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Introduction

Data warehouses are constituting a large source of informations that are used and exploited to extract useful knowledge for expert analysis and decision makers [START_REF] Cohen | Online expansion of largescale data warehouses[END_REF]. In temporal data warehouses, every bit of information is associated with a timeline describing a total order over events. This particular ordering introduces more complexity to the extraction process and more precisely to mining processes that enumerate patterns that encompass interesting transient events. Many efficient approaches were developed to mine these patterns (i.e., sequential patterns) like PrefixSpan [START_REF] Pei | Prefixspan: Mining sequential patterns by prefixprojected growth[END_REF], SPADE [START_REF] Zaki | Spade: An efficient algorithm for mining frequent sequences[END_REF], SPAM [START_REF] Ayres | Sequential pattern mining using a bitmap representation[END_REF], PSP [START_REF] Masseglia | The psp approach for mining sequential patterns[END_REF], DISC [START_REF] Chiu | An efficient algorithm for mining frequent sequences by a new strategy without support counting[END_REF], PAID [START_REF] Yang | Paid: Mining sequential patterns by passed item deduction in large databases[END_REF], FAST [START_REF] Salvemini | Fast sequence mining based on sparse id-lists[END_REF]. However, all these techniques and algorithms, without any exception, focus solely on sequences of set valued data (i.e., itemsets) and contrast with real-world data that have multiple dimensions. To overcome this problem, Pinto et al. [START_REF] Pinto | Multi-dimensional sequential pattern mining[END_REF] introduced the notion of multi-dimensionality in sequences and proposed an efficient algorithm. Later works, like Zhang et al. [START_REF] Zhang | Approxmgmsp: A scalable method of mining approximate multidimensional sequential patterns on distributed system[END_REF] or Yu et al. [START_REF] Yu | Mining sequential patterns from multidimensional sequence data[END_REF] extended the initial Pinto's approach for different scenarios and use-cases. While in set valued approaches the events are represented by itemsets, in multidimensional temporal databases the events are defined over a fixed schema in which all the attributes are mandatory in the extracted patterns. Furthermore, and this is particularly true in the data warehouse environment, background knowledge is usually available and can be represented as a hierarchy over the values of the attributes. Following this logic, Plantevit et al. introduced M3SP [START_REF] Plantevit | Mining multidimensional and multilevel sequential patterns[END_REF], an efficient algorithm that is able to incorporate different dimensions and their ordering (organization) in the sequential pattern mining process. The benefit of this approach is to extract patterns with the most appropriate level of granularity. Still, this idyllic representation of uniform data is very uncommon in real-world applications where heterogeneity is usually elevated to a foundational concept. In this study, we focus on extracting knowledge from medical data warehouse representing information about patients in different hospitals. The successive hospitalizations of a patient can be expressed as a sequence of multidimensional attributes associated with a set of medical procedures. Our goal is to be able to extract patterns that express patients stays along with combinations of procedures over time. This type of pattern is very useful to healthcare professionals to better understand the global behavior of patients over time. Unfortunately this full richness and complexity of the data cannot be exploited by any of the traditional sequential pattern mining techniques. In this paper, we propose a new approach to extract patterns from sequences which include multi-dimensional and set valued data at the same time. In addition, the proposed approach incorporates background knowledge in the form of hierarchies over attributes.

The remainder of this paper is organized as follows, Section 2 introduces the problem statement as well as a running example. The method for extracting multi-dimensional-itemset frequent patterns is described in Section 3. Section 4 presents experimental results from both quantitative and qualitative point of views and Section 5 concludes the paper.

Problem Statement

In this section we list some preliminary definitions needed to formalize and present our problem. First of all, we introduce a motivating example from a real data set related to the PMSI (Program of medical information systems). This French nationwide information system describes hospital activities from both economical and medical points of view. In this system, each hospitalization is related to the recording of administrative, demographical and medical data. A multi-dimensional-itemset data sequence is composed of events. Definition 4. (Multi-dimensional-itemset Sequence) A multi-dimensional-itemset sequence s =<e 1 ,e 2 ,...,e l > is an ordered list of events e i . Given two Multidimensional-itemset Sequences s =<e 1 ,e 2 ,...,e l > and s =<e 1 ,e 2 ,...,e l >, s is included in s , denoted by s ⊆ s s , if there exist indices 1 ≤ i 1 <i 2 <. . .< i l ≤ l such that e j ⊆ e e ij for all j =1...l and l l . Example 4. The sequence s = ((UH Paris ,Cancer), {p 1 ,p 2 }), ((GH Lyon ,R 1 ), {p 2 }) is a sequence of two events. It expresses the fact that a patient was admitted to the University Hospital of Paris UH Paris for a cancer disease Cancer and underwent procedures p 1 and p 2 , then he went to the General Hospital of Lyon GH Lyon for pneumonitis R 1 and underwent procedure p 2 .As e q u e n c es =

((UH Paris ,C 1 ), {p 1 }) is included in s, s ⊆ s s, because ((UH Paris ,C 1 ), {p 1 }) ⊆ e ((UH Paris ,Cancer), {p 1 ,p 2 }).

Definition 5. (Patient Trajectory) A patient trajectory is defined as am u l t idimensional-itemset sequence.

Example 5. In Table 1, the sequence s = ((UH Paris ,C 1 ), {p 1 ,p 2 }), ((UH Paris ,C 1 ), {p 1 }), ((GH Lyon ,R 1 ), {p 2 }) represents the trajectory for the patient P 1 . Let supp(s) be the number of sequences that includes s in S DB . Furthermore σ be a minimum support threshold specified by the end-user. Definition 6. (Most Specific Frequent Sequence) Let s be multi-dimensionalitemset sequences, we can say that, s is the most specific frequent sequences in S DB ,i fa n do n li f :supp(s) ≥ σ and s ∈ S DB , where supp(s)=supp(s ) and s ⊆ s s.

Problem 1. The problem of mining multi-dimensional-itemset sequences is to extract the set of all most specific frequent sequences in S DB such as supp(s) ≥ σ. By using the taxonomies we can extract more or less general or specific patterns and overcome problems of excessive granularity and low support. Example 6. Let σ =0.75 (i.e. a sequence is frequent if it appears at least three times in S DB ). The sequence

s 1 = (UH Paris ,C 1 ), {p 1 ,p 2 }), ((GH Lyon ,R 1 ), {p 2 } is frequent. s 2 = (UH,Cancer), {p 1 ,p 2 }), ((GH, Respiratory), {p 2 }} is also frequent. Nevertheless, s 2 is not kept since it is too general compared to s 1 .
In this section, we present the MMISP (Mining Multi-dimensional-Itemset Sequential Patterns) algorithm for extracting multi-dimensional-Itemset sequential patterns with different levels of granularity over each dimension. MMISP follows a bottom-up approach by first focusing on extracting mdc that can exist at different level of granularity, then it considers the itemset part of the events and compute the support of every item is S DB . After these two steps, frequent multidimensional components and frequent items are combined to generate events. In the final step, the frequent events are mapped to a new representation and a standard sequential mining algorithm is applied to enumerate multi-dimensional itemset sequential patterns.

In the next subections, we provide the details of each step of our work and discuss the different challenges.

Generating Multi-dimensional Components

MMISP starts by processing the multi-dimensional components of the sequences. Basically it considers three types of dimensions: a temporal dimension D t ,as e t of analysis dimensions D A and a set of reference dimensions D R .M M I S Ps p l i t s S DB into blocks according to reference dimension D R . Then, MMISP sorts each block according to the temporal dimension D t . The tuples of multi-dimensional component appearing in an event are defined w.r.t. analysis dimensions D A . The support of the multi-dimensional component is computed according to dimensions of D R . It is the ratio of the number of blocks supporting the multidimensional component over the total number of blocks. This a classic way of partitioning the database and was introduced in [START_REF] Plantevit | Mining multidimensional and multilevel sequential patterns[END_REF]. Following this partitioning step, MMISP generates all the frequent multidimensional components. Firstly, we generate the most general multi-dimensional component, that is (T 1 ,...,T m ). In our running example, we have two dimensions (hospital and disease), so the most general multi-dimensional component is (T hospital ,T disease ). Then, our approach generates all multi-dimensional components of the form (T 1 ,. . . T i-1 , d i , T i+1 ,. . . ,T m )w h e r ed i ∈ down(T i ). We take only the frequent multi-dimensional component which has support greater than σ. In our running example and for σ = 75% (3 blocks from 4), we have four new frequent multidimensional components: (UH,T disease ), (GH, T disease ), (T hospital ,Respiratory) and (T hospital ,Cancer).

We continue the recursive generation of the new multidimensional components by using each previously generated frequent multidimensional component (a). This is done with a pivot method that identifies an integer z which is the position of the last dimension in a and is not top T . For example if a=(UH,T Disease ), z is the first dimension (hospital) because the value for the hospital dimension (UH) and the second dimension (disease) has the value T disease .

For each dimension d k in a,w h e r ek ∈ [z, m], we replace d k with one of its specialization from the set down(d k ). For example, if a=(UH,T Disease ), we have z =1 and we can generate four new mdc s : {(UH Paris ,T Disease ), (UH Nancy ,T Disease ), (UH, Respiratory), (UH,Cancer)}. The first and the second multidimensional components are generated by replacing UH by down(UH)={UH Paris ,UH Nancy }, the third and the forth multidimensional components are generated by replacing T Disease by down(T Disease )={Respiratory, Cancer}.

We select only the frequent multidimensional components. For our previously example with σ = 75%, {(UH Paris ,T Disease ), (UH,Cancer)} are the new frequent multidimensional components generated by (UH,T Disease ).

Finally, from all frequent multi-dimensional components generated, we select only the most specific multi-dimensional component. 

Definition 7. (Most Specific Multi-dimensional Component) Let a be multidimensional component, we can say that, a is the most specific multi-dimensional component, if and only if a multi-dimensional component

Generating Frequent Itemset

In this step, MMISP focuses on the itemset part of the sequences. Basically, this step aims at extracting the set of all items that are frequent in a sequence of length 1. Let us remind that usually, in level-wise approaches, either itemsetextension or sequence-extension can be considered. For example, if we have a sequence s 1 = {1, 2, 3},t h e ns 2 = {1, 2, 3}{4} is a sequence-extended sequence of s 1 and s 3 = {1, 2, 3, 4} is an itemset-extended sequence of s 1 . In our context focusing on sequence of length 1 we will only consider itemset-extension. Such an operation can be easily done by using any standard sequential pattern algorithm.

Patients Sequences of procedures

P1 {p1,p2}{p1}{p2} P2 {p1}{p1,p2}{p2} P3 {p1,p2}{p2} P4 {p2}{p3}{p2}

Sequences of procedures

Frequent Itemset Candidates {p1} {p2} {p1,p2}

The frequent itemset Fig. 4. The frequent itemset generated Example 9. Figure 4 shows the sequence of medical procedures for patients and the frequent itemset candidates for σ =0.75.

Generating Frequent Events

Generating frequent events is achieved by combining frequent multi-dimensional components with frequent itemsets. This task is achieved by building a prefix tree such that the first level in this tree is composed of the frequent multidimensional components and the second level is composed the frequent itemsets. More precisely, each branch in the tree represents an event. Then a scan is performed over the database to prune irrelevant events from the tree. For example, Figure 5 illustrates the tree before and after pruning infrequent events for σ =0.75. Combination tree before pruning Combination tree after pruning Fig. 5. An example of the tree for generating frequent events before and after the pruning

Extracting Frequent Multi-dimensional Itemset Patterns

Frequent sequences can then be mined by using any standard sequential pattern mining algorithm. As these algorithms require that the dataset to be mined is composed of pairs in the form (id, seq), where id is a sequence identifier and seq is a sequence of itemsets, we transform the initial dataset as follows:

-Each branch in the combination tree after pruning is assigned a unique id which will be used during the mining operation. This is illustrated in Table 3.

-Each block (patient) is assigned a unique id of the form P i .

-Every block b is transformed into a pair (P i , S(p i )), where S(P i ) is built according to the date and the content of the blocks. The final result is reported in Table 4.

A standard sequence mining algorithm can be applied on the transformed database.

event-id Frequent Event e1 (UH Paris ,C1), {p1} e2 (UH Paris ,C1), {p 2} e3 (UH Paris ,C1), {p1,p2} e4 (GH Lyon ,R1), {p 2} Table 3. Identification each branch (Event) in T id Sequence data P1 {e1,e2,e3}{e1}{e4} P2 {e1}{e1,e2,e3}{e4} P3 {e1,e2,e3}{e4} P4 {e2} Table 4. Transformed database
Then, the extraction of frequent sequences can be carried out. With σ =0.75, the pattern {e 3 }{e 2 } is frequent. This sequence transforms to ((UH Paris ,C 1 ), {p 1 ,p 2 }), ((GH Lyon ,R 1 ), {p 2 }) by using the identification in Table 3.

4E x p e r i m e n t s

We conduct experiments on both real and synthetic datasets. The algorithms is implemented in Java and the experiments are carried out on a MacBook Pro with a 2.5GHz Intel Core i5, 4GB of RAM Memory running OS X 10.6.8. The extraction of sequential patterns is based on the public implementation of CloSpan algorithm [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF]. We use the implementation supplied by the IlliMine5 toolkit.

In order to assess the effectiveness of our approach, we run several experiments on the PMSI dataset. This database includes the following informations: Patients (id, gender . . . ), Stays (id, hospital, principal diagnosis, . . . ) and Medical Procedures (id, date,. . . ). Our dataset contains 486 patients suffering from lung cancer and living in the eastern region of France. The average length of data sequences is 27. The data is encoded using controlled vocabularies. In particular, diagnoses are encoded with the International Classification of Diseases (ICD10) 6 . This classification is used as an input taxonomy for MMISP. The ICD10 can be seen as a tree with two levels. As illustrated in Figure 6, 3-characters codes such as C34 (Lung cancer) have specializations: C340 is cancer of the main bronchus, C341 is cancer of upper lobe etc. Table 5. Care trajectories of 4 patients Table 5 is an example of care trajectories described over two dimensions (diagnosis, hospital ID) coupled with a set of medical procedures. For example (C341, 750712184), {ZBQK002} represents the stay of a patient in the Univer-sity Hospital of Dijon (coded as 210780581) treated for a lung cancer (C341), where the patient underwent chest radiography (coded as ZBQK002).

The experiments are designed to extract some multi-dimensional sequential patterns for helping the medical experts to describe some healthcare patients trajectories. For this experiment the support value is set to 15 (i.e. σ =0 .03). MMISP generates 121 different patients trajectories. Table 6 shows some patients trajectories obtained by our approach. Pattern 2 can be interpreted as follows: 42% of patients have a hospitalization in the University Hospital of Dijon for a lung cancer (210780581,C341), where they underwent supplement procedures (coded as YYYY030) for passing the chest radiography (coded as ZBQK002). Then, the same patients go to any university hospital for doing chemotherapy (CHU/CHR,Z511), where they underwent only the chest radiography (coded as ZBQK002). In the second experiments, we study the scalability of our approach. We consider the number of extracted patterns and the running time with respect to two different parameters, the number of the dimension in the multidimensional components and the average length of the itemsets in the data sequences. The first batch of synthetic data generated contains 10 000 sequences defined over (2, 3, 4 and 5) analysis' dimensions. Each sequence contains 30 events and each event is described, in average, by 15 items in the itemset. Hierarchical relations are defined over 5 levels of granularity between elements of each analysis dimension. Figure 7 reports the results according to different values of support threshold for different number of analysis dimension in multidimensional component. We can notice that the running time increases for each newly added analysis dimension. The second batch of synthetic data generated contains 10 000 sequences with varying number of items 5, 10, 15 and 20. The sequences in the four generated data sets have an average cardinality of 30 events,by 3 analysis dimensions. Hierarchical relations are defined over 5 levels of granularity between elements of each analysis dimension. Figure 8 reports the results according to different values of support threshold for different lengths of itemsets. 

Conclusion

In this paper, we propose a new approach to mine multi-dimensional itemset sequential patterns. Our approach is able to capture knowledge from dataset represented over both multi-dimensional component and itemsets. We provide formal definitions and propose a new algorithm MMISP to mine this new kind of pattern. We conduct experiments on both real and synthetic datasets. The method was applied on real-world data where the problem was to mine healthcare patients trajectories. According to medical experts, new patterns are easier to understand.

  Example 3. e =((UH,T disease ), {p 1 ,p 2 ,p 3 }) is an event, where (UH,T disease )is a multidimensional component with two dimensions representing hospital and diagnosis. {p 1 ,p 2 ,p 3 } denotes the set of medical procedures. An event e = ((UH Paris ,C 1 ), {p 1 ,p 2 })i si n c l u d e di ne, e ⊆ e e, because (UH Paris ,C 1 ) mdc (UH,T disease ) and {p 1 ,p 2 }⊆{p 1 ,p 2 ,p 3 }.
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 1 An example of a database of patient trajectoriesLet S DB be a database of multi-dimensional-itemset data sequences. Table1illustrates such a database. Figure1shows two hierarchical taxonomies characterizing both the hospital and diagnosis dimensions. For hospital dimension, UH Paris ∈ down(UH) as UH Paris is a direct descendant of UH.

	Patients					Tra jectories
	P1	((UH Paris ,C1), {p1,p2}), ((UH Paris ,C1), {p1}), ((GH Lyon ,R1), {p2})
	P2	((UH Paris ,C1), {p1}), ((UH Paris ,C1), {p1,p2}), ((GH Lyon ,R1), {p2})
	P3		((UH Paris ,C1), {p1,p2}), ((GH Lyon ,R1), {p2})
	P4	((UH Paris ,C1), {p2}), ((UH Paris ,R2), {p3}), ((GH Lyon ,R2), {p2})
	Definition 1. (Dimensions and specialization down(d)) A dimension (D, ) is
	a partially ordered set. For a given d in D, down(d) (resp. up(d)) denotes the
	set of all specializations {x ∈ D|x d} (resp. generalizations {x ∈ D|d x})o f
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			Fig. 1. Hospital and diagnoses taxonomies
	By taking into account taxonomies, we define a multi-dimensional component
	as follows:							
	Definition 2. (Multi-dimensional component) Given a dimension (D, ),amulti-
	dimensional component over D, denoted (mdc, mdc ),i sat u p l e(d 1 ,...,d m )
	where d i ∈ D, i =1, •••,m. For two given multidimensional components mdc =
	(d 1 ,...,d m ) and mdc =(d	1 ,...,d	m ), mdc mdc mdc denotes that mdc is more
	specific than mdc, if for every i =1,...,m, d	i ∈ down(d i ).
	Example 2. Let (UH Paris , Lung Cancer) and (UH, Cancer)b et w om u l t i d i -
	mensional components. (UH Paris , Lung Cancer) mdc (UH, Cancer) because
	UH Paris ∈ down(UH) and Lung Cancer ∈down( Cancer).

1 ,...,p n }.

Table 2 .

 2 The most specific frequent multi-dimensional components Example 8. Fiqure 3 illustrates the mechanism work of generation all frequent multi-dimensional components on our running example with σ =0 .75. We can notice that the most specific components are (UH Paris ,C 1 ) and (GH Lyon ,R 1 ).

Table 6 .

 6 Some healthcare patients trajectories obtained by MMISP
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