3 Clusters CDB c11 c21 c31 c12 c22 c32 c13 c23 ODB o1 1 1 1 o2 1 1 1 o3 1 1 1 o4 1 1 1 o5 1 1 1
the decision maker, to know in advance the kind of patterns embedded in the data.

Therefore proposing an approach able to automatically extract all these different kinds of patterns can be very useful and this is the problem we address in this paper and that will be developed in the next sections.

Spatio-Temporal Patterns in Itemset Context

Basically, patterns are evolution of clusters over time. Therefore, to manage the evolution of clusters, we need to analyse the correlations between them. Furthermore, if clusters share some characteristics (e.g. share some objects), they could be a pattern. Consequently, if a cluster is considered as an item we will have a set of items (called itemset). The main problem essentially is to efficiently combine items (clusters) to find itemsets (a set of clusters) which share some characteristics or satisfy some properties to be considered as a pattern. To describe cluster evolution, spatio-temporal data is presented as a cluster matrix from which patterns can be extracted. For instance, the data from Figure 3a is presented in a cluster matrix in Table 2. Object o 1 belongs to the cluster c 11 at timestamp t 1 . For clarity reasons in the following, c ij represents the cluster c i at time t j . Therefore, the matrix cell (o 1 -c 11) is 1, meanwhile the matrix cell (o 4 -c 11) is empty because object o 4 does not belong to c 11 .

By presenting data in a cluster matrix, each object acts as a transaction while each cluster c j stands for an item. Additionally, an itemset can be formed as Υ = {c ta 1 ,c ta 2 ,...,c ta p } with life time T Υ = {t a1 ,t a2 ,...,t ap } where t a1 <t a2 <...<t ap , ∀a i : t ai ∈ T DB ,c ta i ∈ C ai . The support of the itemset Υ , denoted σ(Υ), is the number of common objects in every items belonging to Υ , O(Υ)= In this paper, we do not provide the properties and proof for convoys, moving clusters which are basically extended by adding some conditions to Property 1. For instance, a convoy is a swarm which satisfies the consecutiveness in terms of time condition. For moving clusters [START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF], they need to share some objects between two timestamps (integrity proportion). Regarding to periodic patterns, the main difference in periodic pattern mining is the input data while the property is similar to Property 2. With a slightly modifying cluster matrix such as "each object o becomes a sub-trajectory", we can extract periodic patterns by applying Property 2.

           (1) : (O(Υ),T Υ) is a swarm. (2) : Υ s.t O(Υ) ⊂ O(Υ),T Υ = T Υ and (O(Υ),T Υ) is a swarm. (3) : Υ s.t. O(Υ)=O(Υ),T Υ ⊂ T Υ and (O(Υ),T Υ) is a swarm. (6) Proof. After construction, we obtain (O(Υ),T Υ) which is a swarm. Additionally, if Υ s.t O(Υ) ⊂ O(Υ),T Υ = T Υ and (O(Υ),T Υ) is a swarm then (O(Υ),T Υ) can- not be enlarged in terms of objects. Therefore, it satisfies the object-closed condition. Furthermore, if Υ s.t. O(Υ)=O(Υ),T Υ ⊂ T Υ and (O(Υ),T Υ) is a swarm then (O(Υ),T Υ) cannot
Please remember that group pattern is a set of disjointed convoys. Therefore, the group pattern property is as follows: Property 3. Group Pattern. Given a frequent itemset Υ = {c ta 1 ,c ta 2 ,...,c ta p }, a mininum weight min wei , a minimum number of convoys min c , a set of consecutive time segments T S = {s 1 ,s 2 ,...,s n }. (O(Υ),T S) is a group pattern if and only if: Proof. If |T S |≥min c then we know that at least min c consecutive time intervals Above, we presented some useful properties to extract spatio-temporal patterns from itemsets. Now we will focus on the fact that from an itemset mining algorithm we are able to extract the set of all spatio-temporal patterns. We thus start the proof process by analyzing the swarm extracting problem. This first lemma shows that from a set of frequent itemsets we are able to extract all the swarms embedded in the database. Lemma 1. Let FI = {Υ 1 ,Υ 2 ,...,Υ l } be the frequent itemsets being mined from the cluster matrix with minsup = ε. All swarms (O, T) can be extracted from FI.

           (1) : |T S |≥min c . (2) : ∀s i ,s i ⊆ T Υ , |s i |≥min t . (3) : n i=1 s i = ∅, n i=1 O(s i)=O(Υ). (4
s i in T S . Furthermore, if ∀s i ,s i ⊆ T Υ then we have O(Υ) ⊆ O(s i). Additionally, if |s i |≥min t then (O(Υ),s i) is a convoy (Definition 2). Now, T S actually is a set of convoys of O(Υ) and if n i=1 s i = ∅ then T S is a set of disjointed convoys. A little bit further, if ∀s ∈ T S ,
Proof. Let us assume that (O, T) is a swarm. Note, T = {t a1 ,t a2 ,...,t am }. According to the Definition 1 we know that |O|≥ε. We can consider that by adding constraints such as "consecutive lifetime", "timeclosed", "object-closed", "integrity proportion" to swarms, we can retrieve convoys, closed swarms and moving clusters. Therefore, the set of all convoys, closed swarms, moving clusters are subset of the set of all swarms. By applying Lemma 1, we retrieve all swarms from frequent itemsets. Consequently, convoys and moving clusters can be completely extracted from frequent itemsets. Additionally, all periodic patterns also can be extracted because they are similar to closed swarms. Furthermore, the following lemma shows that all of group patterns can be extracted from frequent itemsets.

If (O, T) is a swarm then ∀t ai ∈ T,∃c ta i s.t. O ⊆ c ta i therefore m i=1 c ta i = O. Additionally, we know that ∀c ta i ,c ta i is an item so ∃Υ = m i=1 c ta i is an itemset and O(Υ)= m i=1 c ta i = O, T Υ = m i=1 t ai = T . Therefore, (O(Υ),T Υ) is a swarm. So, (O, T) is extracted from Υ . Furthermore, σ(Υ)=|O(Υ)| = |O|≥ε then Υ is a frequent itemset and Υ ∈ FI.

FCI-based Spatio-Temporal Pattern Mining Algorithm

In this section, we propose two approaches i.e., GeT Move and Incremental GeT Move, to efficiently extract patterns. The global process is illustrated in Figure 4. In the first step, a clustering approach is applied at each timestamp to group objects into different clusters. For each timestamp t a , we thus have a set of clusters C a = {c 1ta ,c 2ta ,...,c mta }, with 1 ≤ k ≤ m, c kta ⊆ O DB . Spatio-temporal data can thus be converted to a cluster matrix CM.

GeT Move

After generating the cluster matrix CM, a FCI mining algorithm is applied on CM to extract all the FCIs. By scanning them and checking properties, we can obtain the patterns. In this paper, we apply the LCM algorithm [START_REF] Uno | LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF] to extract FCIs as it is known to be a very efficient algorithm. In LCM algorithm's process, we discard some useless candidate itemsets. In spatio-temporal patterns, items (resp. clusters) must belong to different timestamps and therefore items (resp. clusters) which form a FCI must be in different timestamps. In contrast, we are not able to extract patterns by combining items in the same timestamp. Consequently, FCIs which include more than 1 item in the same timestamp will be discarded. Thanks to the above characteristic, we now have the maximum length of the FCIs which is the number of timestamps |T DB |. Additionally, the LCM search space only depends on the number of objects (transactions) |O DB | and the maximum length of itemsets |T DB |. Consequently, by using LCM and by applying the above characteristic, GeT Move is not affected by the number of clusters and therefore the computing time can be greatly reduced. Table 3.

Closed Itemset Matrix Block B b1 b2 Frequent Closed Itemsets CI ci11 ci12 ci22 ODB o1 1 1 o2 1 1 o3 1 1 o4 1 1
The pseudo code of GeT Move is described in Algorithm 1. The core of GeT Move algorithm is based on the LCM algorithm which has been modified by adding the pruning rule and by extracting patterns from FCIs (line 2). Whenever a closed itemset is detected, the PatternMining sub-function (lines 3-25) is invoked to check properties of the itemset X to extract spatio-temporal patterns.

Incremental GeT Move

Naturally, in real world applications (cars, animal migration), the objects tend to move together in short interval meanwhile their movements can be different in long interval. Therefore, the number of items (clusters) can be large and the length of FCIs can be long. Additionally, refer to [START_REF] Lucchese | DCI Closed: A Fast and Memory Efficient Algorithm to Mine Frequent Closed Itemsets[END_REF][START_REF] Uno | LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF], the FCI mining algorithms search space are affected by the number of items and the length of itemsets. For instance, see Figure 5a, objects {o 1 ,o 2 ,o 3 ,o 4 } move together during first 100 timestamps and after that o 1 ,o 2 stay together while o 3 ,o 4 move together in another direction. The problem here is that if we apply GeT Move on the whole dataset, the extraction of the itemsets can be very time consuming.

To deal with the issue, we propose the Incremental GeT Move algorithm. The main idea is to split the trajectories (resp. cluster matrix CM) into short intervals, called blocks. By applying FCI mining on each short interval, the data can then be compressed into local FCIs. Additionally, the length of itemsets and the number of items can be greatly reduced. For instance, see Figure 5, if we consider [t 1 ,t 100] as a block and [t 101 ,t 200] as another block, the maximum length of itemsets in both blocks is 100 (instead of 200). Additionally, the original data can be greatly compressed (e.g. Figure 5b) and only 3 items remain: ci 11 ,ci 12 ,ci 22 . Definition 6 Closed Itemset Matrix (CIM). Closed itemset matrix is a cluster matrix with some differences as follows: 1) Timestamp t now becomes a block b. 2) Item c is a FCI ci.

For instance, see Table 3, we have two sets of FCIs CI 1 = {ci 11 },CI 2 = {ci 12 ,ci 22 } which are respectively extracted from blocks b 1 ,b 2 . We have CIM which is created from CI 1 ,CI 2 in Table 3. Now, by applying FCI mining on closed itemset matrix CIM, we retrieve all FCIs from corresponding data. Note that items (in CIM) which are in the same block cannot be in the same FCIs.

Lemma 3. Given a cluster matrix CM which is vertically split into a set of blocks B = {b 1 ,b 2 ,...,b p } so that ∀Υ, Υ is a FCI and Υ is extracted from CM then Υ can be extracted from the closed itemset matrix CIM.

Proof. Let us assume that ∀b i , ∃I i is a set of items belonging to b i and therefore we have

|B| i=1 I i = ∅. If ∀Υ, Υ is a FCI extracted from CM then Υ is formed as Υ = {γ 1 ,γ 2 ,...,γ p } where γ i is a set of items s.t. γ i ⊆ I i . Additionally, Υ is a FCI and O(Υ)= p i=1 O(γ i) then ∀O(γ i),O(Υ) ⊆ O(γ i)
. Furthermore, we have |O(Υ)|≥ε; therefore, |O(γ i)|≥ε so γ i is a frequent itemset. Assume that ∃γ i ,γ i ∈ CI i then ∃Ψ, Ψ ∈ CI i s.t. γ i ⊆ Ψ and σ(γ i)=σ(Ψ),O(γ i)=O(Ψ). Note that Ψ , γ i are from b i . Remember that O(Υ)=O(γ 1)∩O(γ 2)∩...∩O(γ i)∩...∩O(γ p) and we have: ∃Υ s.t. O(Υ)=O(γ 1) ∩ O(γ 2) ∩ ...∩ O(Ψ) ∩ ...∩ O(γ p). Therefore, O(Υ)=O(Υ) and σ(Υ)=σ(Υ). Additionally, we know that γ i ⊆ Ψ so Υ ⊆ Υ . Consequently, we obtain Υ ⊆ Υ and σ(Υ)=σ(Υ). Therefore, Υ is not a FCI. That violates the assumption and therefore we have: if ∃γ i ,γ i ∈ CI i therefore Υ is not a FCI. Finally, we can conclude that ∀Υ, Υ = {γ 1 ,γ 2 ,...,γ p } is a FCI extracted from CM, ∀γ i ∈ Υ , γ i must be belong to CI i and γ i is an item in closed itemset matrix CIM. Therefore, Υ can be retrieved by applying FCI mining on CIM.

By applying Lemma 3, we can obtain all the FCIs and from the itemsets, patterns can be extracted. Note that the Incremental GeT Move does not depend on the length restriction min t . The reason is that min t is only used in Spatio-Temporal Patterns Mining step. Whatever min t (min t ≥ block size or min t ≤ block size), Incremental GeT Move can extract all the FCIs and therefore the final results are the same.

The pseudo code of Incremental GeT Move is described in Algorithm 2. The main different between the code of Incremental GeT Move and GeT Move is the update function. In this function, we step by step generate the closed itemsets matrix from extracted closed itemsets in blocks (line 4). Next, we apply GeT Move to extract patterns (line 5).

Experimental Results

A comprehensive performance study has been conducted on real datasets and synthetic datasets. All the algorithms are implemented in C++, and all the experiments are carried out on a 2.8GHz Intel Core i7 system with 4GB Memory. The system runs Ubuntu 11.10 and g++ version 4.6.1.

The implementation (source code) is available and also integrated in our online demonstration system4 . As in [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF], we only report the results on the following datasets5 : Swainsoni dataset includes 43 objects evolving over time and 764 different timestamps. The interested readers may refer to our online demonstration system 2 for other experimental results. Additionally, similar to [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF][START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF], we first use linear interpolation to fill in the missing data and then DBScan [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] (MinPts =2,Eps =0.001) is applied to generate clusters at each timestamp.

In the comparison, we employ CMC,CuTS *6 [3] (convoy mining) and Object Growth (closed swarm mining). Note that, in [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF], ObjectGrowth outperforms VG-Growth [START_REF] Wang | Efficient Mining of Group Patterns from User Movement Data[END_REF] (a group patterns mining algorithm) in terms of performance and therefore we will only consider ObjectGrowth and not both.

Effectiveness

We proved that mining spatio-temporal patterns can be similarly mapped into itemsets mining issue. Therefore, in theoretical way, our approaches can provide the correct results. Experimentally, we do a further comparison, we first obtain the spatio-temporal patterns by applying CMC,CuTS * , ObjectGrowth as well as our approaches. To apply our algorithms, we split cluster matrix into blocks such as each block b contains 25 timestamps. Additionally, to retrieve all the spatio-temporal patterns, in the reported experiments, the default value of ε is set to 2 (two objects can form a pattern), min t is 1. Note that the default values are the hardest conditions for examining the algorithms. Then in the following we mainly focus on different values of min t in order to obtain different sets of convoys, closed swarms and group patterns. Note that for group patterns, min c is 1 and min wei is 0. The results show that our proposed approaches obtain the same results compared to the traditional algorithms. An example of patterns is illustrated in Figure 6. For instance, see Figure 6a, a closed swarm is discovered within a FCI. Furthermore, from the itemset, a convoy and a group pattern are also extracted (i.e. Figure 6b,6c).

Efficiency

In the reported experiments, GeT Move and Incremental GeT Move extract closed swarms, convoys and group patterns while CMC,CuTS * only extract convoys and ObjectGrowth only extracts closed swarms. Additionally, all the algorithms are applied on cluster matrices, thus clustering cost was not taken into account.

Efficiency w.r.t. ε, min t . Figure 7a shows running time w.r.t. ε. It is clear that our approaches outperform other algorithms. ObjectGrowth is the lowest one and the main reason is that with low min t (default min t =1), the Apriori Pruning rule (the most efficient pruning rule) is no longer effective. Therefore, the search space is greatly enlarged (2 |O DB | in the worst case). Additionally, there is no pruning rule for ε and therefore the change of ε does not directly affect the running time of ObjectGrowth. A little bit further, GeT Move is lower than Incremental GeT Move. The main reason is that GeT Move has to process with large number of items and long itemsets. While, thanks to blocks, the number of items is greatly reduced and itemsets are not long as the ones in GeT Move. Figure 7b shows running time w.r.t. min t . In almost all cases, our approaches outperform other algorithms. In addition, the other experimental results on different real and synthetic datasets are available on our demo system website. Some interesting experiments on the number of patterns, algorithm scalability, optimal block-sizes and also a parameter free version of Incremental GeT Move are integrated on the online system. Interested readers may refer to "www.lirmm.fr/ ∼phan/GeTMove.html".

Conclusion and Discussion

In this paper, we propose unifying incremental approaches to automatically extract different kinds of spatio-temporal patterns by applying FCI mining techniques. Their effectiveness and efficiency have been evaluated by using real and synthetic datasets. Experiments show that our approaches outperform traditional ones.

One next issue we plan to address is how to take into account the arrival of new objects which were not available for the first extraction. Now, we can store the result to improve the process when new object movements arrive. But, in this approach, we take the hypothesis is that the number of objects remains the same. However in some applications these objects could be different.

Fig. 1 .

 1 An example of swarm and convoy where c1,c2,c3,c4 are clusters which gather closed objects together at specific timestamps.

 p i=1 c ta i . Additionally, the length of Υ , denoted |Υ |, is the number of items or timestamps (= |T Υ |). For instance, in Table 2, for a support value of 2 we have: Υ = {c 11 ,c 12 } veryfying σ(Υ)=2 . Every items (resp. clusters) of Υ, c 11 and c 12 , are in the transactions (resp. objects) o 1 ,o 2 . The length of |Υ | is the number of items (=2). Naturally, the number of clusters can be large; however, the maximum length of itemsets is |T DB |. Because of the density-based clustering algorithm used, clusters at the same timestamp cannot be in the same itemsets. Now, we will define some useful properties to extract the patterns presented in Section 2 from frequent itemsets as follows: Property 1. Swarm. Given a frequent itemset Υ = {c ta 1 ,c ta 2 ,...,c ta p }. (O(Υ),T Υ) is a swarm if and only if: (1) : σ(Υ) ≥ ε (2) : |Υ |≥min t (5) Proof. After construction, we have σ(Υ) ≥ ε and σ(Υ)=|O(Υ)| then |O(Υ)|≥ ε. Additionally, as |Υ |≥min t and |Υ | = |T Υ | then |T Υ |≥min t . Furthermore, ∀t aj ∈ T Υ ,O(Υ) ⊆ c ta j , means that at every timestamp we have a cluster containing all objects in O(Υ). Consequently, (O(Υ),T Υ) is a swarm because it satisfies all the requirements of the Definition 1. For instance, in Figure 3b, for the frequent itemset Υ = {c 11 ,c 13 } we have (O(Υ)= {o 1 ,o 2 ,o 3 },T Υ = {t 1 ,t 3 }) which is a swarm with support threshold ε =2and min t =2. We can notice that σ(Υ)=3>εand |Υ | =2≥ min t . Property 2. Closed Swarm. Given a frequent itemset Υ = {c ta 1 ,c ta 2 ,...,c ta p }. (O(Υ),T Υ) is a closed swarm if and only if:

 be enlarged in terms of lifetime. Therefore, it satisfies the timeclosed condition. Consequently, (O(Υ),T Υ) is a swarm and it satisfies object-closed and time-closed conditions and therefore (O(Υ),T Υ) is a closed swarm according to the Definition 1.

) : ∀s ∈ T S ,sis a convoy, O(Υ) ⊆ O(s).

 s is a convoy and O(Υ) ⊆ O(s) then T S s.t. T S ⊂ T S and |T S | i=1 O(s i)=O(Υ). Therefore, (O(Υ),T S) cannot be enlarged in terms of number of convoys. Similarly, if n i=1 O(s i)=O(Υ) then (O(Υ),T S) cannot be enlarged in terms of objects. Consequently, (O(Υ),T S) is a closed swarm of disjointed convoys because |O(Υ)|≥ε, |T S |≥min c and (O(Υ),T S) cannot be enlarged (Definition 1). Finally, if (O(Υ),T S) satisfies condition (5) then it is a valid group pattern due to Definition 3.

Fig. 4 .

 4 Fig. 4. The main process. s.t. if (O, T) is a swarm then ∃Υ s.t. Υ ∈ FI and (O, T) can be extracted from Υ , we can conclude that ∀ a swarm (O, T), it can be mined from FI.

Lemma 2 .

 2 Given FI = {Υ 1 ,Υ 2 ,...,Υ l } contains all frequent itemsets mined from cluster matrix with minsup = ε. All group patterns (O, T S) can be extracted from FI. Proof. ∀(O, T) is a valid group pattern, we have ∃T S = {s 1 ,s 2 ,...,s n } and T S is a set of disjointed convoys of O. Therefore, (O, T si) is a convoy and ∀s i ∈ T S , ∀t ∈ T si , ∃c t s.t. O ⊆ c t . Let us assume C si is a set of clusters corresponding to s i , we know that ∃Υ , Υ is an itemset, Υ = n i=1 C si and O(Υ)= n i=1 O(C si)=O. Additionally, (O, T S) is a valid group pattern; therefore, |O|≥ε so |O(Υ)|≥ε. Consequently, Υ is a frequent itemset and Υ ∈ FI because Υ is an itemset and σ(Υ)=|O(Υ)|≥ε. Consequently, ∀(O, T S), ∃Υ ∈ FI s.t. (O, T S) can be extracted from Υ and therefore all group patterns can be extracted from FI.

Algorithm 1 : 2 LCM 14 if 2 K

 12142 GeT Move Input : int ε, int mint, set of items C DB , double θ, int minc, double minwei 1 begin PatternMining(C DB ,ε); 3 PatternMining(X, mint) /*Closed Swarm*/ 7 gP attern := ∅; convoy := ∅; mc := ∅; 8 for k := 1 to |X -1| do 9 if x k .time = x (k+1) .time -1 then 10 convoy := convoy ∪ x k ; 11 if |T (x k)∩T (x k+1)| |T (x k)∪T (x k+1)| ≥ θ then 12 mc := mc ∪ x k ; 13 else |mc ∪ x k |≥mint then 15 output mc ∪ x k ; /*MovingCluster*/ 16 mc := ∅; 17 else 18 if |convoy ∪ x k |≥mint and |T (convoy ∪ x k)| = |T (X)| then 19 output convoy ∪ x k ; /*Convoy*/ 20 gP attern := gP attern ∪ (convoy ∪ x k); 21 if |mc ∪ x k |≥mint then 22 output mc ∪ x k ; /*MovingCluster*/ 23 convoy := ∅; mc := ∅; 24 if |gP attern|≥minc and size(gP attern) ≥ minwei then 25 output gP attern; /*Group Pattern*/ 26 Where:X is itemset, T (X) is list of tractions that X belongs to, x k .time is time index of item x k , |T(convoy)| is the number of transactions that the convoy belongs to, |gP attern| and size(gP attern) respectively are the number of convoys and the proportion of total length of the convoys in gP attern to T DB . Algorithm 2: Incremental GeT Move Input : int ε, int mint, double θ, set of Occurrence sets (blocks) B, int minc, double minwei 1 begin := ∅; CI := ∅; 3 foreach b ∈ B do 4 CI := CI.update(LCM(b, ε)); 5 GeT Move(ε, mint,CI,θ,minc,minwei);

 (a) The entire dataset (b) Data after applying FCI mining on blocks Fig. 5. A case study example. (b)-ci11,ci12,ci22 are FCIs extracted from block 1 and block 2.

Definition 5

 5 Block. Given a set of timestamps T DB = {t 1 ,t 2 ,...,t n }, a cluster matrix CM. CM is vertically split into equivalent (in terms of intervals) smaller cluster matrices and each of them is a block b. Assume T b is a set of timestamps of block b, T b = {t 1 ,t 2 ,...,t k }, thus we have |T b | = k ≤|T DB |. Assume that we obtain a set of blocks B = {b 1 ,b 2 ,...,b p } with |T b1 | = |T b2 | = ... = |T bp |, p i=1 b i = CM and p i=1 b i = ∅. Given a set of FCI collections CI = {CI 1 ,CI 2 ,...,CI p } where CI i is mined from block b i . CI is presented as a closed itemset matrix which is formed by horizontally connecting all local FCIs: CIM = p i=1 CI i .

Fig. 6 .

 6 Fig. 6. An example of patterns discovered from Swainsoni dataset. (a) One of discovered closed swarms, (b) One of discovered convoys, (c) One of discovered group patterns.

 (a) Running time w.r.t. ε (b) Running time w.r.t. mint (c) Running time w.r.t. |ODB| (d) Running time w.r.t. |TDB| Fig. 7. Running time on Swainsoni Dataset.

 Efficiency w.r.t. |O DB |, |T DB |. Figure 7c-d show the running time when varying |O DB | and |T DB | respectively. In all figures, Incremental GeT Move outperforms other algorithms.

Table 1 .

 1 An example of a Spatio-Temporal Database

	Objects ODB Timesets TDB x y
	o1	t1	2.3 1.2
	o2	t1	2.1 1
	o1	t2	10.3 28.1

Spatial information can be for instance GPS location.

www.lirmm.fr/∼phan/index.jsp

http://www.movebank.org

The source code of CMC, CuTS * is available at http://lsirpeople.epfl.ch/jeung/source codes.htm