
HAL Id: lirmm-00735214
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00735214v1

Submitted on 25 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Argumentation based Preference Aggregation
Patricio Mosse

To cite this version:
Patricio Mosse. Argumentation based Preference Aggregation. [Research Report] RR-12018, LIRMM.
2012. �lirmm-00735214�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00735214v1
https://hal.archives-ouvertes.fr

Argumentation based preference aggregation

Patricio Mosse

INRA IATE, Montpellier & INRIA Graphik LIRMM,

Supervised by Patrice Buche, Madalina Croitoru and Jérôme Fortin,

Montpellier, France

September 2012

Contents

1 Introduction 1
1.1 State of the Art . 1
1.2 EcoBioCap Project . 2
1.3 Real-world scenario and aggregation example 4
1.4 Organization of this document . 7

2 Methodology 8
2.1 Modalization . 8
2.2 Preference Conflicts . 11
2.3 Representing Preferences . 12

2.3.1 The Syntax of L . 12
2.3.2 The Semantics of L . 13
2.3.3 Inference Rules . 14
2.3.4 Contrariness function on L 14
2.3.5 Not closed model sets . 15

2.4 Argumentation . 16
2.5 ASPIC+ . 17
2.6 Negotiation Phase . 19
2.7 Most Preferred Value . 20

3 Implementation 22
3.1 Data Entry . 23

3.1.1 Criteria . 23
3.1.2 Stakeholders . 23
3.1.3 Implications . 24

3.2 Global Preferences Representation 25
3.3 Cycles . 26
3.4 Preference Conflicts . 27
3.5 Not Applicable & Wanted Values . 29
3.6 Conflict Resolution . 29
3.7 Argumentation Framework . 32
3.8 Most Preferred Value . 33
3.9 Decision’s Information . 38
3.10 Evaluation . 38

4 Conclusions & Perspectives 40
4.1 Future Work . 40

i

A Abstract Data Type 42
A.1 TAD preferences . 42
A.2 TAD preference . 42
A.3 TAD value . 42
A.4 TAD stakeholder . 43
A.5 TAD implication . 43
A.6 TAD criterion . 43
A.7 TAD ecobiocapdata . 43

B Object Model 44

C Input Files 45

D Conflict Detection Algorithm 47

ii

List of Figures

1.1 The EcoBioCap workpackage cycle 2
1.2 Decision Support System within EcoBioCap 3

2.1 Argumentation Framework created for the two arguments supporting
the preferences in conflict. The circles represent argument and the ar-
rows represent attacks. The arrow goes from the attacking argument to
the attacked argument. 20

2.2 Argumentation Framework with a new argument added in the Negoti-
ation Phase. The preferred extension includes one of the original argu-
ments and not the other one, so we could finish the argumentation at
this point if there are no new arguments. 20

2.3 Argumentation Framework with two new arguments added in the Ne-
gotiation Phase. There are two preferred extensions, therefore we can-
not finish the argumentation at this point. If there are no new arguments
we are going to need to split the scenario in order to manage all the pos-
sible values as output for this criterion. 20

3.1 Screenshot of the first version of the prototype, displaying the conflicts
that were found. 23

3.2 We say we have a cycle between the implications when we can start
from one criterion and go back to the same criterion by following the
implications between the values, for the same stakeholder. In this case
we have a cycle for Expert 1, so his information is inconsistent and we
don’t allow it. 25

3.3 Sketch of Global Preferences Representation. 26
3.4 Conflict between Green and Transparent. The arrow goes from the

Most Preferred value to the Less Preferred value. 27
3.5 Conflict between HFFS and VFFS, and conflict between VFFS and

Hand Made. 27
3.6 Cycle between three values that can be collapsed into a cycle between

two values. Therefore, we have a conflict between HFFS and Hand Made. 27
3.7 Cycle between four values that can be collapsed to a cycle between two

values. Therefore, conflict between HFFS and New Machine. 28
3.8 No conflict as we cannot collapse edges to obtain a cycle between two

values. The user needs to choose a value manually. 28
3.9 Conflict between HFFS and VFFS, and conflict between VFFS and

Hand Made. 29
3.10 Argumentation Framework . 30
3.11 Argumentation Framework . 30

iii

3.12 Conflict between HFFS and Hand Made. 31
3.13 Sketch of a Negotiation Phase. 32
3.14 Green is the most preferred value, even though it is preferred by only

one stakeholder. We interpret that as the rest of the stakeholders didn’t
express their preference regarding Green and Transparent, they can
agree with Expert 1 about his preference. 33

3.15 We cannot choose the most preferred value automatically even though
this cycle is not considered as a conflict yet. 34

3.16 VFFS is the chosen value for the Type Of Machine criterion. As Green
implies HFFS, when choosing the most preferred value for Color that
value is going to be disabled. 34

3.17 If we choose Green for Color, then HFFS will be automatically chosen,
even though it is not the most preferred value for Type Of Machine. . 35

3.18 Both Green and Blue don’t have incoming arrows, but we choose Green
as it is preferred by more stakeholders. 36

3.19 Both Green and Blue don’t have incoming arrows, but we choose Blue
as it is preferred by more stakeholders. 36

3.20 Green is the chosen value even though Transparent is wanted by Expert
2, because Transparent has an incoming arrow, which means that there
is another value more preferred by a stakeholder. 36

3.21 Both Green and Blue don’t have incoming arrows. Blue is preferred by
more stakeholders, but Green has the higher number of stakeholders in
its Wanted list, therefore it is the chosen value. 37

3.22 Both Green and Blue don’t have incoming arrows. Green has the higher
number of stakeholders in its Wanted list, but Blue has the lower num-
ber of stakeholders in its Not Applicable list, therefore it is the chosen
one. 37

3.23 Both Green and Blue don’t have incoming arrows and equal number of
stakeholders in their Not Applicable list. Therefore, we choose Green
as it has the higher number of stakeholders in its Wanted list. 37

3.24 Example of the screen that displays the chosen values for a scenario
and the reasons. 39

C.1 XML Input File. 46

iv

Acknowledgements

I would like to express my very great appreciation to INRIA, for the opportunity of
travelling to France for six months in order to do an internship and my Master Thesis.

I would like to express my deep gratitude to Professor Patrice Buche, Professor Jérôme
Fortin and Associate Professor Madalina Croitoru, my research supervisors, for their
patient guidance, enthusiastic encouragement and useful critiques of this research work.

I would also like to thank Souhila Kaci and Alain Gutierrez for their useful comments.

I would also like to extend my thanks to Bruno Paiva Lima da Silva for helping me
settle in Montpellier and have a nice time here.

Finally, I wish to thank my family and friends for their support and encouragement
throughout my study.

v

Abstract

The objective of this research project is to aggregate the preferences of different stake-
holders using argumentation in a Negotiation Phase. This is done in the context of a
specific project, which is explained in this thesis.

The aggregation of several stakeholders’ preferences may incur into different conflicts
due to differences in the needs of each stakeholder. This is where argumentation can
be used in order to solve conflicts, as new information may appear and lead to changes
in the preferences, even adding new preferences or removing old ones.

The concept of Negotiation Phase is introduced in order to allow stakeholders to re-
view their preferences, discuss, argue, and enter new information. As a result of this
phase, preferences may be changed in order to solve conflicts, or we may find out that
a conflict is not solvable by argumentation, leading to other solutions such as splitting
a scenario in order to manage different choices separately.

Chapter 1

Introduction

The research question of this Thesis is ‘how to aggregate non independent preferences
using argumentation based negotiation’.

The application of this Thesis is the European project EcoBioCap (ECOefficient BIOdegrad-
able Composite Advanced Packaging) 1.

We have proposed a preference logic and a negotiation phase based on argumentation
to address the above questions and implement it. The implementation was evaluated
by experts from the EcoBioCap project.

1.1 State of the Art
A decision support system (DSS) can facilitate and enhance the group decision making
process. Such a DSS must typically aggregate the preferences of multiple entities in
the group in order to recommend a final decision. Argumentation forms a natural way
of encoding reasons as to why some action should be taken (or avoided), and several
researchers have recently focused on the problem of preference aggregation within an
argumentation framework [2, 9, 10].

While assuming the existence of preferences, the logical semantics of these preferences
is typically not fully described, and the modelling choices made are not explained.
Since the chosen semantics need to satisfy the requirements of the application at hand,
defining such preference logic semantics accordingly is an important task.

In this thesis we instantiate an argumentation system designed to aggregate the prefer-
ences of multiple parties where preference information is defined in terms of expertise
knowledge on the topic.

Our system is based on the popular ASPIC+ model [12]; the use of this model as one of
our foundations allows us to ensure that it adheres to several desiderata, including the
rationality postulates described in [4]. ASPIC+ provides an abstract model of argument
(though far less abstract than the one described in [6]), and allows for different logics

1http://www.ecobiocap.eu

1

to be embedded within it. Part of our work is therefore to describe one such logic. In
this work we introduce a logic of preferences which we use within our argument frame-
work, and describe how arguments and argument related concepts such as attacks can
be obtained. We also discuss how to consider different viewpoints elicitation within
our framework, and in particular, how the viewpoints of an expert can be represented.
Finally, we propose a global methodology to detect and solve conflicts and get to the
desired output.

The language we described is based on [14, 3] which describes the semantics of pref-
erences between propositions.

1.2 EcoBioCap Project
The motivation and context for this work comes from the argumentation based decision
support system that is being built for the European project EcoBioCap (ECOefficient
BIOdegradable Composite Advanced Packaging). The aim of EcoBioCap is to pro-
vide customizable, ecoefficient, biodegradable packaging to EU consumers. Figure 1.1
illustrates the workflow of the project. The choice of food packaging depends on sev-
eral physical factors that arise from interactions between the packaging and the food
at the molecular, nanoscopic, microscopic and macroscopic levels. The project’s in-
dustrial partners liase with research laboratories in order to ensure the feasibility of the
research oriented packaging material produced. Finally, a decision support system is
needed in order to choose between the feasible packaging based on several preferences
of EcoBioCap stakeholders.

Figure 1.1: The EcoBioCap workpackage cycle

One of the project’s core tasks involves carrying out a strategic analysis of stakeholder
requirements in terms of food quality and safety but also cost, technical and environ-
mental impact. The aim is to provide the right inputs to the further steps of the project
with the development of modelling and decision support tools.

2

The EcoBioCap decision support system consists of several components, as shown in
Figure 1.2. The fresh food database captures the gas exchange properties for each po-
tential packaged foodstuff. The packaging database plays a similar role, identifying the
oxygen and carbon dioxide permeability as well as other properties (e..g transparency)
of different packing materials. The third and final datastore tracks stakeholders pref-
erences, which are defined in terms of positive and negative preferences. Negative
preferences correspond to constraints since they specify what values or objects have to
be rejected (i.e. those which do not satisfy the constraints). Positive preferences corre-
spond to wishes to specify which objects are more desirable to others.

The decision support workflow operates as follows:

1. Information from the stakeholder preferences and fresh food database is used
as input to a simulator, which computes the ideal permeability properties of a
packaging for a given food type.

2. The permeability data, together with information from the packaging database
and stakeholder preferences, is used to run a multi criteria query, from which a
list of possible packagings, ranked from best to worst, can be identified.

Figure 1.2: Decision Support System within EcoBioCap

The aggregation of different stakeholder preferences into a consistent preference set
must occur before the system begins running.

Note that for stakeholder preference elicitation and their corresponding arguments a se-
ries of questionnaires have been sent to each EcoBioCap actor (package makers, cheese
makers and consumers from different European countries). The criteria on which the
questions were focusing were transparency, price, nano particle presence, biodegrad-
ability, etcetera. The objective was to collect information about the interest and needs
of the stakeholders. As previously mentioned, the main results of this survey forms

3

part of the initial specifications which are the basis of the experimental trials on the
development of biodegradable packaging materials. In the next subsection we give an
aggregation example of a real-world scenario of such preferences expressed by stake-
holders.

1.3 Real-world scenario and aggregation example
In this subsection we describe a complete aggregation example of a real-world sce-
nario. We consider two specific stakeholders 2: Expert 1, a sheep cheese maker, and
Expert 2, a multi-national dairy products corporation.

The aim of the following example is to give an insight of the kind of preferences stake-
holders have, how to aggregate them and how the arguments behind each two prefer-
ences values can be used in order to solve a conflict.

To be able to devise the best packaging for cheese, the two stakeholders Expert 1 and
Expert 2 were asked for their preferences. In order to do this, a technical survey was
sent to each of them. The survey was built in order to understand their current pack-
aging methods and their expectations for a new packaging system. It was divided
between different sections: ‘Description of the new packaging material’ (we asked
them about the material, the type of machine, the type of filling method, mechanical
properties, the method of labelling, etc., in order to be able to use this information in
case of a conflict), ‘Storage and handling of the foods to be packed’ (we asked them
about the conditions during handling, the quality and safety criterion, etc.), ‘Compet-
itive/benchmarking packaging materials/systems’ (we asked them about the strengths
and weaknesses of their competitive brands), ‘Customer food requirements’ (we asked
them about some key customer requirements related to the use of by-products, raw
materials for PHA production and other preferences), ‘Ranking criterion for decision
(packaging choice)’ (we asked them to rank the list of preferred criterion by decreasing
importance) and ‘Other limitations’.

Once we had the results of the surveys, we went through them extracting the prefer-
ences and the arguments supporting them manually. This could be done automatically
in a future development of the project. Here we present the arguments for four criteria:
‘Color’, ‘Shelf Life’, ‘Type of Machine’ and ‘Type of Labelling’:

1. Color

(a) Expert 1 says that “my first options for color are green or mix and match as
that is the way customers know us. If that is not possible then I could have
a transparent package to allow them to see the product.”

(b) Expert 2 says that “I would like to use mix and match because that is how
the customers know us. In case that is not possible, we prefer transparent
over green as green is being used by other brands”.

2Please note that due to confidentiality requirements, the names of the experts are enclosed and their
statements have been modified.

4

2. Shelf Life

(a) Expert 1 claims that “the shelf life must be at least of 40 days as it is the
current shelf life of packed cheese and the new material must permit the
same or extend it”.

(b) Expert 2 notes that “the shelf life must be of 70 days as it is a supermarket
constraint”.

3. Type of Machine

(a) Expert 1 claims that “I prefer hand made packaging over Horizontal form-
fill-seal as hand made is our current way of packaging and the Horizontal
form-fill-seal is available but is being used for another type of cheese, and
using that machine implicates we must label the products using a sticker
attached. We cannot use Vertical form-fill-seal as we don’t have that ma-
chine”.

(b) Expert 2 notes that “I prefer to use Vertical form-fill-seal machine or Hori-
zontal form-fill-seal over hand made because when using hand made pack-
aging the atmosphere in the head-space can’t be controlled so the cheese
quality can’t be guaranteed. Between the machines we prefer Vertical form-
fill-seal over Horizontal form-fill-seal as it is the only machine available at
the moment”.

4. Type of Labelling

(a) Expert 1 notes that “I prefer direct printing over sticker attached as the
sticker can be easily removed by the customer”.

(b) Expert 2 claims that “I prefer sticker attached over direct printing as it is
easier to use when changing customer, it permits resealability at home and
the cost is low”.

For the aggregation of preferences we need to identify all possible conflicts and solve
them. The desired output of this process is to obtain the most preferred values for each
criterion.

Let’s take the criteria one by one and see how can we aggregate the preferences:

1. Color:

For this criterion, the possible values are ‘Green’, ‘Mix and Match’ and ‘Trans-
parent’. For Expert 1 the only options are ‘Green’ and ‘Mix and Match’, due to
a marketing wish, so he won’t be accepting ’Transparent’ as an option. Expert 2
expressed he would like to have ’Mix and Match’, and if that is not possible then
he prefers ‘Transparent’ over ‘Green’. As we can see, ’Mix and Match’ is the

5

most preferred value for Expert 1 and is also one of the wanted values for Expert
2, so that value is the result of the aggregation of preferences for this criterion.

2. Shelf Life:

For this criterion, the possible values are the natural positive numbers. As Expert
1 claims that the shelf life must be of at least 40 days, and Expert 2 requested a
shelf life of 70 days, we can aggregate the preferences and have 70 or plus as the
result.

3. Type of Packaging:

For this criterion, the possible values are ‘Horizontal form-fill-seal’ (‘HFFS’),
‘Vertical form-fill-seal’ (‘VFFS’) and ‘Hand Made’. Expert 1 said that ‘VFFS’
is not applicable for him, and that he prefers ‘Hand Made’ over ‘HFFS’. On
the other hand, Expert 2 expressed a preference for ‘VFFS’ over ‘HFFS’, and
‘HFFS’ over ‘Hand Made’.

‘VFFS’ is not applicable for Expert 1, so even it is the most preferred option for
Expert 2, we are not going to consider that value. Then, we look at the next most
preferred option. As we can see, Expert 1 prefers ‘Hand Made’ over ‘HFFS’
while Expert 2 prefers the contrary. Now, as we have an unsolvable conflict, we
need to look at the argument supporting the preferences and start a negotiation
phase. We recall the arguments:

(a) Expert 1 claims that “I prefer hand made packaging over Horizontal form-
fill-seal as hand made is our current way of packaging and the Horizontal
form-fill-seal is available but is being used for another type of cheese, and
using that machine implicates we must label the products using a sticker
attached. We cannot use Vertical form-fill-seal as we don’t have that ma-
chine”.

(b) Expert 2 notes that he prefers to use “Horizontal form-fill-seal over hand
made because when using hand made packaging the atmosphere in the
head-space can’t be controlled so the cheese quality can’t be guaranteed”.

Expert 1 prioritizes the organization, while Expert 2 is concerned about qual-
ity. By looking at the arguments, we also find out an implication: using ‘HFFS’
implies using ‘Sticker Attached’ as a ‘Type of Labelling’, and for that criterion
Expert 1 prefers ‘Direct Printing’ because the sticker could be easily removed by
customers, so it is a marketing wish.

The negotiation phase is started with the two opposed arguments, a) and b). Ex-
pert 1 and 2 discuss in order to enter new information and arguments to help
solve the conflict. In this example the arguments expressed are not true in the
real world, but we will assume they are for simplicity reasons.

6

Expert 1 says that “with the new policies it is very easy to control the atmosphere
in the head-space when using hand made packaging”.

Expert 2 doesn’t have any other arguments as now he is convinced. The argu-
mentation finishes, Expert 2 changes his mind, and the conflict is solved. ‘Hand
Made’ is the chosen value for this criterion. As the implication had ‘HFFS’ as
the hypothesis, it is not followed in this case.

4. Type of Labelling:

For this criterion, the possible values are ‘Sticker Attached’ and ‘Direct Print-
ing’. Expert 1 prefers ‘Direct Printing’ due to a marketing wish while Expert 2
prefers ‘Sticker Attached’ because of the cost and because it is easy to change
it for any customer. As this is another unsolvable conflict, we start a new nego-
tiation phase. Expert 2 argues that with a special glue customers won’t be able
to remove the sticker. Expert 1 then changes his mind, solving the conflict. The
result of the aggregation for this criterion then is ‘Sticker Attached’.

The result of the aggregation of preferences is ’Mix and Match’ for Color, 70 for Shelf
Life, ’Hand Made’ for Type of Machine and ’Sticker Attached’ for Type of Labelling.

1.4 Organization of this document
Our main objective is to automatize this process once the preferences have been elicited.
In the example shown in this section, conflicts were solved by using a negotiation
phase. Another possibility could have been ranking the arguments. For example, de-
termining that Quality is more important than Organization or Marketing. This cor-
responds to the future work of this project, as in this document we consider that the
categories of the arguments are all equal, and will be discussed in the conclusions
(Chapter 4, page 40). Negotiation phases based on argumentation help us to update
the preferences and solve conflicts by obtaining new information from the stakeholders.

For the theoretical research of this project we have used ASPIC to instantiate our argu-
mentation framework. Later in the implementation of the prototype system we haven’t
use it, to focus in the conflicts and problems that may appear during the use of a nego-
tiation phase, and for simplicity reasons.

This document is structured as follows. In this chapter we have presented the state
of the art and explained the need of an argumentation based negotiation phase in the
context of the EcoBioCap project. In Chapter 2 we introduce the underlying logical
language in which preferences are expressed, we describe its syntax and semantics
to talk about arguments, and the formalization of our methods. This is followed by
Chapter 3 which describes the implementation of the prototype system. Finally, in
Chapter 4 we present some conclusions and perspectives for future work.

7

Chapter 2

Methodology

The problem we have has a defined input and output. Our input is a set of preferences
for each stakeholder and for each criterion. We also have a set of implications (for ex-
ample choosing ‘HFFS’ for the criterion ‘Type of Machine’ implicates choosing also
‘Sticker Attached’ for the criterion ‘Labelling’). The output of the system is a consen-
sual preference value for each criterion. By consensual, we understand that there are
no conflicts among the preferences of the actors.

The output can be extended in the future in order to return not one but a set of ranked
preferred values for each criterion (for example, for the ‘Color’ criterion we could
say that ‘Green’ and ‘Transparent’ are the values that don’t present conflicts, and that
‘Green’ is preferred to ‘Transparent’).

In order to obtain the desired output, we are going to:

1. Aggregate the preferences of all stakeholders into a single set.

2. Detect conflicts among them automatically.

3. For each conflict, use a Negotiation Phase and argue for resolving it, if possible.

4. If it is not possible to solve a conflict, solve it by splitting the options into differ-
ent scenarios.

5. Return the consensual preference value for each criterion.

To explain these steps we will formalize some concepts.

2.1 Modalization
Let S = {s1, ...,sn} be a set of stakeholders.

Example 1 The set of stakeholders we consider in this example are Expert 1 and Ex-
pert 2. Thus, S = {Expert 1, Expert 2}.

8

Let C = {c1, ...,ck} be a set of criteria. For every criterion c ∈C, Vc denotes the set of
possible values the criterion c can take.

Example 2 In our application, the set of criteria is:

C = {color, shelf life, type of machine, labelling }, where the values associated to these
criteria are:

• Vcolor = {green, transparent, mix & match}

• Vshel f li f e = N+

• Vtypeo f machine = {hffs, vffs, hand made}

• Vlabelling = {direct printing, sticker attached}

One way to obtain preferences from the stakeholders is to ask them to rank the values
of each criterion, and to use an utility function afterwards.

Let us consider an infinite discrete set V = {+,++,+++, ...} and a preorder < de-
fined on V . We also consider two special elements in V : “always” and “impossible”.
We define V+ as V+ = V ∪{always, impossible}. We extend the preorder < on V+

such that: impossible <+<++<+++< ... < always.

Observation 1 These two new elements are needed in order to express impossible
constraints, that is, values that are not wanted by the stakeholders, and positive con-
straints, that is, values that are the only ones eligible by the stakeholders and that make
all the rest impossible. As a result of the aggregation of preferences, we are never go-
ing to choose a value that is “impossible” for a stakeholder. If we cannot aggregate a
criterion for that reason we will have to split the scenario in order to manage all the
possibilities.

For each criterion c ∈ C and stakeholder s ∈ S we define an utility function utilitys
c :

Vc → V+. This function expresses the preference relation between the values for one
criterion and one stakeholder, and the values that are either positive or negative con-
straints.

We define a preorder ≺s
c on the values v of each criterion c ∈ C for each stakeholder

s ∈ S: ∀v1,v2 ∈Vc, (v1,v2) ∈≺s
c iff utilitys

c(v1)< utilitys
c(v2).

Please note that according to the previous definition, we can map the elements of Vc
for each stakeholder s ∈ S onto as many always and impossible images as needed. We
will use the following notation: NAs

c = {v ∈ c such that utilitys
c(v) = impossible} and

W s
c = {v ∈ c such that utilitys

c(v) = always}. In the following, for simplicity of nota-
tion, we will only use the ≺s

c preorder.

For simplicity reasons, we note v1 ≺s
c v2 if (v1,v2) ∈≺s

c. Let A be a set of values
(A⊆VC). We note A≺s

c v2 if ∀e ∈ A,e≺s
c v2, and we note v2 ≺s

c A if ∀e ∈ A,v2 ≺s
c e.

Notation 1 When there is no possible confusion, we can suppress the stakeholder and
the criterion in the notation and write ≺ directly.

9

Example 3 Let us consider ‘color’ criterion and its set of possible values: Vcolor =
{green, transparent, mix & match}. We abbreviate ‘green’ by ‘g’, ‘transparent’ by ‘t’
and ‘mix & match’ by ‘mm’.

1. W Expert 1
color : g, mm.

2. ≺Expert 1
color : t ≺ {g,mm}.

3. ≺Expert 2
color : g ≺ t ≺ mm.

Let us consider ‘shelf life’ criterion and its set of possible values: Vshelf life = N+.

4. W Expert 1
shelf life : 70.

5. W Expert 2
shelf life : 40.

Let us consider ‘type of machine’ criterion and its set of possible values: Vtype of machine =
{hffs, vffs, hand made}. We abbreviate ‘hand made’ by ‘h’.

6. NAExpert 2
type of machine : vffs.

7. ≺Expert 1
type of machine: h ≺ hffs ≺ vffs.

8. ≺Expert 2
type of machine:vffs ≺ hffs ≺ h.

Observation 2 Please note that this criterion is related to ‘labelling’ criterion due
to an implication found in the arguments, we will talk about this in the preference’s
aggregation process.

Let us consider ‘labelling’ criterion and its set of possible values: Vlabelling = {direct printing, sticker attached}.
We abbreviate ‘direct printing’ by ‘dp’ and ‘sticker attached’ by ‘sa’ for simplicity of
notation.

1. ≺Expert 1
labelling: dp ≺ sa .

2. ≺Expert 2
labelling: sa ≺ dp .

Observation 3 In the above, we always have at least a non rejected value for each
criterion, e.g. ∀s ∈ S,∀c ∈C,NAs

c (Vc.

Aggregating the above preferences of each stakeholder involves detecting inconsisten-
cies between preference orders. We also consider implications that we may find among
the preferences, expressing that choosing a value for a criterion forces the selection of
another value for another criterion.

Example 4 Let I =< c1, v1, c2, v2, a1 > be an implication, where c1 is the hypoth-
esis’ criterion, v1 is the hypothesis’ value, c2 is the conclusion’s criterion, v2 is the
conclusion’s value, and a1 is the stakeholders’ argument.

10

If there are no inconsistencies the preference aggregation is straightforward. On the
other hand, if there are inconsistencies to be solved, then we can use the arguments of
the stakeholder, which support the preferences (each pair of values has an associated
argument). These arguments have been elicited via technical surveys sent to every
stakeholder.

Observation 4 We can only choose one value for each criterion for the aggregation of
preferences, although this could be extended in the future for this project.

Example 5 Lets recall the ‘type of machine’ criterion discussed above. We have an
unsolvable conflict when we find out that Expert 1 prefers ‘HFFS’ over ‘Hand Made’
and Expert 2 prefers the contrary. Let us take another look at the arguments behind the
preferences from above:

1. Expert 1 notes that “we prefer to use a machine because when using hand made
packaging the atmosphere in the head-space can’t be controlled so the cheese
quality can’t be guaranteed. Also we would like to use VFFS as it is the machine
that we have available at the moment”.

2. Expert 2 claims that “we prefer hand made packaging over Horizontal form-fill-
seal as hand made is our current way of packaging and the HFFS is available
but is being used for another type of cheese, and using that machine implicates
we must label the products using a sticker attached. We cannot use VFFS as we
don’t have that machine”.

We find out that there is an implication: the selection of ‘HFFS’ for the ‘type of ma-
chine’ criterion implies the selection of ‘sticker attached’ for the ‘labelling’ criterion.
By analysing the arguments we detect that Expert 1 prioritizes Quality, while Expert
2 is concerned about Organization. Also, choosing ‘HFFS’ implies that we would be
harming Marketing.

In order to solve this conflict we need to consider which criterion is more important
for us. In this case, Quality is more important, so we choose ‘HFFS’ for the ‘type of
machine’ criterion and therefore ‘sticker attached’ for the ‘labelling’ criterion.
This same conflict can be solved by using a Negotiation Phase. This will be explained
later in this chapter.

2.2 Preference Conflicts
Preference conflicts always confront two different values of the same criterion. They
also face two different stakeholders and two preferences. Each stakeholder has an ini-
tial argument to defend his value (or attack the opposite value).

Let X = {⟨v1, s1, a1⟩,⟨v2, s2, a2⟩,c} be a conflict. v1 represents the first value in
conflict, s1 the stakeholder defending it, and a1 the argument or reason he presents.
v2 represents the second value in conflict, s2 the stakeholder defending it, and a2 his
argument. c is a criterion.

Example 6 X = {⟨Green, Expert 1, Argument 1⟩,⟨Transparent, Expert 2, Argument 2⟩, Color}.

11

In Section 3.4, page 27, we explain how to detect conflicts within the preferences au-
tomatically, and we present several examples to clarify our methods.

In order to formalize conflicts, we need to define a preference language. Language L
is explained in the next subsection.

2.3 Representing Preferences
In this section we introduce a logical language able to represent the kind of user pref-
erences expressed above. Notably we are interested in a propositional logic based
language on which we define a preference operator. This will allow to perform reason-
ing both from a classical propositional view point but also from a preference view point.

We start by defining the syntax of our language, the semantics, and then we try to infer
basic axioms such as transitivity. We prove that under normal assumptions the transi-
tivity does not hold and therefore we need to further study and constrain this language
in order to be able to produce a sound and complete set of axioms that characterize it.
This last aspect is very important since it will be needed in order to automatically infer
preferences conflicts and therefore be able to set the basis for an argumentation system
based on such conflicts and attacks.

In Section 2.3.2 we explain how to enforce transitivity in a model, using maximal
centred models [7].

2.3.1 The Syntax of L

In the following we inductively define the syntax of the language L we consider as the
basis of our argumentation framework.

Let L be the language generated from a set of propositional symbols PS together
with the connectives ∧,¬,≽ and ̸≽ as follows:

• Prop(PS) is the set of formulae classically defined in propositional logic over
connectors ∧,¬.

• If A ∈ Prop(PS) then A ∈L .

• If A,B ∈ Prop(PS) then A≽ B ∈L and A ̸≽ B ∈L .

• If A,B ∈L then A∧B ∈L .

• If A,B ∈ Prop(PS) then ¬(A≽ B) ∈L and ¬(A ̸≽ B) ∈L .

We also make use of the classical equivalences:

• A∨B = ¬(¬A∧¬B)

• A→ P = ¬A∨B

• A↔ B = (A→ B)∧ (B→ A).

12

2.3.2 The Semantics of L

Having described the syntax of L , we now define its semantics. We define a model as
M ⊆ 2PS . In order to assume transitivity, we make the strong assumption of maximal
centred models [7]. Let M be a set of models. An interpretation is defined with the
help of a set of models M and a given total order ≥ over M : ≥ ⊆M×M. We write
M1 ≥M2 iff (M1,M2) ∈ ≥ and M1 � M2 iff (M1,M2) /∈ ≥. We associate the total order
with a utility function over the propositions within a model: µ : 2PS 7→R. Given such
a function, ≥ is defined as follows : M1 ≥M2 if and only if µ(M1)≥ µ(M2).
Given a model M, we define the satisfaction relation |= according to a model as follows:

• ∀A ∈PS , M |= A iff a ∈M.

• ∀A ∈PS , M |= ¬A iff a /∈M.

• ∀A,B ∈PS , M |= A∧B iff M |= A and M |= B.

Now, let (M ,≥) be an interpretation. The satisfaction relation |= and the unsatisfaction
relation 2 are defined on (M ,≥) as follows:

• ∀a ∈PS , (M ,≥) |= a iff ∀M ∈M , a ∈M, otherwise (M ,≥) 2 a.

• ∀A,B ∈ Prop(PS) (M ,≥) |= A≽ B iff ∀M1,M2 ∈M satisfying:

– M1 |= A∧¬B

– M2 |= B∧¬A

– M1,M2 coincide for all other elements of PS

then M1 ≥M2
otherwise, (M ,≥) 2 A≽ B

• ∀A,B ∈ Prop(PS) (M ,≥) |= A ̸≽ B iff ∃M1,M2 ∈M satisfying:

– M1 |= A∧¬B

– M2 |= B∧¬A

– M1,M2 coincide for all other elements of PS

then M2 ≥M1
otherwise, (M ,≥) 2 A ̸≽ B.

• ∀A,B ∈ Prop(PS) (M ,≥) |= ¬(A≽ B) iff ∀M1,M2 ∈M satisfying:

– M1 |= A∧¬B

– M2 |= B∧¬A

– M1,M2 coincide for all other elements of PS

then M2 ≥M1
otherwise, (M ,≥) 2 ¬(A≽ B) .

13

• ∀A,B ∈L , (M ,≥) |= A∧B iff (M ,≥) |= A and (M ,≥) |= A
otherwise, (M ,≥) 2 A∧B.

• ∀A ∈L , (M ,≥) |= ¬A iff (M ,≥) 2 A
otherwise, (M ,≥) 2 ¬A.

2.3.3 Inference Rules
ASPIC+ encodes a logic within an argumentation framework by utilising its proof the-
ory represented as a set of inference rules. We must therefore identify the set of infer-
ence rules that are valid in L .

Given a set F of formulae on L , we say that C ∈L is the consequence of F (de-
noted F ⊢C) if and only if for all interpretations (M ,≥) such that for every F ∈F ,
(M ,≥) |= F it is the case that (M ,≥) |=C.

We assume the standard properties of associativity and distributivity over ∧ and ¬, as in
classical propositional logic, and again include the standard abbreviations for implica-
tion (→), and disjunction (∨). We then denote by RSPS the set of classical inference
rules in propositional logic. Language L also admits the following valid rules:

RS1 : ¬(ϕ ≽ ψ) ⊢ (ϕ ̸≽ ψ)
RS2 : ¬(ϕ ̸≽ ψ) ⊢ (ψ ≽ ϕ)
RS3 : (ϕ ≽ ψ)∧ (ψ ≽ σ) ⊢ (ϕ ≽ σ)
RS4 : (¬ϕ ≽ ϕ)∧ (ψ → ϕ) ⊢ (¬ψ ≽ ψ)
RS5 : (ϕ ≽ ¬ϕ)∧ (ψ → ϕ) ⊢ (ψ ≽ ¬ψ)

RS1 can be shown true by noting that the left hand side can only be true if either M1 <
M2, or (M1,M2) /∈≥ (i.e. they are incomparable). Both of these situations satisfy the
requirement imposed by the right hand side of the rule. The proof for RS2 is analogous
to this. RS3 follows directly from the transitivity of the model preference relation ≥
(we make the strong assumption here that the model set is maximal centered, see [7]
for more details). The last two rules can be trivially proven from the definition of the
set of models satisfying the preference operator.

2.3.4 Contrariness function on L

Given the inference rules above we define a contrariness function c f : L → 2L as
below. Intuitively this function denotes the mutual exclusivity between two formulae
within a given M . This function will be used in the next section to define the attack
between two arguments in our argumentation system.
For all “classical” propositional formulae ϕ :

• c f (ϕ) = {¬ϕ}

• c f (¬ϕ) = {ϕ}.

For all other formulae in L :

• c f (¬(a≽ b)) = {(a≽ b)},

14

• c f ((a≽ b)) = {(b≽ a),¬(a≽ b),(a ̸≽ b)}

• c f ((a ̸≽ b)) = /0

• c f (¬(a ̸≽ b)) = {(a≽ b),¬(b≽ a),(b ̸≽ a)}

2.3.5 Not closed model sets
The semantics shown above has been previously introduced in [5] where the strong
assumption of maximal centered models [7] has been made. We will prove that transi-
tivity cannot hold anymore if this assumption is lifted. As a consequence most of the
inference rules defined in [5] can no longer be inferred. We present in the following the
general version of this language and define a much poorer contrariness function used
for mapping our language onto ASPIC+ (similar to [5]).

Property 1 The transitivity relation is not valid in the defined logic: ∀a,b,c ∈L , the
satisfaction relation does not hold for all interpretations (M ,≽). So:

(M ,≽) 2 (a≽ b)∧ (b≽ c)→ a≽ c

Proof: We are going to build a counterexample. Let (M ,≽) be the following
interpretation over the symbols PS = {a,b,c}:

M = {M1,M2}.

Where M1 = {a,b},M2 = {c,b}, and M2≽M1.
Let us show that:

1. (M ,≽) � (a≽ b)

2. (M ,≽) � (b≽ c)

3. (M ,≽) 2 (a≽ c)

1. (M ,≽) � (a≽ b)i f f
∀M3,M4 ∈M
if M3 � a∧¬b
M4 � ¬a∧b
and M3 and M4 coincide for all other elements of PS
then M3≽M4.

@M ∈M�M � a∧¬b.
So the previous statement is always true.

2. Same kind of reasoning.

3. (M ,≽) � (a≽ c)i f f
∀M3,M4 ∈M
if M3 � a∧¬c
M4 � ¬a∧ c
and M3 and M4 coincide for all other elements of PS

15

then M3≽M4.

M1 � a∧¬c.
M2 � c∧¬a.
M1 and M2 coincide for all other elements of PS .
But M2≽M1.
So this is a counterexample because:
(M ,≽) � (a≽ b)∧ (b≽ c)but(M ,≽) 2 (a≽ c)

�

Property 2 The following two rules are not valid in the defined logic. ∀a,b ∈L , the
following satisfaction relations do not hold for all interpretations (M ,≽):

(M ,≽) 2 (¬a≽ a)∧ (b→ a)→ (¬b≽ b)

(M ,≽) 2 (a≽ ¬a)∧ (b→ a)→ (b≽ ¬b)

Cf. inference rules above we then define a function c f : L → 2L as below. Intuitively
this function denotes the mutual exclusivity between two formulae within a given M .
This function will be used later on in this section to define the attack between two ar-
guments in our argumentation system cf. the ASPIC model [12].

For all “classical” propositional formulae ϕ :

• c f (ϕ) = {¬ϕ}

• c f (¬ϕ) = {ϕ}.

For all other formulae in L :

• c f ((a≽ b)) = {(b≽ a)}

In the next subsection we define the argumentation system allowing 1) conflict detec-
tion based on the contrariness function and 2) for the negotiation phase.

2.4 Argumentation
Let us present some basic definitions at work in Dung’s theory of argumentation [6].
We restrict them to finite argumentation frameworks.

Definition 1 (argumentation framework) An argumentation framework is a pair (A,R)
where A is a finite set of arguments and R⊆ A×A.

Example 7 For example: AF = ({a,b,c},{(a,b),(b,c)})

Clearly enough, the set of finite argumentation frameworks is a proper subset of the set
of Dung’s finite argumentation frameworks, where every argument can be attacked by
finitely many arguments. The definition above clearly shows that a finite argumentation
framework is nothing but a finite, labelled digraph.

A second important notion is the notion of absence of conflicts. Intuitively, two ar-
guments should not be considered together whenever one of them attacks the other
one.

16

Definition 2 (conflict-free sets) Let AF = ⟨A,R⟩ be a finite argumentation framework.
A subset S of A is conflict-free if and only if for every a,b ∈ S, we have (a,b) /∈ R.

Example 8 For example: AF = ({a,b,c},{(a,b),(a,c)}).S = {(b,c)}

Definition 3 (acceptable sets) Let AF = ⟨A,R⟩ be a finite argumentation framework.
An argument a ∈ A is acceptable w.r.t. a subset S of A if and only if for every b ∈ A s.t.
(b,a) ∈ R, there exists c ∈ S s.t. (c,b) ∈ R. A set of arguments is acceptable w.r.t. S
when each of its elements is acceptable w.r.t. S.

Requiring the absence of conflicts and the form of autonomy captured by self-acceptability
leads to the notion of admissible set.

Definition 4 (admissible sets) Let AF = ⟨A,R⟩ be a finite argumentation framework.
A subset S of A is admissible if and only if S is conflict-free and it is acceptable w.r.t. S.

The significance of the concept of admissible sets is reflected by the fact that every
extension of an argumentation framework under the standard semantics introduced by
Dung (preferred, stable, complete and grounded extensions) is an admissible set, satis-
fying some form of optimality:

Definition 5 (extensions) Let AF = ⟨A,R⟩ be a finite argumentation framework.

• A subset S of A is a preferred extension of AF if and only if it is maximal w.r.t. ⊆
among the set of admissible sets for AF.

• A subset S of A is a stable extension of AF if and only if it is conflict-free and for
every argument a from A\S, there exists b ∈ S s.t. (b,a) ∈ R.

• A subset S of A is a complete extension of AF if and only if it is admissible and it
coincides with the set of arguments acceptable w.r.t. itself.

• A subset S of A is a grounded extension of AF if and only if it is the least element
w.r.t. ⊆ among the complete extensions of AF.

Our system is instantiated on top of the popular ASPIC+ model [12]; the use of this
model as one of our foundations allows us to ensure that it adheres to several desider-
ata, including the rationality postulates described in [4]. ASPIC+ provides an abstract
model of argument (though far less abstract than the one described in [6]), and allows
for different logics to be embedded within it. Part of our work is therefore to describe
one such logic.

2.5 ASPIC+
Following [12], we define an argumentation system as the tuple
A S = (L ,c f ,R,≥), where:

• L is the logical language explained in Section 2.3.1;

• c f is the contrariness function from L to 2L as defined in
Section 2.3;

17

• R = Rs∪Rd the set of inference rules (Rs are the strict inference rules and Rd
are the defeasible inference rules) within L defined cf. Section 2.3 as follows:

– Rs = {RS1, ...,RS5}∪RSPS ;

• ≥ a preference ordering over defeasible rules, which we ignore for now (≥= /0).

In what follows, for a given argument, the function Prem returns all the formulas of K
(called premises) used to build the argument, Conc returns its conclusion, Sub returns
all its sub-arguments, DefRules returns all the defeasible rules of the argument and,
finally, TopRule returns the last inference rule used in the argument.

Given a knowledge base K ⊆L , we define an argument A as per Definition 3.6 of
[12], requiring that ϕ ,¬ϕ cannot be inferred from either Conc(A) or Prem(A).

An argument A on the basis of a knowledge base K is:

1. ϕ if ϕ ∈K with Prem(A) = {ϕ}; Conc(A) = ϕ ; Sub(A) = {ϕ}; Rules(A) =
/0; TopRule(A) = undefined.

2. A1, . . .An → /⇒ ψ if A1, . . . ,An are arguments such that there is a strict or de-
feasible rule Conc(A1), . . . ,Conc(An)→ /⇒ ψ in Rs/Rd .

• Prem(A) = Prem(A1)∪ . . .∪Prem(An)

• Conc(A) = ψ ,

• Sub(A) = Sub(A1)∪ . . .∪Sub(An)∪{A}
• Rules(A)=Rules(A1)∪. . .∪Rules(An)∪{Conc(A1), . . . ,Conc(An)→
/⇒ ψ}
• TopRule(A) = Conc(A1), . . . ,Conc(An)→ /⇒ ψ

ASPIC+ defines three types of attacks:

1. An undercutting attack from argument A to argument B on some B′ ∈ Sub(B)
occurs iff Conc(A) ∈ c f (B′) and B′ is of the form B′′1 , . . . ,B

′′
n → ϕ .

2. A rebutting attack from A on argument B occurs iff Conc(A) ∈ c f (ϕ) for some
B′ ∈ Sub(B) of the form B′′1 , . . . ,B

′′
n → ϕ . If Conc(A) is a contrary of ϕ then A

contrary-rebuts B.

3. A undermining attack occurs from argument A to B iff Conc(A) ∈ c f (ϕ) for
some ϕ ∈Prem(B)\Kn. If Conc(A) is a contrary of ϕ or ϕ ∈Ka then A contrary-
undermines B.

The notion of an attack is then extended to the notion of a defeat via two concepts:

1. Argument A successfully rebuts argument B if A rebuts B on B′ and A contrary-
rebuts B′.

2. A successfully undermines B if A undermines B on ϕ and A contrary-undermines
B.

18

Then argument A defeats B iff no premise of A is an issue and A undercuts or success-
fully rebuts or successfully undermines B. If A defeats B and B does not defeat A, then
A strictly defeats B.

We can now map from ASPIC to a Dung argumentation framework⟨Arg,De f ⟩ by defin-
ing the set of arguments Arg from the definition of arguments above, and defining De f
according to the defeat notion defined above.

In [1], Amgoud analyses the ASPIC+ framework and argues that it suffers from five
weaknesses: i) its logical formalism is ill-defined, ii) it may return undesirable results,
iii) it builds on some counter-intuitive assumptions, iv) it violates some rationality pos-
tulates, and v) it allows counter-intuitive instantiations. These arguments are later re-
butted in [11] by Prakken and Modgil. The analysis of this information and its impact
on this project is part of future work and won’t be discussed yet.

2.6 Negotiation Phase
We introduce the idea of a Negotiation Phase to help us decide between two opposite
preferences in conflict. When stakeholders express their preferences, they also present
a reason sustaining them, which we consider as the argument behind the preference.
Therefore, every conflict presents two arguments attacking each other. The idea behind
that is that two opposed preferences represent the starting point of a discussion. So, we
assume that the arguments supporting them attack each other. When the negotiation
phase start, we label each argument with a letter an build a first argumentation frame-
work with both arguments attacking each other.

During the negotiation phase, we let stakeholders enter new information, arguments
and attacks, and we calculate Dungs preferred extensions in every step. Whenever we
have a single preferred extension including only one of the original arguments, we let
the user finish the argumentation. The preference supported by the argument that lost
is turned around, in order to support the value it was attacking before. The preference
supported by the argument that won, stays there.

If the conflict is not solvable by argumentation and no stakeholder can convince the
other one (if the argumentation framework always presents more than one preferred
extension) then there is no possible solution but split the scenario. This means that the
whole system (preferences, stakeholders, arguments) is duplicated in order to have two
equal systems. After that, in one of them one of the opposed preferences is removed,
and in the other one, the second preference is removed. This let us work in parallel
with both possibilities and not disappoint anyone of the stakeholders.

Splitting scenarios can lead to many parallel scenarios, as they can grow exponentially.
Because of this reason, in the first implementation of the prototype system we are only
going to let the user keep one of the scenarios and the other ones will be discarded.

In Figure 2.1 we can see an argumentation framework just created. It presents two
arguments that support two opposed preferences (one stakeholder prefers Sticker At-
tached over Direct Printing while the other one prefers the contrary).

19

Figure 2.1: Argumentation Framework created for the two arguments supporting the
preferences in conflict. The circles represent argument and the arrows represent attacks.
The arrow goes from the attacking argument to the attacked argument.

Figure 2.2: Argumentation Framework with a new argument added in the Negotiation
Phase. The preferred extension includes one of the original arguments and not the other
one, so we could finish the argumentation at this point if there are no new arguments.

Figure 2.3: Argumentation Framework with two new arguments added in the Negoti-
ation Phase. There are two preferred extensions, therefore we cannot finish the argu-
mentation at this point. If there are no new arguments we are going to need to split the
scenario in order to manage all the possible values as output for this criterion.

In Figure 2.2, the argumentation framework has been updated with a new argument,
attacking argument B. It now presents a single preferred extension, which contains ar-
gument A and C and not argument B. Thus, we are able to finish the negotiation phase
unless stakeholders want to add new arguments.

In Figure 2.3, the argumentation framework has been updated again with another ar-
gument. As we now have two preferred extensions, we need either to wait for new
arguments or split the scenario and manage both preferences separately in parallel.

2.7 Most Preferred Value
The system finds the most preferred value for each criterion and scenario when there
are no more conflicts, if possible. If it is not possible, we let the user choose the value
manually.

It is important to notice that for the algorithm in this phase, we take advantage of the

20

lack of information about preferences. If one or more stakeholders didn’t provide in-
formation about their preference between two values, but another stakeholder did, then
we will assume they all have the same preference.

The algorithm also discards specific values for the election of the most preferred value
depending on the implications that involve them.

The system tries to choose automatically the most preferred value for each criterion
that doesn’t have any conflicts within their preferences, as soon as the user enters the
preferences information and conflicts are detected. This is done in order of appearance
of the criteria.

Every time the user solves a conflict, if the system detects that a criterion is not involved
in any conflict anymore, it tries to select the most preferred value for it, if possible. If
not, it will be chosen by the user later. We will provide more details in Section 3.8,
page 33.

In Chapter 3 we present the prototype system we have developed and describe in detail
the algorithms and decisions we have taken.

21

Chapter 3

Implementation

In order to test the usage of a negotiation phase in the argumentation based preference
aggregation, we have developed a prototype system. This prototype was implemented
in Java.

The first implementation of this prototype includes a simple user interface, as a more
complex and dynamic user interface is intended to be implemented in a second version
of the prototype.

The objective of the prototype is to allow the user to aggregate the preferences of all the
stakeholders, automatically detect conflicts within them, and provide him with tools in
order to solve them. For example, it simulates Negotiation Phases between the stake-
holders so they can enter new information, preferences and take decisions.

This implementation is based on the theoretical work on ASPIC+, but is much simpler
as our intention was to detect problems that may occur during negotiation phases.

The work-flow of the prototype system can be divided into the following phases:

1. Data Entry

2. Global Preferences Representation

3. Cycles

4. Preference Conflicts

5. Not Applicable & Wanted Values

6. Conflict Resolution

7. Argumentation Framework

8. Most Preferred Value

9. Decision’s Information

Those phases are now described and explained.

22

Figure 3.1: Screenshot of the first version of the prototype, displaying the conflicts that
were found.

3.1 Data Entry
This is the first phase of the system and its objective is to allow the user to enter all the
information elicited in the technical surveys. In this step the user can load the data of
the criteria, possible values, implications, stakeholders and preferences.

In the first version of the prototype this phase is not available, and instead the infor-
mation is loaded from different input files, which represent different test cases. The
format of the input files is fully described in Appendix C. Here we describe this phase
as if the system had an interface to load the information manually.

3.1.1 Criteria
During this phase the user enters the information of the criteria into the system. For
each criterion he must specify a name and the list of possible values. The system as-
signs an unique identifier for each criterion, and it doesn’t allow two criteria with the
same name.

3.1.2 Stakeholders
In this phase the user enters the information of the stakeholders into the system. This
includes the information of their preferences as elicited in the technical surveys. For
each stakeholder the user enters a name, the preferences, the Wanted values and the

23

Not Applicable values.

The user is provided with a screen in order to do that. For each stakeholder he will be
able to select each criterion at a time in order to specify which values are ’Wanted’ and
which ones are ’Not Applicable’, and also to select a pair of values, one to be the Less
Preferred and one to be the Most Preferred.

If for one stakeholder and criterion a value appears in the Wanted list, it cannot appear
in the Not Applicable list and vice versa. Also, the Not Applicable list cannot include
all the criterion’s values. Finally, the stakeholders’ preferences cannot determine a cy-
cle as that would be inconsistent.

3.1.3 Implications
Implications have an hypothesis and a conclusion, which are values from different cri-
teria. They also have the list of stakeholders that mentioned the implication, which is
not used at the moment in any algorithm and is only for information purposes. Impli-
cations are useful to determine the interrelation between the criteria.

The user can now enter the information of the implications into the system. He can
also add implications during the Negotiation Phase. If the user enters a new implica-
tion that already exists for another stakeholder, then that implication is updated and the
new stakeholder is added into the list. This way, we avoid having duplicated implica-
tions.

To avoid an inconsistent Knowledge Base, we don’t allow a stakeholder to enter impli-
cations that determine a cycle between the criteria. After entering all implications, an
algorithm is run to detect this kind of cycles. If any, the user is asked to remove some
implications until their implications do not determine a cycle between the criteria.

We can have cycles between the criteria due to the aggregation of the implications of
different stakeholders, for example (the arrow goes from the hypothesis to the conclu-
sion):

1. Expert 1 says: With ’HFFS’ it is impossible to have a transparent material. Also
it is a marketing constraint to use Sticker Attached with no transparent packages
as ink is not nice in this kind of packages.

2. Expert 2 says: When we use Sticker Attached we need to use ’VFFS’ as it is the
only machine that simplifies the process of adding the sticker.

So, as we can find this kind of cycles, algorithms have validations to avoid infinite
loops. For example, if we select ’HFFS’, then the first implication forces us to select
’Non Transparent’. Then, the second implication forces us to select ’Sticker Attached’.
Finally, we don’t follow the last implication as ’Type Of Machine’ criterion has a cho-
sen value already.

24

Figure 3.2: We say we have a cycle between the implications when we can start from
one criterion and go back to the same criterion by following the implications between
the values, for the same stakeholder. In this case we have a cycle for Expert 1, so his
information is inconsistent and we don’t allow it.

3.2 Global Preferences Representation
In this step the user is ready to generate the Global Preferences Representation. Al-
though in this version of the prototype everything is represented in a text format, the
idea for the second version of the system is to represent them with a rich and dynamic
graph in the screen. This includes implications and ’Not Applicable’ and ’Wanted’
values. Each value will be represented as a vertex and each edge will represent a pref-
erence from one value over another one.

To represent that two stakeholders have the same preference (for example both of them
prefer ’Transparent’ over ’Green’) we are going to use a single edge between the two
values, with the arguments of both stakeholders attached to the edge. Another option
could have been to use a directed multi-graph, but we preferred to have all the infor-
mation together as many stakeholders can participate in the same Negotiation Phase in
order to solve a specific conflict.

In Figure 3.3 we can see a sketch of how the Global Preferences Representation could
look after implementing a rich user interface for the system. Different colors are used
for values of different criteria. Blue arrows represent preferences, and they go from the
most preferred value to the less preferred one. Yellow arrows represent implications.
Each value show the list of stakeholders that marked it as Not Applicable or Wanted, if
any.

25

Figure 3.3: Sketch of Global Preferences Representation.

3.3 Cycles
Finding cycles within the preferences is very important as it will be used for conflict
detection, in a process explained in the following subsection. It is important to notice
that we want to show the user absolutely all conflicts within a set of preferences, to
let him decide which conflicts he prefers to solve first (solving one conflict may then
automatically solve another one, as preferences are changed in this process).

In order to do this we first tried using JGraphT 1. This framework already provides al-
gorithms for cycle detection 2, but those algorithms were not useful for us as they were
returning the cycles with the maximum number of nodes only, and not any smaller cy-
cles inside them.

After analysing several libraries we found a set of Java classes that provided an algo-
rithm for detecting all elementary cycles in a graph with the algorithm of Johnson [13].
In order to do this, it searches for strong connected components, using the algorithm of
Tarjan [8]. The constructor gets an adjacency-list of a graph. Based on this graph,
it gets a nodenumber s, for which it calculates the subgraph, containing all nodes
{s, s + 1, ..., n}, where n is the highest nodenumber in the original graph (for exam-
ple it builds a subgraph with all nodes with higher or same nodenumbers like the given
node s). It returns the strong connected component of this subgraph which contains the
lowest nodenumber of all nodes in the subgraph.

The author of this implementation is Frank Meyer 3, and it was released in March 2009.

1http://www.jgrapht.org
2http://jgrapht.org/javadoc/org/jgrapht/alg/CycleDetector.html
3web@normalisiert.dot.de

26

3.4 Preference Conflicts
Now conflicts can be detected automatically. In order to do that, the alogirthm analy-
ses all cycles found within the preferences and determines if they represent a conflict
or not, as not all cycles are considered as a conflict. Let us illustrate this with some
examples.

Notation 2 In the following examples, vertices represent values, and edges represent
preferences. Each edge goes from the most preferred value to the less preferred value,
and the list of stakeholders holding that preference is notated in the edge.

Figure 3.4: Conflict between Green and Transparent. The arrow goes from the Most
Preferred value to the Less Preferred value.

Figure 3.5: Conflict between HFFS and VFFS, and conflict between VFFS and Hand
Made.

Figure 3.6: Cycle between three values that can be collapsed into a cycle between two
values. Therefore, we have a conflict between HFFS and Hand Made.

In Figure 3.4 we can see that there is a cycle between two values, Green and Trans-
parent. As the edges correspond to different stakeholders, we detect a valid conflict
between them.

In Figure 3.5 we can see two different cycles, and again their edges correspond to dif-
ferent stakeholders. Therefore, we detect two valid conflicts, one between HFFS and

27

Figure 3.7: Cycle between four values that can be collapsed to a cycle between two
values. Therefore, conflict between HFFS and New Machine.

Figure 3.8: No conflict as we cannot collapse edges to obtain a cycle between two
values. The user needs to choose a value manually.

VFFS, and another one between VFFS and Hand Made.

In Figure 3.6 we see a cycle between three values. In order to inherit a conflict we
need to collapse two edges into one, to create a new cycle between two values. As the
edges between HFFS and VFFS, and between VFFS and Hand Made both correspond
to Expert 1, they can be collapsed into a single edge between HFFS and Hand Made.
Therefore, we have a conflict between them as there is an edge between Hand Made
and HFFS sustained by Expert 2.

In Figure 3.7 we see a cycle between four values. In this case we can collapse the edge
between HFFS and VFFS with the edge between VFFS and New Machine, and we can
also collapse the edge between New Machine and Hand Made with the one between
Hand Made and HFFS. Therefore, we have a conflict between HFFS and New Machine.

In Figure 3.8 there is not a valid conflict as we cannot collapse consecutive edges cor-
responding to the same stakeholder. Therefore, we cannot transform the cycle into a
cycle between only two values.

The information of ’Wanted’ and ’Not Applicable’ values is not used at this moment
in the algorithms to define conflicts.

The user can decide after detecting conflicts what to do with the nodes marked as ’Not
Applicable’ or ’Wanted’.

28

Note: Algorithm for Conflict Detection

The pseudocode for this algorithm and its explanation are available in Appendix D.

3.5 Not Applicable & Wanted Values
Values can be not applicable for a stakeholder but the most preferred one for many oth-
ers. Because of this, in this implementation we are not taking any automatic decision
respecting those values. Instead, we let the user decide what to do with them. They
can either remove the Not Applicable tag from a value (and this is then done for all the
stakeholders that marked it as Not Applicable) or either remove the value completely
from the system.

Users can also decide to remove the Wanted tag from a value, this option is available
at the same moment. They cannot remove those values though.

3.6 Conflict Resolution
The user then selects the option to solve a specific conflict, as conflicts need to be re-
solved one at a time. The Negotiation Phase starts.

Let’s focus in the conflict between VFFS and Hand Made in the second example from
the previous section:

Figure 3.9: Conflict between HFFS and VFFS, and conflict between VFFS and Hand
Made.

Expert 1 says: We prefer to use a machine because when using hand made packaging
the atmosphere in the head-space can’t be controlled so the cheese quality can’t be
guaranteed (Argument A).

Expert 2 says: We prefer Hand Made as it is our current way of packaging and VFFS
is available but being used for another cheese (Argument B).

So, we have one conflict due to two opposite preferences, supported by two arguments.
We call Expert 1’s argument as argument A, and Expert 2’s argument as argument B.
The Argument’s Graph is generated:

The user is now allowed to enter new arguments into the graphs as attacks to other
arguments.

29

Figure 3.10: Argumentation Framework

Also, the user can add new implications into the system. Implications are considered
in a later phase by the algorithms (when a criterion is analysed in order to select the
chosen value), but as in this phase new information can appear, it is a good moment to
allow this. In a future implementation, the user will be allowed to add new criteria and
preferences.

The user adds new arguments, for example:

A: We prefer Hand Made as it is our current way of packaging and VFFS is available
but being used for another cheese.

B: We prefer to use a machine because when using hand made packaging the atmo-
sphere in the head-space can’t be controlled so the cheese quality can’t be guaranteed.

C: There are new procedures that allow to control the atmosphere in the head-space
when using hand made.

D: It is very expensive to train all the employees so they can follow these new proce-
dures.

E: Actually the training is very fast and the implementation too.

In order to see the attacks, refer to Figure 3.11.

Figure 3.11: Argumentation Framework

Every time an argument is added, the preferred extensions are calculated. The user is
able to proceed to the next step when there is one preferred extension only, and con-
taining one of the original arguments (A or B).

In this case, argument A wins, so the preference supported by argument B changes its

30

direction and the cycle is broken.

The user can enter arguments that attack any other argument. For example, we could
add 5 more arguments to attack argument B from different points of view.

Argument D can lead us in a future implementation to add a new criterion called Cost
and new preferences. At the moment we will only consider it as an argument to solve
this conflict.

If the Negotiation Phase fails because it is impossible to determine which arguments
are more important, then the user is able to split the Global Preferences Graph into two
scenarios. As in the first implementation this can lead to an exponential number of sce-
narios, the system will show the user the different options, and after the user chooses
one scenario, he will continue working with that one only.

In the above example, one scenario contains the preference supported by argument A
and not the preference supported by argument B. The second scenario contains the
preference supported by argument B and not the preference supported by argument A.

Now let’s see the example from Figure ??:

Figure 3.12: Conflict between HFFS and Hand Made.

So we have one conflict between Expert 1 and Expert 2. Under the closed model set
assumption we can assume that transitivity can be applied to preferences. Then we
could join both preferences of Expert 1 and infer that he prefers ’HFFS’ over ’Hand
Made’, and support this new preferences using both arguments supporting the two orig-
inal preferences. So now we have a new preference that is in conflict with Expert 2’s
preference. We can start a new Negotiation Phase.

After the Negotiation Phase, either Expert 1 can win, or Expert 2 can win. If Expert 1
wins, then Expert 2’s preference changes its direction, and the chosen value is ’Hand
Made’. If Expert 2 wins, then both Expert 1’s preferences are removed and the new
preference added in this phase changes its direction, so ’HFFS’ becomes the chosen
value.

Even if we have a cycle between four or more nodes, if we can apply transitivity to
infer new preferences, we can transform them into smaller cycles and solve them in the
way mentioned in this section.

In Figure 3.13 we can see a sketch of how the Negotiation Phase could look in the
prototype system after developing a rich user interface.

31

Figure 3.13: Sketch of a Negotiation Phase.

3.7 Argumentation Framework
In order to create argumentation frameworks and find preferred extensions in our im-
plementation, we used an external Java framework called JavaDungAF 4 from the Ar-
gumentation Research Group called ARG:dundee 5.

This is an open source framework composed of a few classes that implements the ad-
missible semantics. JavaDungAF’s implementation of the admissible semantics essen-
tially comprises three stages:

1. The first stage finds the defence-sets around each argument. An argument’s
defence-sets are those sets of arguments which (i) include the argument; and
(ii) are admissible; and (iii) subsume no other set satisfying (i) and (ii) [15].

2. The second stage uses the set of all defence-sets to find the preferred extensions.

3. The third stage uses the preferred extensions to find the remaining (nonminimal,
non-maximal) non-empty admissible sets, if any exist.

While the second and third stages are straightforward, the first stage is less so. Dun-
gAF uses a simplified and slightly modified version of Vreeswijk’s algorithm to deter-
mine the defence-sets around an argument [15]. Vreeswijk’s algorithm was designed to

4http://arg.dundee.ac.uk/dungomatic/docs
5http://www.arg.dundee.ac.uk

32

generate labelled defence-sets1, and includes a slight error; JavaDungAF’s version is
simplified in that it generates merely defence-sets, and is modified to address the error.

This set of classes is used in our prototype system in order to generate an argumenta-
tion framework for the negotiation phase, with the initial two arguments and attacks.
It provides simple methods to add new arguments, attacks, and calculate the preferred
extensions.

3.8 Most Preferred Value
When there are no more conflicts for a criterion and scenario, the system chooses the
most preferred value, if possible.

As we introduced in Section 2.7, we take advantage of the lack of information about
preferences. If one or more stakeholders didn’t provide information about their prefer-
ence between two values, then we assume they can agree with another stakeholder who
expressed his preference. This rule is only used to discard some values at the beginning
of the algorithm. We say a value is eligible to be the most preferred one only if there
are no other values marked as more preferred, regardless the number of stakeholders
holding the preferences. After getting the list of eligible values, we don’t use this rule
anymore and just analyse the information of Not Applicable and Wanted tags, apart
from the number of stakeholders defending a value.

Figure 3.14: Green is the most preferred value, even though it is preferred by only
one stakeholder. We interpret that as the rest of the stakeholders didn’t express their
preference regarding Green and Transparent, they can agree with Expert 1 about his
preference.

In Figure 3.14 we see an example of a criterion with three possible values. Green is
considered the most preferred one, even though it is preferred to Transparent only by
one stakeholder, while Transparent is preferred to Mix & Match by four stakeholders.
We interpret that stakeholders who don’t express a preference between two values may
agree with the preference express by other stakeholders. Therefore, Experts 2-5 can
agree with Expert 1 about his preference.

We also need to check for which criteria we can choose the most preferred value au-
tomatically. Even when not all cycles are considered conflicts, we are not going to

33

run the algorithm on criteria that have cycles within their preferences. This decision
is because we think those criteria just need more information before we can determine
which values are in conflict. In the future we would like to run a new negotiation phase
for these cases in order to get that information, but in this first implementation we are
going to ask the user to choose the most preferred value manually.

Figure 3.15: We cannot choose the most preferred value automatically even though this
cycle is not considered as a conflict yet.

In Figure 3.15 we see another example of a criterion with three possible values, and
preferences that determine a cycle. Even though this is not considered as a conflict,
as we cannot collapse the edges because they correspond to different stakeholders, this
could be a conflict if we had more information. Without more preferences expressed
here, we cannot determine which ones are the preferences in conflict.

For the rest of the criteria, we need to check which values are eligible to be the most
preferred one. We discard a value when it has implications and their conclusions cor-
respond to criteria which already have a chosen value, and at least one of those chosen
values is different than the one implied in the conclusion of an implication.

Figure 3.16: VFFS is the chosen value for the Type Of Machine criterion. As Green
implies HFFS, when choosing the most preferred value for Color that value is going to
be disabled.

In Figure 3.16 we see two criteria: ‘Color’ and ‘Type Of Machine’. ‘Type Of Machine’
already has a chosen value, which is ‘VFFS’. We can also see that ‘Green’ implies
‘HFFS’. Therefore, when choosing the most preferred value for ‘Color’, ‘Green’ is go-
ing to be disabled as it implies a value that is different from the already chosen one.

Green→ HFFS⇔¬HFFS→¬Green.

34

It is important to note which order is used by the system to automatically choose the
most preferred value. As soon as the information of the preferences is loaded and
conflicts are detected for the first time, the system tries to choose the most preferred
value automatically for the criterion that are not involved in any conflict. This is done
in order of appearance of each criterion. If the system finds out that it needs to set a
value for another criterion automatically due to an implication, it first informs the user
and ask him if he wants to proceed or not. In case of a negative answer, no values are
chosen for the first criterion and the related ones. Apart from this, every time a conflict
is solved, if the criterion doesn’t have conflicts any more, the system tries to find the
most preferred value again, following the same idea. At the end, the user is able to set
the most preferred value manually for the remaining criteria.

The algorithm also discards a value from the list of eligible ones if their are four grades
of implications. In other words, it is discarded if it implies a second one, which implies
a third one, which implies a fourth one, regardless the criteria involved. The idea be-
hind this is that we don’t want to set automatically so many values because we would
be loosing a lot of information. We think it is okay to have some values chosen auto-
matically but more that four grades is not good because of the loss of information.

Example 9 Let I = {I1, I2, I3, I4} be a set of implications, where:

I1 =< Color, Green, Type Of Machine, HFFS, Argument 1 > .
I2 =< Type Of Machine, HFFS, Type Of Labelling, Sticker Attached, Argument 2 > .
I3 =< Type Of Labelling, Sticker Attached, Shelf Life, 40, Argument 3 > .
I4 =< Shelf Life, 40, Price, 5, Argument 4 > .

When choosing the most preferred value for the ‘Color’ criterion we are going to dis-
card ‘Green’ as it implies a value which implies a third one, which implies a fourth one.

From the list of eligible values, we keep the ones which have the lower number of
stakeholders in their Not Applicable list. From these, we keep the ones that have the
higher number of stakeholders in their Wanted list. Finally, we pick the one with the
higher number of stakeholders in the preferences that involve them directly (as most
preferred values). If there is a draw between two or more values, then we ask the user
to choose the most preferred value manually as we cannot take a decision automatically.

Figure 3.17: If we choose Green for Color, then HFFS will be automatically chosen,
even though it is not the most preferred value for Type Of Machine.

35

After choosing a value for a criterion, if there are implications involved, the respective
values are chosen for the related criteria. In Figure 3.17 we see two criteria: ‘Color’
and ‘Type Of Machine’. As ‘Green’ implies ‘HFFS’, if we choose that value for Color,
then ‘HFFS’ will be selected for ‘Type Of Machine’.

Figure 3.18: Both Green and Blue don’t have incoming arrows, but we choose Green
as it is preferred by more stakeholders.

Figure 3.19: Both Green and Blue don’t have incoming arrows, but we choose Blue as
it is preferred by more stakeholders.

Figure 3.20: Green is the chosen value even though Transparent is wanted by Expert
2, because Transparent has an incoming arrow, which means that there is another value
more preferred by a stakeholder.

In Figure 3.18 we see a criterion with four possible values. In order to decide which
one is the most preferred, we keep the ones with no incoming arrows only, ‘Green’
and ‘Blue’, because no other values are more preferred than them. As none of them
are Wanted or Not Applicable, we count the stakeholders that prefer them directly to
another value. In this case ‘Green’ is preferred by two stakeholders and ‘Blue’ only by
one, therefore ‘Green’ is the chosen one for this criterion.

This is not the case of the criterion in Figure ??, where ‘Blue’ is preferred for more

36

Figure 3.21: Both Green and Blue don’t have incoming arrows. Blue is preferred by
more stakeholders, but Green has the higher number of stakeholders in its Wanted list,
therefore it is the chosen value.

Figure 3.22: Both Green and Blue don’t have incoming arrows. Green has the higher
number of stakeholders in its Wanted list, but Blue has the lower number of stakehold-
ers in its Not Applicable list, therefore it is the chosen one.

Figure 3.23: Both Green and Blue don’t have incoming arrows and equal number of
stakeholders in their Not Applicable list. Therefore, we choose Green as it has the
higher number of stakeholders in its Wanted list.

stakeholders and therefore it is the chosen value.

In Figure 3.21 the criterion is the same one, but ‘Green’ has a stakeholder in his Wanted
list, therefore we don’t count the stakeholders supporting ‘Green’ and ‘Blue’ as we
choose ‘Green’ directly.

37

In Figure 3.22 we have the same situation but ‘Green’ has a stakeholder also in his
Not Applicable list. As ‘Blue’ doesn’t have stakeholders in his Not Applicable list, we
choose it for this criterion, without counting the stakeholders or analysing the Wanted
information.

In the case of Figure 3.23, both ‘Green’ and ‘Blue’ have a stakeholder also in their Not
Applicable list. Therefore, we analyse the Wanted information and choose ‘Green’ as
the most preferred one.

Note: Algorithm for Most Preferred Value

The pseudocode for this algorithm and its explanation are available in Appendix ??.

3.9 Decision’s Information
During the execution of the system, all the information is stored in the Log. There, the
user can find all the decisions that were taken, either automatically by the system, or
manually by him. If a scenario was splitted or new arguments were added, all this will
be presented in the Log.

Apart from this log, in the screen were the chosen values are presented, the user can
also see the reasons. A value may have been chosen manually, or automatically be-
cause of an implication, or automatically by the system after the user solved all the
conflicts.

After choosing a value for each criterion, the result is presented to the user. This in-
cludes the Decision Tree, which shows what happened during the execution. All new
arguments added by the user, attacks, new implications, split of scenarios, etcetera, are
displayed in order to show what happened. This can be a graphical or a text represen-
tation.

In a future implementation where multiple parallel scenarios will be allowed, the infor-
mation about the scenarios will also be presented in a tree, with many nodes showing
all the scenarios and resolutions. In this implementation, a single tree is presented with
the single scenario.

3.10 Evaluation
Shown to experts.

38

Figure 3.24: Example of the screen that displays the chosen values for a scenario and
the reasons.

39

Chapter 4

Conclusions & Perspectives

The main contribution of the paper lies in the presentation of a real aggregation sce-
nario and the use of preference logic and negotiation phase based in argumentation for
addressing this concrete problem.

In order to use the ASPIC argumentation model we needed to define a preference logic
according to the scenario at hand. After defining the syntax and semantics of this logic
we then proved that transitivity does not hold if certain assumptions are not made, lim-
iting the inference capabilities of our argumentation system.

We also developed a prototype system and validated it in terms of decision support for
EcoBioCap.

4.1 Future Work
The current and future work directions are numerous:

1. We are interested in analysing the possible weaknesses of ASPIC mentioned by
Amgoud in [1] and rebutted by Prakken and Modgil in [11].

2. We think it is possible to infer a ranking between the criteria directly from the
arguments. For example, we could find constraints in the stakeholders’ prefer-
ences. That raking could help us to decide between different values in some
situations.

3. In the current implementation, implications goes from one value from one crite-
rion, to another value in a different criterion. We are interested in extending this
concept in order to be able to talk about groups of values implications groups of
values.

4. We would like to develop a richer user interface for the prototype system, to
display the graphs of preferences and arguments in a better format. Also, we
would like to make it a multi user application. All this is important to have a
dynamic interesting application in order to encourage discussions.

40

5. Not Applicable and Wanted tags are used in the algorithms for choosing the most
preferred value for a criterion. Despite that, we would like to analyse other ways
of using that information, considering the number of stakeholders wanting or
discarding a value.

6. For the EcoBioCap projects, customers from different countries were asked for
there preferences. We would like to use this information in the future, as hun-
dreds of customer may express opposite preferences than the ones expressed by
the cheese or package makers. Also, we are interested in defining the strength of
the preferences of each part.

7. For the conflict detection we are using a direct graph to store values and pref-
erences. In other words, if many stakeholders hold a preference, a single edge
is created. We would like to use a multi-graph instead to allow multiple edges
between pair of values and analyse the impact in the performance and behaviour
of the conflict detection algorithms.

8. For creating the algorithms we didn’t focus in their complexity or performance.
We would like to review them and update them if necessary.

9. At the moment, a single value is returned for each criterion and scenario. We
are interested in returning a ranked list of preferred values instead, in order to
provide more information to the Decision Support System.

10. Whenever we have a cycle that is not yet considered a conflict, we would like to
run a Negotiation Phase. That way we could retrieve more information to help
to determine which ones are the values in conflict.

41

Appendix A

Abstract Data Type

A.1 TAD preferences
1. CriterionName: String

2. Wanted: Set(value)

3. NA: Set(value)

4. Pref: Set(Preference)

For example:

<′Color′,{′Green′,′Mix&Match′},{},{{′Green′,′Transparent ′},{′Mix&Match′,′Transparent ′}}>

A.2 TAD preference
1. PreferredValue: value

2. LessPreferredValue: value

3. Argument: String

For example:

<′ Transparent ′,′Green′, ’Because customers want to see the cheese’> implies that Trans-
parent is preferred over Green.

A.3 TAD value
1. Name: String

This is a value for a criterion, for example: HFFS, Transparent, Sticker Attached. Val-
ues must be unique and cannot be repeated in different criteria.

42

A.4 TAD stakeholder
1. StakeholderName: String

2. Pref: Set(preferences)

For the preferences, we are going to have one item for each criterion.

A.5 TAD implication
1. Hyphotesis: value

2. Conclusion: value

3. StakeholderNameList: List(String)

4. Argument: String

For example: <′ Transparent ′,′HFFS′, ′Expert1′, ’There is a dependency between the machine and the color’>
means that selecting ’Transparent’ implies also selecting ’HFFS’, for Expert 1, because
of the reason mentioned.

A.6 TAD criterion
1. CriterionName: String

2. PossibleValues: Set(value)

For example: <′ Color′′Transparent ′,′Green′,′Mix&Match′ >

A.7 TAD ecobiocapdata
1. StakeHolderList: Set(stakeholder)

2. CriterionList: Set(criterion)

3. ImplicationList: Set(implication)

43

Appendix B

Object Model

In order to see the Object Model, please refer to the annexed document ‘ObjectModel.pdf’.
That document presents the class diagram with their relations and attributes, although
the methods and operations are not described.

44

Appendix C

Input Files

The input file for the prototype system is a XML file, with the format described in
Figure C.1. As we can see there, we first request the list of criteria with their possible
values, each one with an ID and Name.

After that, we expect the list of stakeholders. Each stakeholder must have an ID, a
Name, and a list of Preferences. Each Preferences must have a unique Criterion ID, a
list of Not Applicable values, a list of Wanted values and a list of Preference.

Each Preference presents the Preferred Value, the Less Preferred Value and the ID of
an argument.

After this, we expect the list of Implications, each of them with the Conclusion Crite-
rion ID, the Conclusion Value ID, the Hyphotesis Criterion ID, the Hyphotesis Value
ID and the list of Stakeholders’ IDs.

Finally, we need to complete the total list of Arguments, each of them with an ID, the
text and the Stakeholder’s ID that mentioned it.

45

Figure C.1: XML Input File.

46

Appendix D

Conflict Detection Algorithm

This algorithm analyses a cycle and determines if we can infer one or more conflicts
from it. We assume that we already have the list of cycles within the preferences of
one single criterion, and that the cycle is between three or more vertices (as we are us-
ing a different and much more simpler algorithm when the cycle is between two nodes).

We can infer a conflict from a cycle only when we can collapse the edges of the cycle
until it has only two vertices. To be able to collapse two edges, they must be consecu-
tive and be supported by the same stakeholder (as an edge can be supported by many
stakeholders, we only require that at least one stakeholder is repeated for both edges).
This is because we assume that if a stakeholder prefers A to B and B to C, then by
transitivity he prefers A to C.

The idea behind this algorithm is that a cycle has a conflict only when it can be di-
vided into two consecutive paths, one supported by one stakeholder, and the other one
supported by a different one. Please notice that this algorithm has some complexity
because we may find different ways of splitting a cycle like that, by looking at the dif-
ferent stakeholders supporting the edges.

What we are going to do is to start from one edge, read its supporters, and for each of
them go through the rest of the edges trying to determine a point where the previous
edges are supported by one supporter and the following by a new one. It is important
to notice that if there is a conflict, then no matter where is the starting point of the two
parts, we can start the analysis from any edge, as at least one of its supporters must be
supporting one of the parts. If none of the supporters of an edge are supporting one of
the two parts, then we are not going to have a conflict.

So, during the algorithm we keep some variables in order to know if we are in the pos-
sible first path, or if we moved into the second one, and the list of potential supporters
for the second one. As we start our analysis from one specific edge and we repeat the
process for each one of its supporters, then if there is a conflict it is going to be between
the current supporters and the ones supporting the second path.

Between lines 1 and 2 we get the first edge and its supporters. Then we ran a for in
order to determine for each of them if we can divide the cycle into two paths, and make
him the supporter of the first one, and find one or more that supports the second one.

47

Inside the for, the current stakeholder will be called the OriginalStakeholder.

From lines 4 to 6 we initialize some variables. We assume we have a conflict and try
to prove that we don’t. We create two variables to store the list of supporters for the
second path. With are going to work with the first one in order to determine which
supporters are not there anymore when we move to the next edge, and we need the
second one to store the supporters in order to access them when creating the conflict
definitively.

Then, we go through the rest of the edges in the for starting at line 7. From lines 8 to
11 we get a new edge and its supporter list and we create a variable that indicates if in
this new edge we can still find the OriginalStakeholder or not (line 13).

From lines 13 to 17 we analyse if we moved to the second path or not. If the Orig-
inalStakeholder is not there, and we didn’t move to the second path before, then we
probably just moved to it. Therefore, we add the stakeholders from the current edge
into the two supporter lists.

From lines 18 to 44 we analyse another option: if we already are in the second path,
then we need to see which ones of the supporters found in the first edge of the second
path are still here. From lines 19 to 32 we use the supporter list to see if anyone of them
is also in this edge, and we are going to keep only the ones that we find. This is very
useful as if at any edge we cannot find any more supporters from the supporter list, then
we cannot infer a conflict from the cycle as it cannot be divided into two consecutive
paths support by different stakeholders.

From line 33 to 36 we analyse that exactly. If we don’t have any more supporters and
the OriginalStakeholder is not present, then we don’t have a conflict. It is important
to ask for the OriginalStakeholder too as we could have moved back to the first path.
Remember we started the analysis from a random edge, so we could have gone to the
second path and back to the first one. This is analysed between lines 37 and 39.

Finally, between lines 40 and 43 we add our current supporters to the other supporter
list, in order to have that ready for the moment we actually need to create a conflict.
The creation of the conflict is not shown here, but it is a simple process where we set
which stakeholders support each part, which vertices are involved in each part, etcetera.

48

input : List<Vertex> cycle
output: Conflicts detected if any.

1 edge1←− GetEdgesBetweenVertices(cycle[0],cycle[1])
2 stakeholderList1←− edge1.GetStakeholderList()
3 for originalStakeholderId ∈ stakeholderList1 do
4 isCon f lict←− true,secondHal f ←− f alse
5 vertexFirstPartStarts,vertexSecondPartStarts←− 0
6 supporterList, f inalSupporterList←− /0
7 for i← 1 to cycle.size() do
8 previousVertex←− cycle[i]
9 nextVertex←− cycle[i+1]%cycle.size()

10 edge←− GetEdgesBetweenVertices(previousVertex,nextVertex)
11 stakeholderList←− edge.GetStakeholderList()
12 originalPresent←−

stakeholderList.Contains(originalStakeholderId)
13 if originalPresent == false and secondHalf == false then
14 secondHal f ←− true,vertexSecondPartStarts←− i
15 supporterList.addAll(stakeholderList)
16 f inalSupporterList.addAll(stakeholderList)
17 end
18 else if secondHalf then
19 anySupporters←− f alse
20 for j← 0 to supporterList.size() do
21 supporter←− supporterList[j]
22 if supporter > 0 then
23 supporterStillT here←− f alse
24 for stakeholderId ∈ stakeholderList do
25 if supporter == stakeholderId then
26 supporterStillT here,anySupporters←− true
27 break
28 end
29 end
30 if !supporterStillThere then supporterList.set(j,0)
31 end
32 end
33 if secondHalf and !anySupporters and !originalPresent then
34 isCon f lict←− f alse
35 break
36 end
37 else if secondHalf and !anySupporters and originalPresent then
38 vertexFirstPartStarts←− i
39 end
40 else if secondHalf and anySupporters then
41 f inalSupporterList.clear()
42 f inalSupporterList.addAll(supporterList)
43 end
44 end
45 if isConflict then CreateCon f lict()
46 end
47 end

Algorithm 1: Conflict Detection49

Bibliography

[1] Leila Amgoud. Five weaknesses of aspic+ (regular paper). In Greco Salvatero,
editor, International Conference on Information Processing and Management of
Uncertainty in Knowledge-based Systems (IPMU), Italy, 09/07/2012-13/07/2012,
pages 122–131, http://www.springer.com, juillet 2012. Springer Berlin / Heidel-
berg.

[2] Leila Amgoud and Srdjan Vesic. A new approach for preference-based argumen-
tation frameworks. Annals of Mathematics and Artificial Intelligence, 63(2):149–
183, December 2011.

[3] Meghyn Bienvenu, Jérôme Lang, and Nic Wilson. From preference logics to
preference languages, and back. In KR, 2010.

[4] Martin Caminada and Leila Amgoud. An axiomatic account of formal argumen-
tation. In AAAI, pages 608–613, 2005.

[5] Madalina Croitoru, Jerome Fortin, and Nir Oren. Arguing with preferences in
ecobiocap. In Proceedings of the 4th International Conference on Computational
Models of Argument, page to appear, 2012.

[6] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence Journal, 77:321–357, 1995.

[7] Sven Ove Hansson. What is ceteris paribus preference? Journal of Philosophical
Logic, 25(3):pp. 307–332, 1996.

[8] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
J. Comput., 4(1):77–84, 1975.

[9] Souhila Kaci and Leendert van der Torre. Preference-based argumentation: Ar-
guments supporting multiple values. Int. J. Approx. Reasoning, 48(3):730–751,
aug 2008.

[10] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artif.
Intell., 173(9-10):901–934, June 2009.

[11] H. Prakken and S. Modgil. Clarifying some misconceptions on the aspic+ frame-
work. Computational Models of Argument. Proceedings of COMMA 2012, 2012.

[12] Henry Prakken. An abstract framework for argumentation with structured argu-
ments. Argument and Computation, 1(2):93–124, 2011.

50

[13] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[14] Johan van Benthem, Patrick Girard, and Olivier Roy. Everything else being equal:
A modal logic for ceteris paribus preferences. J. Philosophical Logic, 38(1):83–
125, 2009.

[15] Gerard A. W. Vreeswijk. An algorithm to compute minimally grounded and ad-
missible defence sets in argument systems. In Proceedings of the 2006 conference
on Computational Models of Argument: Proceedings of COMMA 2006, pages
109–120, Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.

51

