
HAL Id: lirmm-00733383
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00733383

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Tasks Warping and Scheduling for
Smooth Sequencing of Robotic Actions

François Keith, Nicolas Mansard, Sylvain Miossec, Abderrahmane Kheddar

To cite this version:
François Keith, Nicolas Mansard, Sylvain Miossec, Abderrahmane Kheddar. Optimization of Tasks
Warping and Scheduling for Smooth Sequencing of Robotic Actions. IROS: Intelligent Robots and Sys-
tems, Oct 2009, St. Louis, MO, United States. pp.1609-1614, �10.1109/IROS.2009.5354282�. �lirmm-
00733383�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00733383
https://hal.archives-ouvertes.fr


Optimization of Tasks Warping and Scheduling for Smooth Sequencing
of Robotic Actions

François Keith1,4, Nicolas Mansard2, Sylvain Miossec3, and Abderrahmane Kheddar1,4

1CNRS-UM2 LIRMM, Montpellier, France
2CNRS-LAAS, Toulouse, France

3PRISME-Univ. d’Orĺeans, Bourges, France
4CNRS-AIST JRL, UMI3218/CRT, Tsukuba, Japan

{keith, kheddar}@lirmm.fr, nmansard@laas.fr, sylvain.miossec@bourges.univ-orleans.fr

Abstract— This paper presents a method for sequencing a
set of robotic tasks in an optimal way. Tasks description and
execution are based on the task-function approach, which en-
ables to build complex whole-body behaviors from local control
laws. A naive solution to this problem would be to schedule
the execution of the tasks sequentially, avoiding concurrency.
This solution does not exploit full robot capabilities such as
redundancy and have poor performance in terms of execution
time or energy. However, reasoning on concurrent tasks is
difficult while accounting for all the physical constraints of
the robot. Our contribution is to determine the time-optimal
realization of the mission taking into account robotic constraints
that may be as complex as collision avoidance. Our approach
achieves more than a simple scheduling; its originality lies in
maintaining the task approach in the formulated optimization of
the task sequencing problem. This theory is exemplified through
a complete experiment on the real HRP-2 robot.

I. I NTRODUCTION

A robot is designed to perform missions in various appli-
cation contexts. When the environment is well or partially
structured most missions can be hierarchically decomposed.
That is, missions undergo functional objective decomposition
into a set of processes or operations that can be defined
as templates. Each operation can be decomposed into a set
of tasks (i.e. generic sensory-motor functions), and each
task can be easily mapped into robot execution. The whole
scheme may constitute an exploitable generic skill/behavior.
Yet, various levels of decomposition can be achieved de-
pending on the envisaged software/hardware implementation,
additional environment constraints, the human-machine inter-
face, etc. In the end, the robot is assigned with a sequence
of tasks to realize a given mission.

Numerous works have been proposed to compute such
a sequence of tasks from a given mission and a set of
causal paradigms [2], [5]. However, they generally produce
a symbolic plan, where the only numerical precisions lie
on the scheduled time data. Its robotic application into the
real world requires the time sequence to be refined, typically
through an applicative path planner [9], that will compute the
trajectories to be followed by the robot. Yet, the meaning
of the symbolic plan is lost in the global trajectory. Such
low-level methods lack of robustness to environment changes
or uncertainties. Consequently, the remaining trajectorymay
have to be recomputed several times while the mission is

being achieved. Moreover, it is difficult (and then often
specifically hard coded) to enhance the numerical trajectory
with symbolic data, that would help re-computing only part
of the plan [16] or distort locally the trajectory to apprehend
small environment changes [17], [8].

Rather than using a trajectory planner between the tem-
poral reasoning and its real robotic execution, we propose
to use a sensory-motor control approach based on task
components. The task function [18] or the operational space
formulations [7] are elegant approaches to produce intuitively
robot objectives. They also allow to address the control
problem directly in the sensor space, improving robustness
of the action execution against environment uncertaintiesand
variability [3]. They are trajectory free, which means thatit
is not necessary to explicitly compute all trajectories before
the execution or during the execution, namely in response to
environment changes. Moreover, since a same task space is
valid for a large set of robots, a control scheme based on task
formalism is certainly portable and easy to modify and to
maintain. In addition, these methods include a kinematics or
dynamic formulation that decouples the task space from the
null-space (i.e. the joint space that let the task invariant) [11],
[6]. A secondary task can then be applied in the null-space,
and, recursively, a hierarchic set of tasks (orstack of tasks,
or SoT) can be considered [15], [21]. Hierarchy of tasks
are becoming popular to build complex behavior for very
redundant robot such as humanoids [1], [13], [20], [19].
The formalism introduced in [13] proved to be efficient in
dealing with complex humanoid missions: the SoT is mainly
a hierarchy of tasks driving the robot while ensuring locally
a given set of constraints to be satisfied. We make use of
this formalism (Section II).

A task (i.e. a task function[18]) can be directly linked to
the symbols on which the task temporal network is reasoning
(e.g. reaching an object to be grasped is a task that requires
the robot arm to be available, and whose post-condition is to
have the gripper on the object – it is also directly described
by a sensory-motor function applicable to the SoT).

Mission decomposition is thus executable directly by a
SoT, which guarantees good robustness and avoid unne-
cessary trajectory (re)computation. However, exclusive task
sequencing on the robot produces generally jerky movements



which may look to humans as monotonous automated mo-
tions. On the other hand, it is difficult for the temporal
network to produce a scheduling with task overlapping when
the tasks concurrency is restricted by physical limitations of
the robot (for example obstacles or dynamical constraints on
a humanoid). Since the problem is not in a standard discreet
form, symbol-based task scheduling techniques can not apply
straightforwardly. On the other hand, semi-infinite optimiza-
tion techniques [10][14] have been used to generate low
level trajectories for the overall execution, while accounting
for such constraints. Such trajectory-based approaches are
generally insufficiently robust to environment uncertainties.

In this paper, we propose to rely on task for both the
overall symbolic reasoning and the control on the robot.
In between, we propose to use semi-infinite optimization
to refine the symbolic schedule and account for (numeric)
robotic constraints. Given a set of elementary tasks sequence
to achieve a given mission, our solution returns for each task,
the optimal times at which it is put and removed from the
SoT and also the optimal parameters for the task execution
(e.g.control gain). We additionally expect from this method
a smooth tasks sequencing(i.e. smooth transitions of tasks
through task overlapping). The originality of our approach
lies in keeping the task component in the optimization
formulation of this problem, which can roughly translate
to optimizing tasks overlapping by manipulating tasks, i.e.
the controllers, asvariables of the optimization problem.
The task formulation details are first recalled in Section II.
A generic solution for optimizing a task sequence is then
detailed in Section III. The theory is finally exemplified
through an experiment with a real HRP-2 robot, the mission
consisting in getting a can from a fridge.

II. GENERIC TASK SEQUENCING

A. Task function formalism and Stack of Tasks

Defining the motion of the robot in terms of task simply
consists in choosing several control laws to be applied on a
subpart of the robot degrees of freedom (DOF).

A task is defined by a vectore (typically, the error between
a signals and its desired value,e = s−s∗). The Jacobian of
the task is notedJ = ∂e

∂q
, whereq is the robot configuration

vector. In the following, we consider that the robot input
control is the joint velocityq̇. The equation of motion is
thus reduced to the kinematics:

ė = Jq̇ (1)

Considering a reference behaviorė
∗ to be applied in the task

space, the control law to be applied on the robot whole body
is given by the least-square solution:

q̇ = J+ė
∗ + Pz (2)

whereJ+ is the least-square inverse ofJ, P = I − J+J

is the null-space ofJ andz is any secondary criterion that
will be applied without disturbing the main task thanks to
the projection intoP1. A typical requested behavior is the

1Eq. (2) is the least-square solution whenz = 0

regulation of the error, which can be obtained through an
exponential decrease by setting:

ė
∗ = −λe (3)

As mentioned earlier, (2) enables to compose a complex
behavior from a set of tasks [21], [1], [19]:z can be used to
fulfil a secondary task,without disturbing the main task hav-
ing priority. This nice decoupling can be extended recursively
to a set ofn tasks, each new task being fulfilled without
disturbing the previous ones. The complete implementation
of this approach is proposed in [12] under the nameStack of
Tasks(SoT). The structure enables to easily add or remove a
task, or to swap the priority order between two tasks, during
the control. Constraints (such as joints limit) can be taken
into account. The continuity of the control law is preserved
even at the instant of change.

B. Gain handling

The simple attractor presented in (3) has the advantage to
introduce a nice exponential decrease. However, it can be
penalizing, sincėq is directly proportional toe (3) . At the
beginning of the task,‖e‖ reaches its higher value (strong
acceleration), while at the end of the task,‖e‖ decreases
slowly (slow convergence).

A very classical ‘trick’ when regulating a task is to rather
use an adaptive gainλ = λ(e(t)) that depends on the norm
of the error of the task. To keep the nice property of the
attraction, the gain only adapts with the error, and not directly
with the time. We choose the following function:

λ(e) = (λF − λI) exp

(

−‖e‖β

λF − λI

)

+ λI (4)

with λI the gain at infinity,λF the gain at regulation (such
asλI ≤ λF ) andβ the slope at regulation.

C. Sequence of tasks

A task sequence is a finite set of tasks sorted by order of
realization, and eventually linked to each other. Any pair of
tasks can be either independent (i.e. they can be achieved in
parallel) or constrained (i.e. one may have to wait for another
one to be achieved, so as to make sense or to be doable).

The sequence can be formulated into a classical temporal
network scheduling, starting att0 and ending attEnd. Both
values are finite and the sequence does not loop. Besides,
we may consider for the sake of clarity but without loss of
generality that each task appears only once in the sequence.

The position of a task in the sequence is defined by the
time interval during which it is maintained in the SoT. For
a given taski, this interval is noted[tIi , t

F
i ]: the task enters

in the SoT attIi and is removed attFi . These instants are
defined with respect to the beginning of the sequence att0.
However, they do not indicate the achievement level of the
task: tFi may apply before the task regulation. Let’sǫi be
the tolerance on the task regulation: a task is considered
as regulated when‖ei(t)‖ ≤ ǫi. The regulation timetRi is
defined by‖ei(t

R
i )‖ = ǫi.



j begins oncei has begun
tIi ≤ tIj

j begins oncei is realized
tRi ≤ tIj

j begins oncei has ended
tFi ≤ tIj

j ends oncei is realized
tRi ≤ tFj

j ends oncei has ended
tFi ≤ tFj

Fig. 1. Five time-dependency relations are considered.

A task sequence is characterized by a set of time-
constraints binding the schedules of two tasksei and ej.
They can be defined as follow2: ei must begin or end once
ej has begun, has ended or has been regulated.

We use the graphical representation given by Fig. 1 and
the following notation to describe the sets of pairs of tasks
ei and ej that undergo these dependencies (ei is the direct
predecessor ofej) :

SI,I = {(ei, ej) | tIi ≤ tIj} (5a)

SR,I = {(ei, ej) | tRi ≤ tIj} (5b)

SF,I = {(ei, ej) | tFi ≤ tIj} (5c)

SR,F = {(ei, ej) | tRi ≤ tFj } (5d)

SF,F = {(ei, ej) | tFi ≤ tFj } (5e)

For example, the robot has first to grasp an object and
maintain the force closure on it(eA) before moving it(eB).
The task(eB) can only start once the task(eA) has been
realized, and must end before the task(eA).

III. C ONTINUOUS OPTIMIZATION OF SEQUENCE OF

TASKS

Given a set of hypothesis described using (5), we now
propose a generic solution to automatically compute an
optimal set of task-behavior parameters and their sequencing
plan to be executed by the SoT.

A. General problem formulation

An optimization problem is composed of a criterion to
minimize, and of a set of equality and inequality constraints
that must be satisfied. Our chosen criterion is to minimize
the regulation duration of the mission. The variables of our
problem are for each task: (i) the time of its entry, (ii)
the time of its removal (from the SoT), and (iii) the gains
(λI , λF , β) which describe the task execution behavior.

2contrary to Allen Logic, that only considers the start and end points of
the time interval, here is also considered the regulation timet

R

The general optimization problem is written as follows:

min
x

tEnd (6a)

subject toq̇ = SoTx(q, t) (6b)

seq(q) < 0 (6c)

φ(q) < 0 (6d)

∀i, tFi ≤ tEnd (6e)

The vectorx = [tI1, t
F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn, tEnd]

gathers the optimization variables of each task andtEnd, the
duration of the mission. seq(q) and φ(q) are respectively
the sequencing and the robotic constraints.

The optimization criteriontEnd is computed indirectly.
An equivalent explicit definition could be given bytEnd =
max

i
(tFi ). However this constraint is not smooth. Giving

only (6b), the problem is smooth and properly defined: at
the optimal solution,tEnd will be equal to the maximum
termination time of all tasks’tFi .

Vector q is in fact a vector of functions of time, hence
constraintsφ(q) are semi-infinite,i.e. taking place for all
the values of the continuous variablet ∈ [t0, tEnd].

It can be shown that (6) defines a continuous optimization
problem. However, it cannot be solved directly because of
the semi-infinite nature of the constraints. Therefore we
expanded the semi-infinite constraint into a discreet form.

B. Constraints

Parameterx must satisfy both the sequencing and the
robotic time-constraints enumerated hereafter:

1) Tasks constraints, noted seq(q): gather the task se-
quence conditions of (5) and the following constraints:
For each taski:

Time coherence 0 ≤ tIi < tFi ≤ tEnd (7a)

Termination condition ‖s∗i − si(t
F
i )‖ < ǫi (7b)

Gain consistency λI
i ≤ λF

i (7c)

The constraints (5a), (5c), (5e), (7a) and (7c) are linear.
On the contrary, the constraint (7b) is impossible to compute
directly usingx, and is determined from asimulationof the
execution. Care has to be taken while resolving the condition
described by (5b) and (5d). Indeed, discretizingtR to the
closest simulation step will produce discontinuities which
may disturb the optimization process. A rather fastidious
solution to this continuity problem would be to determine
this point by interpolation. Another solution is to reformulate
them by evaluating the regulation of the taski instead. The
constraint (5b) and (5d) becomes respectively:

∀(i, j) ∈ SR,I , ‖s
∗

i − si(t
I
j )‖ ≤ ǫi (8a)

∀(i, j) ∈ SR,F , ‖s∗i − si(t
F
j )‖ ≤ ǫi (8b)



2) Robot constraints :φ(q): Those constraints are mainly
due to hardware intrinsic limitations of the robot:

Joint limits qmin ≤ q ≤ qmax (9a)

Velocity limits q̇min ≤ q̇ ≤ q̇max (9b)

Collision avoidance 0 ≤ dij (9c)

qmin, qmax, q̇min, q̇max are respectively the lower and
upper joint limits and the lower and upper velocity limits.
dij is the distance between objectsi andj. Object designate
those found in the mission’s environments and each link of
the robotic system. Hence, both collision with the environ-
ment and self-collision of the robot have to be evaluated.

All of those constraints are semi-infinite: the following
section presents how they have been tackled.

C. Technical aspects of the optimization resolution

1) Semi-infinite constraints:In a first approach, we tried
to discretize the semi-infinite constraints on the basis of the
simulation steps grid. However, since the number of the grid
sample points changes in function oftEnd, the number of
constraints is variable. Subsequently a classical optimization
solver can not handle them.

Let c be the evaluation value of a given constraint:
(∀t ∈ [t0, tEnd], c(t) < 0). We considered associating only
one value to the constraint,cV , that is computed as follows:
If the constraint is always satisfied, thencV is the higher
value of c(t). Otherwise, it is the sum of all the violations
found at each time step. Considering that the time step can
change (e.g. when adding an interpolation point), we choose
to weight the added value by the time stepδt.

2) Constraint by task: Each task appears only once
in the sequence, but a same action can be associated to
many tasks. Associating the constraintsφ(q) to the whole
simulation can thus raise an issue: a violated constraint can
not be linked to the responsible task. In order to compensate
this problem, we considernT additional sets of constraint
φ(q), notedφi(q), i ∈ [1 . . . nT ], (with nT the number of
tasks in the sequence). Each setφi(q) is computed only
when the taski is in the SoT.

3) Scaling: Since the constraints are not homogeneous
(times, angles, velocities, distances), they have to be
normalized based on the constraint values obtained while
executing the sequence corresponding to the initial set of
parametersx0. This simple scaling improves significantly
the convergence of the optimization.

D. Absolute versus relative timing

In this parameterization, the tasks are described with an
absolute time. As it is, decreasingtIi for a taski will not
have any direct effect ontFi : we have also to decrease
tFi then decreasetEnd: it is thus necessary to propagate the
reduction for all the following tasks. To avoid this, another
parameterization consists in describing the SoT entry timeof
a given task with respect (i.e. relatively) to the previous one.

We introduce a relative timing: each task is now described by
two delays (instead of the absolute timestI andtF ), namely:

1) dtI : is the delay which occurs between (i) the maxi-
mum time of entry or of end of the preceding tasks,
and (ii) the SoT entry time of the task in question.

tIi = max

(

max
(j,i)∈SI,I

{tIj}, max
(j,i)∈SF,I

{tFj }

)

+ dtI (10)

2) dtF : is the delay between the SoT entry and the
removal times of the task in question.

tFi = tIi + dtFi (11)

Subsequently, the new parameter vector is noted :
x′ = [dtI1, dtF1 , λI

1, λ
F
1 , β1, . . . , dtIn, dtFn , λI

n, λF
n , βn, tEnd].

If the task sequence is only a chain of tasks realized one
after the other, we directly havex′ = f(x), with f a linear
function, andtEnd =

∑

i

(dtIi + dtFi )

Considering this new set of parameters, the formulation of
the optimization problem changes: some tasks constraints of
seq(q) are modified. The previous constraints (5a), (5c) and
(7a) are replaced by these constraints on the delay:

∀i,0 ≤ dtIi (12a)

∀i,0 < dtFi (12b)

IV. I MPLEMENTATION

A. Optimization

At each optimization step, the solver chooses a new set of
parametersx. It then computes the constraints. Constraints
(5e) and (7c), (12a) and (12b), can be evaluated directly. As
stated previously, the other constraints can not be directly
computed (since they do not write in an analytical formula-
tion). They are thus evaluated using a complete simulation of
their execution. The chosen value of the current optimization
variable vectorx is transmitted by the optimization solver to
the simulation engine. The simulation returns the evaluation
of the constraints and the optimization solver computes a
new step vectorx, until convergence.

Our optimization problem is a non-linear contrained para-
metric problem. We chose the SQP algorithm from the
MATLAB optimization toolbox, which is suitable to this kind
of problem.

B. Simulation

In section II, we presented the computation of desired
joint velocities for a hierarchy of tasks, as (6). The
simulation is basically a numerical integration of this
equation (we used an explicit Euler integration method with
a fixed step∆t = 0.005sec). The entry and exit timestIi
and tFi are continuous variables that are not aligned with
the grid. Those instants are important since they correspond
to a change in the SoT and thus a change in the control. If
postponing the change of control to the next time step (like
on a real system) we will not have a continuous problem
(hence potentially raising the same problem described in
section III-B). To solve this problem, the entry timeta is



added as an integration point during the time step[t, t+∆t],
splitting it into the two smaller ones[t, ta] and [ta, t + ∆t].

Initialization
[tI1, t

F
1 , . . . , tIn, tFn ] = computeTimes (x)

tEnd
Sim = maxi

(

tFi
)

, t = 0
while (t < max (tEnd, tEnd

Sim)) do
∆t′ = findTimeStep (t)
handleStackOfTasks (t)
updateConstraints ()
t = t + ∆t′

end
Algorithm 1 : Tasks sequencing simulation

The algorithm 1 describes the simulation. The function
computeTimes computes the absolute times using the
relative times. The functionfindTimeStep computes the
required time step for the Euler integration: the initial∆t,
or a smaller one if needed, due to the need of splitting
this interval in two. The functionhandleStackOfTasks
computes the velocity of the robot induced by the tasks exe-
cution and integrates it, altogether with any other simulated
objects or processes, to obtain the new positions.

The simulation engine runs under the AMELIF framework
[4], an interactive dynamic simulator for virtual avatars
which includes collision detection and task handling accor-
ding to the SoT formalism. The execution for both simulation
and real-robot control is performed by a generic control
framework based on [12].

V. EXPERIMENT

A. Temporal network

The sequence of tasks (Fig. 2) describes a robot taking
out a can from the fridge. The corresponding tasks are:

• Tasks of the right arm:
(e0): open the gripper,(e1): move it to the fridge
handle,(e2): close it,(e3): open the fridge,(e4): close
the fridge

• Tasks of the left arm:
(e5): open the gripper,(e6): move it in the fridge area,
(e7): move it to the can,(e8): close it, (e9): lift the
can,(e10): remove the can out of the fridge,

The taske6 is an intermediary task introduced as a way
point: its tolerance on task regulationǫ6 is large so that the
arm does not have to stop. This is part of the optimization
decision, in order to reduce the execution time.

This is a complex mission that can not be split into smaller
sequences. Indeed, the sequence is centered on the fridge: the
grasping part does not make sense if the fridge is closed.
Instead of adding explicit timing conditions between the
tasks to ensure that this will never occur, we choose to
consider as constraint the collision between the left arm and
the door, in order to allow task overlapping.

The constraints considered for this problem are thus se-
quencing and robotic constraints (joint position and velocity
limits), and collision avoidance with the fridge.

Fig. 2. Sequence describing the HRP-2 taking the can in the fridge

Fig. 3. Results of the optimization of the sequence of task: when the task
is added in the SoT, its error is first regulated (this is the dark part (red or
dark blue) of the block). FromtR

i
, the error is nearly null and the task is

kept in the SoT (light part (yellow or cyan) of the block) until t
F

i
.

B. Results of the optimization

We ran the optimization on a 3GHz desktop PC running
under Windows OS. The sequence found is described on
Fig. 3. Each task is described by two periods: the dark one
is the achievement period[tIi , t

R
i ], the bright one is the SoT

presence period[tIi , t
F
i ].

The overlaps between the tasks of the left and the right
arm appear clearly: the left arm starts to move before the
fridge is open. It then starts to move toward the can pose
even if the fridge is not completely open. And finally, the
right arm starts to close the fridge before the left arm has
completely left the fridge area. The whole task sequence lasts
47sec. Without these two overlaps, the robot will move to
and grasp the can (e7) only after the fridge is fully opened
(e3) and it will close the fridge (e4) only after the can is
completely taken out (e10); consequently the total mission
would have taken at least 71sec.

C. Experiment on the real robot

The task sequence is experimented on the upper body of
the HRP-2 humanoid robot. Only the described tasks are used
to compute the control law (which means that no additional
care is taken for ensuring the constraints). For the tasks
requiring a haptic interaction (i.e. opening and closing the
fridge) the force sensor of the robot is used to close the loop
and compensate for position uncertainties.

The robot manages to grasp the can without colliding any
obstacle or joint limits, and respecting the given velocity
limits. The obtained execution is plotted on Fig. 4. Thanks to
the optimized gain, the convergence of the error of the tasks



0 5 10 15 20 25 30 35 40 45 50
0

1

2

E
rr

o
r

L
e
ft
 H

a
n
d

 

 

Approach
Grasp
Open fridge
Close fridge

0 5 10 15 20 25 30 35 40 45 50
0

1

2

E
rr

o
r

R
ig

h
t 
H

a
n
d

 

 

Approach can
Grasp can
Lift can
Approach final
final

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time(sec)

E
rr

o
r 

G
ri
p
p
e
rs

 

 

OpenL
CloseL
OpenR
CloseR

Fig. 4. Experiment on HRP-2: errors diminish when optimized task
scheduling is applied: (top) right arm tasks (middle) left arm tasks (bottom)
gripper tasks. The concurrency between the tasks is clearlyvisible.

that require a good precision (grasping the fridge handle and
the can) is achieved as quickly as allowed by joint velocity
limits. Snapshots of the execution are given in Fig. 53.

Fig. 5. HRP-2 grasping a can in the fridge.

VI. CONCLUSION

We devise a method which allows to optimize both the
behavior and the overlapping scheduling of a sequence of
tasks composing a robotic mission. The solution derives from
an optimization formulation of the tasks scheduling keeping
the formalism built on the top of a task-function based
control. This allows to include the robot limitations as well as
collision avoidance as constraints. Our method is exemplified
through a complete simulation of a complex mission, where
we demonstrated an improvement in the smoothness of the
generated motion. For the time being, our method still needs
a predefined ordered sequence. As a future work we will
increase the autonomy by determining automatically the

3www.laas.fr/ ˜ fkeith/iros09.avi , the video is also attached
to the paper

ordered sequence and compute all the necessary subtasks
from definitions of actions/objects associations. We will
also focus on more complex scenario using in particular
perception tasks such as visual interaction.

ACKNOWLEDGMENT

This work is partly supported by the European project FP6
ROBOT@CWEwww.robot-at-cwe.eu .

REFERENCES

[1] P. Baerlocher and R. Boulic. An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels.The Visual
Computer, 6(20):402–417, Aug. 2004.

[2] R. Dechter. Constraint Processing, chapter 12, Temporal Constraint
Network. Morgan Kaufmann, 2003.

[3] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics.IEEE Trans. Robot. Autom., 8(3):313–326, 1992.

[4] P. Evrard, F. Keith, J.-R. Chardonnet, and A. Kheddar. Framework for
haptic interaction with virtual avatars. InIEEE Int. Symp. on Robot
and Human Interact. Comm. (RO-MAN’08).

[5] Malik Ghallab, Dana Nau, and Paolo Traverso.Automated Planning:
Theory and Practice. Morgan Kauffmann Publishers, 2004.

[6] H. Hanafusa, T. Yoshikawa, and Y. Nakamura. Analysis and control
of articulated robot with redundancy. InIFAC, 8th Triennal World
Congress, volume 4, pages 1927–1932, Kyoto, Japan, 1981.

[7] O. Khatib. A unified approach for motion and force control of
robot manipulators: The operational space formulation.International
Journal of Robotics Research, 3(1):43–53, Feb. 1987.

[8] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive pathdeforma-
tion for nonholonomic mobile robots.IEEE Trans. Robot., 2004.

[9] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[10] S-H. Lee, J. Kim, F.C. Park, M. Kim, and J. Bobrow. Newton-type

algorithms for dynamics-based robot movement optimization.IEEE
Transactions on Robotics, 21(4):657–667, August 2005.

[11] A. Li égeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms.IEEE Trans. on Systems, Man
and Cybernetics, 7(12):868–871, December 1977.

[12] N. Mansard and F. Chaumette. Task sequencing for sensor-based
control. IEEE Trans. on Robotics, 23(1):60–72, Feb. 2007.

[13] N. Mansard, O. Stasse, F. Chaumette, and K. Yokoi. Visually-guided
grasping while walking on a humanoid robot. InIEEE Int. Conf.
Robot. Autom. (ICRA’07), pages 3041–3047, Roma, Italia, Apr. 2007.

[14] S. Miossec, K. Yokoi, and A. Kheddar. Development of a software
for motion optimization of robots– application to the kick motion of
the HRP-2 robot. InROBIO’06, 2006.

[15] Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Task-priority based
redundancy control of robot manipulators.International Journal of
Robotics Research, 6(2):3–15, Feb. 1987.

[16] F. Py and F. Ingrand. Dependable execution control for autonomous
robots. InIEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’04), pages
1136–1141, Sendai, Japan, Sep. 2004.

[17] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
robot control. InIEEE Int. Conf. Robot. Autom. (ICRA’93), volume 2,
pages 802–807, Atlanta, USA, May 1993.

[18] C. Samson, M. Le Borgne, and B. Espiau.Robot Control: the Task
Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.

[19] L. Sentis and O. Khatib. A whole-body control framework for
humanoids operating in human environments. InIEEE Int. Conf.
Robot. Autom. (ICRA’06), 2006.

[20] N. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K Tanie. A switching
command-based whole-body operation method for humanoid robots.
IEEE/ASME Transactions on Mechatronics, 10(5):546–559, Oct. 2005.

[21] B. Siciliano and J-J. Slotine. A general framework for managing
multiple tasks in highly redundant robotic systems. InIEEE Int. Conf.
on Adv. Rob. (ICAR’91), 1991.


