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Abstract. Georeferenced databases contain a huge volume of temporal
and spatial data. They are notably used in environmental analysis. Sev-
eral works address the problem of mining those data, but none are able
to take into account the richness of the data and especially their spatial
and temporal dimensions. In this paper, we focus on the extraction of
a new kind of spatio-temporal pattern, considering the relationship be-
tween spatial objects and geographical scales. We propose an algorithm,
STR PrefixGrowth, which can be applied to a huge amount of data.
The proposed method is evaluated on hydrological data collected on the
Saône watershed during the last 19 years. Our experiments emphasize
the contribution of our approach toward the existing methods.
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1 Introduction

Due to the recent explosion of mobile technologies and georeferenced data, a new
kind of data has emerged: spatio-temporal data. Each data is associated with
a given spatial reference (i.e. a localisation) and a temporal information (i.e. a
timestamp). New needs for the monitoring of these data in time and space have
appeared, for example to study the spread of information in social networks
[1], in epidemic surveys [2] or for hydrological monitoring as presented in this
article. In these domains the volume of data is huge, and commonly contains
heterogeneous information. Often several levels of spatial division describe the
geographical aspect, based on an inclusion property and relationships between
geographical objects. An area can be included in another area (e.g. Europe is
divided into countries Spain, France, Germany, etc.). Moreover, the geographical
objects are linked by spatial relations. For example, an area is close to another



area, is located to the north or to the east of another area (e.g. USA and Canada
are two adjacent areas and USA is south of Canada). In this article we will focus
on data mining methods which consider the temporal dimension and also spa-
tial relationship between spatial objects. The objective is to provide a method
for extracting spatio-temporal patterns to highlight common behavior in large
volumes of data. The method is applied to the environmental domain, and more
specifically for studying aquatic ecosystems. The dataset is a collection of sam-
ples on the hydrological catchment of the Saône, from part of the Fresqueau
project. This project aims to provide operational tools to study the state of
aquatic systems. It falls within the scope of the Water European Framework
Directive which aims to correct the state of the aquatic systems and catchments
in 2015.

2 Related work

Pattern extraction has been the subject of lot of research in the field of data
mining. Pattern discovery highlights a recurring information in data, character-
izing a frequent behavior. This knowledge can be represented by various types of
patterns. Several authors have proposed new methods that consider both time
and space.

In [3], data is represented in a set of spatial grids where items (events) ap-
pear at different coordinates. Each grid describes the state of the problem at a
specific timestamps t. For each date and absolute position, an itemset (a set of
events), is generated. For each absolute position, a sequence of itemset is built
by considering all the timestamps. Then, sequential patterns are extracted from
such sequences by considering an absolute position as the reference point. An
example of a pattern obtained by such a method is xpRain(0,0)qpHumidity(0,1)qy
meaning that it frequently rains at coordinates (0,0) and, later in time, humidity
exists at coordinates (0,1). This kind of pattern has the disadvantage of being
sensitive to the choice of the reference point. Furthermore the space is reduced
to a grid representation.

In [4], the authors proposed the concept of close events in time and space.
A spatio-temporal window is defined by both a temporal and a spatial interval.
Patterns are association rules such as xRainñHumidityy, meaning that in close
areas at close timestamps, the rain is frequently followed by humidity. These
rules do not take in consideration potential relationships between spatial objects
nor different geographical scales.

The extraction of spatio-temporals patterns with neighborhood relationships
between geographical objects is proposed in [5]. Patterns have the shape xpHum-
idity .[Rain Wind]qpHumidity Rainqy. Neighborhood relationships are denoted
by a neighborhood operator . and a grouping operator []. Consider, for example,
a city in which the previous pattern is found. This pattern means that humidity
appeared at a timestamp and at the same time rain and wind appeared in a
nearby town (according to an euclidean distance or defined by user). Later,
humidity and rain appeared in the city. This spatial relationship is simple and



it is not possible to specialize it, nor to have several levels of granularities (i.e.
several geographical scales). Actually, it is limited to one kind of relationship:
spatial proximity.

A technique for granularity management of space is provided in [6]. As in
[3], a grid of events represents spatiality and a set of spatial grids represent
temporality. The user has to choose a level of granularity that will merge a set
of adjacent cases in the grid. The higher the level of granularity, the bigger the
set of merged cases. This technique aims to generalize data in a spatial way. To
extract patterns, it is necessary to choose a granularity value and furthermore
a grid representation to describe spatiality. Extracted patterns have the shape
of classical sequential patterns such as xpSunqpWindqpSun,Humidityqy, meaning
that frequently Sun is followed by the event Wind, followed itself by the events
Sun and Humidity according to a specific level of granularity.

All these methods do not effectively consider complex data with geographic
objects linked together and at different scales. The approach in this paper aims to
take into account all these notions: 1) by considering the temporal and spatial di-
mensions 2) by generalizing the problem to a more complex spatial relationships
between geographical objects 3) by including all possible granularities during
the extraction process.

In section 3.1, we introduce some preliminary definitions on which our method
is based. Then sections 3.2 and 3.3 present a formal framework to take into
account relationships between objects and different spatial granularities. The
developed algorithm is presented in section 4. In section 5, the method is ap-
plied to a real dataset and the obtained results are presented. We discuss on the
prospects of the scope of this proposal in section 6.

3 Spatio-temporal patterns

Our approach extends the notion of sequential patterns introduced in [7] and
takes into account the temporal and spatial sequential patterns defined in [5].

3.1 Preliminaries

Sequential patterns are extracted from a set of data sequences. For each coor-
dinate or geographical object, a sequence of events is built. First, we consider
the database DB presented in the table 1 which shows the set of events which
appeared in three different cities in the south of France. For each city, a sequence
is generated (see. the table 2)

Definition 1 (Sequence) Let I = tI1, I2, . . . , Imu be the set of items (events).
An itemset is a non empty set of items denoted pI1, I2, . . . , Ikq where Ij P I (it
is a non ordered representation). A sequence s is a non empty ordered list of
itemsets noted xIS1IS2 . . . ISpy where ISj P IS, with IS the set of itemsets.

Each sequence being composed of itemset, an item can appears several times
in a same sequence.



City Month Items

Nı̂mes 2011/01 Humidity=Low, Sun
Montpellier 2011/02 Sun
Nı̂mes 2011/03 Heat=High
Montpellier 2011/03 Humidity=Low, Heat=High
Nı̂mes 2011/04 Heat=Low, Wind
Orange 2011/04 Rain
Orange 2011/06 Rain, Wind

Table 1. Database

City Sequence

Nı̂mes x(Humidity=Low Sun)(Heat=High)(Heat=Low Wind)y
Montpellier x(Sun)(Humidity=Low Heat=High)y
Orange x(Rain)(Rain Wind)y

Table 2. Sequences of city

Extracting knowledge from sequences search frequent sub-sequences, named
as sequential patterns. Several algorithms have been proposed for sequential
pattern mining [7–12].

Definition 2 (Sub-sequence) A sequence A � xIS1IS2 . . . ISpy is a sub-sequence
of another sequence B � xIS11IS

1

2 . . . IS
1

my (A ¨ B) if p ¤ m and if there exists
integers j1   j2   . . .   jk   . . .   jp such as IS1 � ISj1 , IS2 � ISj2 , . . . , ISp �
ISjp .

Example 1 Consider the sequences presented in table 2 where each represents
an event sequence for a city, we note that the sequence S � xpSunq pHeat=Highqy
is supported by sequences SNîmes and SMontpellier. Then S ¨ SNîmes and S ¨
SMontpellier.

A sequential pattern is a frequent sub-sequence characterized by a support
which is the number of occurrences of a pattern in S, a set of sequences. The
extraction of those patterns is determined by a minimum support parameter
denoted θ. This means that only patterns with a support value greater than
θ will be extracted. Let M be the set of extracted sequential patterns, then
@M P M and SupportpMq ¥ θ.

Definition 3 (Sequential pattern support) A sequence S P S supports a
sequential pattern M when M ¨ S. The support of a pattern M is the number of
sequences in S in which M is included (supported). Let S 1 be the set of sequences
that support m, then S 1 � tSi P S such as M ¨ Siu and SupportpMq � |S 1|.

Example 2 Consider table 2, we note that sequence S � xpSunq pHeat=Highqy
is supported by sequences SNîmes and SMontpellier. Therefore SupportpSq � 2.



Although sequential patterns fit the temporal aspect well, they are not able to
consider the spatiality nor potential relationships between geographical objects.
To take into consideration these two aspects, we now present a hierarchical
approach based on dimensions.

3.2 Relationships between spatial objects

Relationships between spatial objects are potential links that exist between ge-
ographic points or objects. For instance, in an epidemiological context, spatial
objects are cities or areas. Therefore, several links should be considered, as mi-
gration flows or obstructions presence like a forest or a mountain. These links
can also be specialized, e.g a forest can be a fir forest or an oak forest. Therefore
important to take into account these links but also their potential specializations.
To achieve this goal, we use a set of spatio-relational dimensions DR described
by sets of values with an associated hierarchy for each dimension.

Definition 4 (Spatio-relational dimension) A dimension D P DR is de-
fined by a domain of values Xj such as dompDq � tX1, X2, ..., Xnu.

Example 3 Let DOrientation be the spatio-relational dimension representing ori-
entation according to the points of the compass with the addition of North-West,
North-East, South-West and South-East: dompDOrientationq � tNorth, West,
South, East, North-West, North-East, South-West, South-Eastu. Then the
following hierarchy is constructed:

After defining the concept of a spatio-relational dimension, we introduce the
notion of a hierarchy on a dimension. The ojective is to easily consider the more
specific relations of an existing relation.

Definition 5 (Hierarchical representation of a spatio-relational dimen-
sion) Let D P DR be a spatio-relational dimension with dompDq � tX1, X2, ..., Xnu
and let H P HR be the hierarchy representation associated to this dimension,
then H is a semi-lattice or an oriented tree and for all node N P H, labelpNq P
dompDq.

Orientation
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To navigate in this hierarchy, we have to define some navigation operations
as defined in [13]. These operations represent the notions of direct and global
generalization and specialization.



Definition 6 (Direct and global specialization) Let downRpXiq be the oper-
ation which allows access to direct specializations of the relation Xi and downAllR
pXiq the operation which allows access to all specializations of relation Xi. The
direct specializations of Xi are Xj such that there is a descending edge from Xi

to Xj in the hierarchy, and the global specializations of Xi are Xk such that there
is a descending path Xi to Xk.

Example 4 Lets consider the dimension DOrientation:
- downRpWestq � tNorth-West, South-Westu,
- downAllRpOrientationq � dompdOrientationq.

Definition 7 (Direct and global generalization) Let upRpXiq be the opera-
tion which allows access to direct generalizations of the relation Xi and upAllRpXiq
the operation which allows access to all generalizations of the relation Xi. The
direct generalizations of Xi are Xj such as there is an ascending edge from Xi

to Xj in the hierarchy, and Xi global generalizations are all Xk such as there is
an ascending path from Xi to Xk.

Example 5 Using the same example:
- upRpNorth-Eastq � tNorth,Eastu,
- upAllRpNorth-Westq � tNorth, West, Orientationu.

This hierarchy offers the possibility to extract information at different levels.
For instance, it can take into consideration the presence of an event at the
north, but also drill down the hierarchy to find more specific relations. From the
definition of the hierarchy on spatio-relational dimensions and their operations,
patterns are extracted by considering relations between spatial objects. To add
this new information to patterns, we use the link operator . when an item is found
in a zone linked by a relation, as in [5]. When multiple items are considered by
the operator ., the n-ary group operator [] is used.

Definition 8 (Related itemset)
Let IS and IS1 be two itemsets which describe two differents zones Z and Z 1 at
the same timestamps, if there exists a link δ in the spatio-relational hierarchy
between Z and Z 1, then they constitute a related itemset noted ISR � pIS .δrIS1sq
which means the itemset IS is found in Z and at the same time the itemset IS1

appears in a closed zone in δ relation with the first zone.

Example 6 Taking two cities C1 and C2, humidity appears in C1, rain and wind
in C2 at the same timestamps t. Furthermore the hierarchy highlights the fact
that C2 is at south of C1 then the related itemset ISR � pHumidity .South[Rain
Wind]q is found in C1.

We have now to define the inclusion of a related pattern in another related
sequential pattern. This inclusion is very close to the classic sequential pattern
inclusion, the difference concerns the inclusion between itemsets.



Definition 9 (Inclusion of a related itemset)
A related itemset ISR � ISi.δrISjs is included in another related itemset IS1R �
IS1i.δ

1rIS1js, if and only if, ISi � IS1i, ISj � IS1j and δ � δ1 or δ P upAllpδ1q
(i.e. δ1 is equal to δ or δ1 is a specialization of δ).

Example 7 Let DtOrientationu be the spatio-relational dimension of two item-
sets IS1 and IS2 such that IS1 � .SouthrHumidity,Winds and IS2 � .South�Eastr
Humidity, Rain, Winds. We can note that all items in IS1 are included in IS2

and the relationship IS1 is more general than IS2 in the hierarchy. Therefore
IS1 ¨ IS2.

The obtained sequential patterns are composed of related itemsets and form
a new kind of pattern, i.e. related sequential patterns.

Definition 10 (Related sequential pattern)
Let IS be the set of itemsets and ISR the set of related itemsets, a related
sequential pattern MR is a non-empty ordered list of itemsets and related item-
sets denoted xIS1, IS2, . . . , ISpy where ISj P IS Y ISR with a support value
SupportpMRq.

In this section, we introduced a new kind a sequential pattern which considers
existing links between geographical objects. These relations are organized in
a hierarchy to efficiently consider specializations and generalizations. But in
the context of spatial segmentation, it is also important to take into account
the spatial granularity which exist between the zones in patterns in order to
provide the experts with more precise patterns. The next section presents this
new feature.

3.3 Geographical granularities in patterns

Different geographical granularities describe a division of space, itself divided
into sub-divisions. This segmentation can have different shapes according to the
context of the problem to solve. For example, let us consider a division of the
Earth with respect to a geopolitical point of view. Space is divided according
to continental frontiers or country boundaries. With respect to a climatic point
of view, this division is different: hot climate areas, temperate areas, etc. In
addition, areas are further divided into smaller regions. It is therefore necessary
to not only take into consideration areas, but also their sub-divisions.

Definition 11 (Area dimension) An area dimension D P DS is defined by a
domain of values Xj such as dompDq � tX1, X2, ..., Xnu.

Example 8 Let DCountry P DS be an area dimension describing Europe’s divi-
sion into countries.
dompdCountryq � tAustria, Belgium, Bulgaria, ..., Sweden, United Kingdomu.



Considering granularity relies on the construction of a hierarchy based on
an inclusion relation on such geographical divisions. To illustrate this, let us
take as an example a division of the Earth by considering multiple granularities,
continents and countries. The following hierarchy describes this division.

Example 9 Earth geopolitical division hierarchy
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This hierarchical representation of spatial granularities is close to hierarchies
representing links between spatial objects (previous section). However, this hier-
archy is not based on a generalization/specialization notion but on an inclusion
order. For instance, a country is not a continent specialization but a sub-division.
We have to redefine navigation operations in this type of hierarchy H P HS , with
HS the set of hierarchies on granularity dimension.

Definition 12 (Direct and global content) Let downSpXiq be an operation
that allows access to the direct content of granularity Xi and downAllRpXiq the
operation which allows access to all the content of granularity Xi. The direct
content of Xi is Xj such that there is a descending edge from Xi to Xj in the
hierarchy, the global content of Xi is Xk such that there is a descending path
from Xi to Xk.

Example 10 Let us take the example of Earth division:
- downSpEuropeq � tBelgium,France...u,
- downAllSpEuropeq � tBelgium,France..., Ain,Aisne...u.

Definition 13 (Direct and global containers) Let upSpXiq be an operation
that allows access to the granularity that directly contains Xi and upAllSpXiq
the operation which allows access to all granularities that contain Xi. The direct
containers of Xi are all Xj such as there is a ascending edge from Xi to Xj in
the hierarchy, and the global containers of Xi are all Xk such that there is an
ascending path from Xi to Xk.

Example 11 Let us take the previous example:
- upSpBelgiumq � tEuropeu,
- upAllSpAinq � tFrance,Europe,Worldu.



We use this hierarchy to add the notion of spatial inclusion into patterns To
extract these patterns, the algorithm navigates throughout granularity hierar-
chies and checks if a pattern is frequent at a more specific level of the hierarchy. If
it is indeed the case, the pattern becomes spatio-temporal because its frequency
depends on a specific spatial area.

Definition 14 (Spatio-temporal pattern)
Let v w be an operator of spatiality and M a classic or related sequential pattern,
Xk P D the value of a granularity dimension D, a minimal support θ and S 1 the
set of sequences Si such that |M ¨ Si| at the granularity value Xk. If |S 1| ¡ θ
then a spatio-temporal pattern M 1 is created, such that M 1 � vXkwM .

Example 12 Let M � xpHumidity.NorthrRainWindsqpHumidityRainqy be the
relational pattern, with θ � 10% and SupportpMq � 50%. The pattern M has
a frequency equal to 50% over the Earth but has a frequency equal to 15%
if we just consider European cities. A spatio-temporal pattern M 1 is created
such that M 1 � vEuropewxpHumidity.NorthrRainWindsqpHumidityRainqy and
SupportpM 1q � 15%

The previously presented definitions allow for taking into account spatial
relationships and also geographical granularities. An adapted algorithm has been
implemented to extract related spatio-temporal patterns at differents scales. This
algorithm is presented in the next section.

4 STR PrefixGrowth algorithm

To extract patterns, we used the PrefixSpan [14] extraction algorithm, as was
also used in [5]. This is currently one of the most efficient algorithms for ex-
tracting sequential patterns, both in terms of computation time and in terms of
memory consumption. Sequential patterns are extracted from common prefixes.
For instance, xpaqy, xpaqpaqy, xpaqpabqy and xpaqpabcqy are prefixes of sequence
xpaqpabcqpacqpdqpcfqy.

If a prefix is present in a number of sequences greater than a minimum
support value θ, then this prefix is considered as frequent. When a frequent
prefix is found, the database is divided recursively. When we look for frequent
patterns, it is not necessary to keep the entire database and therefore data
(i.e sequences) that do not support the current pattern are not preserved in
the projected database. The reason is that these sequences will not support
patterns of greater length because of the antimonotonic property of support. The
efficiency of this algorithm is due to (1) the non-generation of candidate patterns
thanks to research of frequent prefixes, and (2) the projection of the database
into smaller databases to accelerate the exploration by removing sequences no
longer needed.



Algorithm 1: STR PrefixGrowthpα, θ,DB|α,DR,DSq

input : α a pattern, θ a support minimum, DB|α projected database
according to pattern α , DR a set of spatio-relational hierarchies,
DS a set of granularity hierarchies

output: SP set of patterns extracted in this function call (i.e current
recursion)

Iθ Ð getListOccurences(θ,DB|α,DR);
SP Ð ∅;
foreach i in Iθ do

β=append(α,i);
SP Ð SP Y β;
SP Ð SPY prefixGrowthSTM pβ, θ,DB|β ,DR,DSq;
SP Ð SPY exploreSpatialHierarchypβ, θ,DB|β ,DSq;

end

Algorithm 2: getListOccurencespθ,DB|α,DRq

input : θ a minimum support, DB|α projected database according to pattern
α, DR a set of spatio-relationnal hierarchies

output: Iθ the list of frequent occurences in DB|α
Iθ Ð Iθ Y searchIExtend(θ,DB|α);
Iθ Ð Iθ Y searchSExtend(θ,DB|α);
foreach dimi in DR do /* For each dimension in DR */

Iθ Ð Iθ Y searchIntend(θ,DB|α,dimi);
Iθ Ð Iθ Y searchExtend(θ,DB|α,dimi);

end

Algorithm 3: exploreSpatialHierarchypα, θ,DB|α,DSq

input : α a pattern , θ a minimum support, DB|α projected database
according to pattern α , DS a set of granularity hierarchies

output: SP the set of extracted patterns
SP Ð ∅;
foreach dimi in DS do

foreach s in dimi do
if isFrequent(α, θ,DB|α,s) then /* check if a pattern is frequent

in the current granularity */

SP Ð SPY spatialPattern(α, s);

end

end



Our general approach is described by the recursive algorithm 1, called STRP -
refixGrowth for Spatio Temporal and Relational PrefixGrowth . This method
first determines the list of frequent occurrences in the database projected accord-
ing to α and depending on the minimum support θ. A frequent occurrence (e.g.
a frequent item) means that a pattern of greater length is found. In the function
getListOccurencespq, we explore the relationship hierarchies. Two operations are
used, the searchIExtendpq and searchSExtendpq, representing the two ways to
extend a pattern, the I-Extension and the S-Extension. The I-extension adds an
item to the last itemset of a sequence and the S-Extension adds a new item to a
new itemset at the end of a sequence, at a further timestamp. For example let us
take the pattern m � xpaqpbqy and a frequent occurrence representing the item c.
If c is an I-extension and m1 an extended pattern, then m � xpaqpbcqy. If c is an
S-extension and m2 an extended pattern, then m2 � xpaqpbqpcqy. For each rela-
tionship hierarchy, searchIExtendpq and searchSExtendpq operations are used
to find occurrences of relations on every level of hierarchies. Frequent relations
are then considered as occurrences. Relations between sequences are managed
as individual items, they are returned along with occurrences of classics items.
This function is provided by algorithm 2.

Occurrences, or frequent items, will be used to extend the pattern α with
the function appendpq, which considers that an item is an intension or an ex-
tension. Then, for each extended pattern β, we project the database accord-
ing to this pattern and we call PrefixGrowthSTM to continue the recursive
search of patterns. Finally, each pattern is given as a parameter of the function
exploreSpatialHierarchypq that explores the spatial dimensions at all levels of
granularity (algorithm 3) to find new patterns (section 3.3). For each spatial di-
mension, it checks if a pattern is frequent at each granularity of the hierarchies.
If it does, we add the spatial pattern to the set of patterns.

The PrefixSpan complexity in the worst case is Θpp2 �IqLq with I the number
of items and L the length of the longest sequence in the database DB. Let HR

be the number of hierarchies of spatial-relations, let R be the maximal number
of relations per hierarchy of spatial relations, let HS be the number of spatial
hierarchies and let S the maximal number of spatial areas per spatial hierarchy,
the complexity of the STR PrefixGrowt algorithm is ΘpHS � S � p2 � N � HR �
RqLq. This algorithm is pseudo-polynomial, i.e. is linear according to the number
of extracted patterns. The worst case corresponds to the maximal number of
patterns which could be extracted in a specific dataset.

To test and validate our method, we have applied this algorithm to a real
dataset and we have compared it to existing methods. These results are presented
in the following section.

5 Mining hydrological data

The dataset has been supplied by the RMC agency in the context of the Fresqueau
project. It describes the biological and physicochemical information of streams
in the Saône watershed, in the east of France. The data have been collected at



different timestamps on 771 sites. The information contains different kinds of
characteristics as biological indicators, pH, levels of nitrates or phosphates... For
each site, a set of collected data for a specific timestamp is an itemset and those
itemsets are ordered according to the time to generate a sequence.

Moreover, to apply our approach, we have selected some characteristics 1)
to explicit the links between river sites and 2) to consider different geographical
scales.

5.1 Hierarchies

Those data are described by several dimensions with their associated hierar-
chies to consider granularities and links between stations. They are presented as
follows:

Stream orientation: this allows us to know whether a site is located down-
stream or upstream from another site. This is a simple hierarchy, one level deep.

Example 13 Stream orientation hierarchy

Stream orientation

Downstream Upstream
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Hydrographic zones: France is divided into general watersheds and into
three more specific partitions. Each level is a sub-division of the previous level.
Watersheds are the most general level, itself divided into hydrographic areas.
Then, there are sectors divided into sub-sectors. This hierarchy therefore has 4
levels.

Example 14 Hydrographic zone hierarchy
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Each site is upstream or downstream to a neighboring site and is associated
with a hydrographic zone. Stream’s orientation is used as a spatio-related di-
mension between site (section 3.2). Hydrographic zones are used to take into
account geographical granularity (section 3.3).



5.2 Experimentation

Before extracting patterns, we have to discretize data. An arbitrary discretiza-
tion with 5 intervals is selected for each type of information. A description of the
information that appears in patterns given in table 4 is presented in the following:

ibgn: Normalized global biological index (IBGN) is a tool used to evaluate bio-
logical quality in a watershed. This biological index has a value between 0 and
20 depending on the presence of some bioindicators (invertebrates).

ibgn note: is a score ranging from 0 to 5 and is based on the IBGN value.

var taxo: this data describes taxonomic variety. This is a metric corresponding
to number of taxa (freshwater macroinvertebrates) collected during a sampling
and is used in the IBGN computation.

We compare our approach to classical sequential pattern extraction methods
(MS) and spatio-temporal patterns obtained with the approach in [5] (MST ).
Both methods are close to ours, called MSTR for Spatio-Temporal and Related.
In table 3, we vary support minimum values to observe the evolution of the num-
ber of sequential patterns according to the differents methods. Table 4 presents
an example of patterns extracted for each method.

MS MST MSTR

0.5 1 4 4
0.4 4 12 12
0.3 22 60 64
0.2 75 186 233
0.1 180 445 1882

Table 3. Number of extracted patterns according to minimum support

Exploring hierarchical granularities and spatial relations allows the extrac-
tion of more specific and expressive patterns, not obtainable with existing meth-
ods. For instance, the pattern p � xp.Orientribgn 11-15sqpvar taxo 31-40qy 4)
means that frequently an IBGN value between 11 and 15 is frequently found
in a neighboring site (i.e upstream or downstream) associated with a later tax-
onomic variety between 31 and 40. The pattern p1 � xp.Downstreamribgn 11-
15sqpvar taxo 31-40qy is a specialization of p and frequently finds the IBGN value
between 11 and 15 in a downstream site. The pattern p2 � vU2wxp.Orientribgn 11-
15sqpvar taxo 31-40qy means that the pattern p is frequent in the sector U2, a
more specific geographic area. These patterns cannot be obtained with classical
sequential patterns, e.g. xpvar taxo 31-40qy, nor the method presented in [5],
e.g. xp.ribgn 11-15sqpvar taxo 31-40qy. Experts often have difficulties to deter-
mine the best scale to obtain the best observations, and for each parameter, the



Method Sequence Support

MS xpvar taxo 31-40qy 0.404

MST xp.ribgn 11-15sqpvar taxo 31-40qy 0.089
xp.ribgn note 3sqpvar taxo 31-40qy 0.056

MSTR xp.Orientribgn 11-15sqpvar taxo 31-40qy 0.089
xp.Downstreamribgn 11-15sqpvar taxo 31-40qy 0.051
vU1wxp.Orientribgn 11-15sqpvar taxo 31-40qy 0.054
vU2wxp.Orientribgn 11-15sqpvar taxo 31-40qy 0.073
xp.Orientribgn note 3sqpvar taxo 31-40qy 0.056

vU1wxp.Orientribgn note 3sqpvar taxo 31-40qy 0.051
Table 4. Patterns according to different methods

best scale can be different from another. Our approach allows the presence of dif-
ferent hierarchical levels in the results. Finally, our approach deals with several
issues: 1) considering spatial and temporal dimensions, 2) managing relations
between geographical objects, and 3) exploring all granularities.

6 Conclusion

The method proposed in this paper tackles on mining georeferenced data and is
able to consider efficiently the spatial and temporal dimensions. Our approach
differs from solutions proposed in the literature, by considering both spatial
relationships and granularities in a new way. The obtained patterns are seman-
tically richer nevertheless this type of extraction leads to the exploration of a
huge search space with an important amount of patterns. In the future, we wish
to adapt some interestingness measures [15, 16] to these kinds of patterns to
1) filter the patterns according to experts’ needs and 2) push it in the pattern
extraction process. We aim at improving the extraction time by reducing the
search space, and also provide experts with the minimal and most interesting
set of spatio-temporal and related patterns. An another prospect is to define
some tools to help expert’s navigation in results by considering ergonomic and
visualization aspect.

7 Acknowledgments

Thomas Lampert is gratefully acknowledged for helpful comments on the manuscript.
This work was partly funded by french contract ANR11 MONU14.

References

1. Lin, C.X., Mei, Q., Jiang, Y., Han, J., Qi, S.: Inferring the diffusion and evolution
of topics in social communities. Evolution 3(3) (2011) 1231–1240



2. Gubler, D.J.: Epidemic dengue/dengue hemorrhagic fever as a public health, social
and economic problem in the 21st century. Trends in Microbiology 10(2) (2002)
100–103

3. Wang, J., Hsu, W., Lee, M.L.: LNCS 3453 - Mining Generalized Spatio-Temporal
Patterns. (2005) 649–661

4. Huang, Y., Zhang, L., Zhang, P.: A Framework for Mining Sequential Patterns
from Spatio-Temporal Event Data Sets. IEEE Transactions on Knowledge and
Data Engineering 20(4) (April 2008) 433–448

5. Alatrista Salas, H., Bringay, S., Flouvat, F., Selmaoui-Folcher, N., Teisseire, M.:
The pattern next door: Towards spatio-sequential pattern discovery. In Tan, P.N.,
Chawla, S., Ho, C., Bailey, J., eds.: Advances in Knowledge Discovery and Data
Mining. Volume 7302 of Lecture Notes in Computer Science. (2012) 157–168

6. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Pro-
ceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases. SSTD ’01, London, UK, UK, Springer-Verlag (2001) 425–442

7. Agrawal, R., Srikant, R.: Mining sequential patterns. (1995) 3–14
8. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a

bitmap representation. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. KDD ’02, New York, NY,
USA, ACM (2002) 429–435

9. Zaki, M.J.: Spade : An efficient algorithm for mining frequent sequences. Machine
Learning 42 (2001) 31–60

10. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. (1996) 3–17

11. Masseglia, F., Cathala, F., Poncelet, P.: The psp approach for mining sequential
patterns. (1998) 176–184

12. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan:
frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’00, New York, NY, USA, ACM (2000) 355–359

13. Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining
multidimensional and multilevel sequential patterns. ACM Trans. Knowl. Discov.
Data 4 (January 2010) 4:1–4:37

14. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Trans. on Knowl. and Data Eng. 16 (November 2004) 1424–1440

15. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for
association patterns. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. KDD ’02, New York, NY,
USA, ACM (2002) 32–41

16. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey.
ACM Comput. Surv. 38(3) (September 2006)


