C. X. Lin, Q. Mei, Y. Jiang, J. Han, and S. Qi, Inferring the diffusion and evolution of topics in social communities, Evolution, vol.3, issue.3, pp.1231-1240, 2011.

D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends in Microbiology, vol.10, issue.2, pp.100-103, 2002.
DOI : 10.1016/S0966-842X(01)02288-0

J. Wang, W. Hsu, and M. L. Lee, LNCS 3453 -Mining Generalized Spatio-Temporal Patterns, pp.649-661, 2005.

Y. Huang, L. Zhang, and P. Zhang, A Framework for Mining Sequential Patterns from Spatio-Temporal Event Data Sets, IEEE Transactions on Knowledge and Data Engineering, vol.20, issue.4, pp.433-448, 2008.
DOI : 10.1109/TKDE.2007.190712

A. Salas, H. Bringay, S. Flouvat, F. Selmaoui-folcher, N. Teisseire et al., The Pattern Next Door: Towards Spatio-sequential Pattern Discovery, Lecture Notes in Computer Science, vol.7302, pp.157-168, 2012.
DOI : 10.1007/978-3-642-30220-6_14

URL : https://hal.archives-ouvertes.fr/lirmm-00802125

I. Tsoukatos and D. Gunopulos, Efficient Mining of Spatiotemporal Patterns, Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases. SSTD '01, pp.425-442, 2001.
DOI : 10.1007/3-540-47724-1_22

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, pp.3-14, 1995.
DOI : 10.1109/ICDE.1995.380415

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential PAttern mining using a bitmap representation, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.429-435, 2002.
DOI : 10.1145/775047.775109

M. J. Zaki, Spade : An efficient algorithm for mining frequent sequences, Machine Learning, vol.42, issue.1/2, pp.31-60, 2001.
DOI : 10.1023/A:1007652502315

R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, pp.3-17, 1996.
DOI : 10.1007/BFb0014140

URL : http://arbor.ee.ntu.edu.tw/~chyun/dmpaper/srikms96.pdf

F. Masseglia, F. Cathala, and P. Poncelet, The PSP approach for mining sequential patterns, pp.176-184, 1998.
DOI : 10.1007/BFb0094818

J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal et al., FreeSpan, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.355-359, 2000.
DOI : 10.1145/347090.347167

M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong, Mining multidimensional and multilevel sequential patterns, ACM Transactions on Knowledge Discovery from Data, vol.4, issue.1, pp.1-437, 2010.
DOI : 10.1145/1644873.1644877

URL : https://hal.archives-ouvertes.fr/hal-01381826

J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto et al., Mining sequential patterns by pattern-growth: The prefixspan approach, IEEE Trans. on Knowl. and Data Eng, pp.16-1424, 2004.

P. N. Tan, V. Kumar, and J. Srivastava, Selecting the right interestingness measure for association patterns, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.32-41, 2002.
DOI : 10.1145/775047.775053

L. Geng and H. J. Hamilton, Interestingness measures for data mining, ACM Computing Surveys, vol.38, issue.3, 2006.
DOI : 10.1145/1132960.1132963