
HAL Id: lirmm-00735713
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00735713v1

Submitted on 26 Sep 2012 (v1), last revised 18 Jan 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The k-Sparsest Subgraph Problem
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau

To cite this version:
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau. The k-Sparsest Subgraph Problem. RR-
12019, 2012. �lirmm-00735713v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00735713v1
https://hal.archives-ouvertes.fr

The k-Sparsest Subgraph Problem?

R. Watrigant, M. Bougeret, and R. Giroudeau

LIRMM-CNRS-UMR 5506-161, rue Ada 34090 Montpellier, France

Abstract. Given a simple undirected graph G = (V,E) and an integer
k ≤ |V |, the k-sparsest subgraph problem asks for a set of k vertices
that induce the minimum number of edges. As a generalization of the
classical independent set problem, k-sparsest subgraph cannot ad-
mit (unless P = NP) neither an approximation nor an FPT algorithm
(parameterized by the number of edges in the solution) in all graph
classes where independent set is NP-hard . Thus, it appears natural
to investigate the approximability and fixed parameterized tractability
of k-sparsest subgraph in graph classes where independent set is
polynomial, such as subclasses of perfect graphs. In this paper, we use
dynamic programming to design a PTAS in proper interval graph and
an FPT algorithm in interval graphs (parameterized by the number of
edges in the solution).

1 Introduction and related Problems

1.1 Introduction

Given a graph G = (V,E) and k ≤ |V | the k-sparsest subgraph prob-
lem (or the k-lightest subgraph for the weighted version) asks for a
set S of exactly k vertices that minimizes the number of edges of G[S],
the subgraph induced by S. As a generalization of the classical indepen-
dent set problem (where the number of edges in the induced subgraph
is required to be 0), this problem is NP-hard in general graphs. Let us
first recall the definition of some related problems, and then discuss their
relation to k-sparsest subgraph.

In the maximum Quasi-Independent Set (QIS) problem [5] (also called
k-edge-in in [10]), we are given a graph G and an integer C, and we ask
for a set of vertices S of maximum size such that G[S] has less than C
edges.
In the minimum Partial Vertex Cover (PVC) problem [11], we are
given a graph G and an integer C, and we ask for a set of vertices S of
minimum size which covers at least C edges (an edge {u, v} is said to be
covered by S if either u ∈ S or v ∈ S).
Finally, we can mention the corresponding maximization problem of k-
sparsest subgraph, namely k-densest subgraph (or k-heaviest sub-
graph for the weighted version), that consists in finding a subset S of

? This work has been funded by grant ANR 2010 BLAN 021902

exactly k vertices that maximizes the number of edges in G[S].

The decision versions of QIS, PV C, and k-sparsest subgraph are
polynomially equivalent. Indeed, QIS could be considered as a dual ver-
sion of k-sparsest subgraph where the budget (the number of edges in
the solution of k-sparsest subgraph) is fixed. PV C and k-sparsest
subgraph are also polynomially equivalent as for any S, the number
of edges in G[S] plus the number of edges covered by V \S equals |E|.
Finally, it is obvious that any exact result for k-densest subgraph on
a graph class immediately transfers to k-sparsest subgraph for the
complementary class (and conversely).

As a consequence, the complexity status of k-sparsest subgraph is
already known in several subclasses of perfect graphs, namely in co-
comparability and co-chordal graphs for NP-completeness, and in split
graphs and in trees for polynomial algorithms. We believe that the NP-
hardness in interval graphs may be a tough question, as for example
the complexity in bipartite graphs is still currently studied [2], and the
complexity of k-densest subgraph on interval graphs (and even proper
interval graphs) is a classical three decades open question raised in [9].
Notice that despite this open question, a PTAS has been designed for
k-densest subgraph in interval graphs in [16].

1.2 Motivation and contributions

Unlike polynomial or NP-hardness results, approximation results on k-
densest subgraph do not directly transfer to k-sparsest subgraph
not PV C. Moreover, the approximability status of k-sparsest sub-
graph did not receive as much attention as the one of k-densest sub-
graph. Indeed, k-sparsest subgraph is clearly inapproximable (unless
P = NP) on any class where independent set is NP-hard, as the op-
timal value of k-sparsest subgraph is 0 whenever k is lower than the
maximum independent set of the input graph. Thus, it appears natu-
ral to investigate the approximability of k-sparsest subgraph in graph
classes where independent set is polynomial, such as subclasses of per-
fect graphs.

In this paper we provide a PTAS in proper interval graphs, and an FPT
algorithm in (general) interval graphs parameterized by C, the number
of edges in the solution (notice that the last result implies an FPT
algorithm for the QIS problem with standard parametrization by k, as
well as an FPT algorithm for PVC parameterized by n− k).

The intuition of parameterizing by C is that k-sparsest subgraph be-
comes easy when looking for a solution of cost 0 (as it corresponds to find
an independent set). This motivates the design of an efficient algorithm
for small C values. Moreover, parameterization by C is stronger than the
natural parameterization by k, as we always have C ≤

(
k
2

)
.

Graphs classes k-densest subgraph k-sparsest subgraph PV C

general n
1
4
+ε-approx [4] O(n1−ε)-inapproximable 2-approx[7]

W [1]− hard [11]
O∗(1, 396C) [12]

bip./comp./chordal NPc [9] OPEN OPEN

co-(bip/comp/chordal) NPc (c.f. k-densest) NPc (c.f. k-sparsest)

perfect NPc (c.f. chordal) NPc NPc (c.f. k-sparsest)
(c.f. k-densest in chordal)

line OPEN NPc (c.f. PVC) NPc [1]

cubic OPEN NPc [17] NPc (c.f. k-sparsest)

trees/cographs/split/
bounded tw/max deg. 2

P [9] P [6] P (c.f. k-sparsest)

co-(trees/split/bounded
tw/max deg. 2)

OPEN P (c.f. k-densest) P (c.f. k-sparsest)

clique path P [14] OPEN OPEN

co-(clique path) P (c.f. k-densest) P (c.f. k-sparsest)

σ-quasi elimination or-
der

σ-approx [8] OPEN OPEN

chordal 3-approx [15] OPEN OPEN

permutation 3/2-approx [3] OPEN OPEN

clique star PTAS [13] OPEN OPEN

interval OPEN, PTAS [16] OPEN, OPEN, FPT (n− k)
FPT (C∗) (this paper) (c.f. k-sparsest)

proper interval OPEN, PTAS [16] OPEN, OPEN
3/2-approx [3] PTAS (this paper)

Fig. 1: Main results for k-densest subgraph, k-sparsest subgraph and PVC.
co-C denotes the complementary class of C. Clique path (resp. star) denotes the
class of graphs whose clique graph is a path (resp. star). σ-quasi elimination
order is a generalization of perfect elimination orders for chordal graphs.

2 Preliminaries

Interval graphs are the intersection graph of a set of intervals on the
real line. For a set of intervals, the associated intersection graph has one
vertex for each interval, and an edge between two vertices corresponding
to intervals I1 and I2 if and only if I1 overlaps I2. A graph is a proper in-
terval graph if it is the intersection graph of a set of intervals on the real
line such that no interval properly contains any other interval. As the
intersection model of an interval graph can be obtained in polynomial
time, we will make no distinction between a vertex and its correspond-
ing interval, as well as we will make no distinction between edges in the
graph and overlaps in the corresponding interval model.

For the rest of the paper, G = (V,E) will denote the input graph of
the problem, and we define as usually n = |V |, m = |E|. The asso-
ciated interval set will be denoted by I = {I1, ..., In}. Without loss of
polynomiality, we suppose that all endpoints are pairwise distinct. Given
I ∈ I, we denote by right(I) ∈ R (resp. left(I) ∈ R) the right (resp.
left) endpoint of I. By extension, for any set S ⊆ I, we define left(S) =
arg minI∈S left(I) (resp. right(S) = arg maxI∈S right(I)). Unless other-
wise stated, we suppose that I is sorted according to the right endpoints
of the intervals (i.e. for all i ∈ {2, ..., n} we have right(Ii−1) < right(Ii)).
For S ⊆ I and r ≤ |S|, we define the ”r-leftmost intervals of S” as the
r first intervals in an ordering of S (where intervals are sorted according
to their right endpoints). Notice that the 1-leftmost interval will simply
be called the leftmost interval. Given a set S ⊆ I, we denote cost(S) the
number of edges in the graph induced by intervals of S.
Finally, we refer the reader to the classical literature for definitions of
approximation and FPT algorithms.

3 FPT Algorithm by Dynamic Programming

The objective of this section is to provide an FPT algorithm for the
k-sparsest subgraph on general (i.e. non proper) interval graphs, pa-
rameterized by the cost of the solution.

3.1 Preliminaries

Given x ∈ R we define I≥x = {I ∈ I : x ≤ left(I)} the set of intervals
that are after x, I=x = {I ∈ I : left(I) < x < right(I)} the set of
intervals that cross x, and I≤x = {I ∈ I : right(I) ≤ x} the set of
intervals that are before x.
Let us start with two lemmas that allow us to restructure optimal solu-
tions by ”flushing” intervals to the left.

Lemma 1. Let S ⊆ I be a solution, and s ∈ R such that left(S) < s <
right(S) and S ∩ I=s = ∅. Let Ĩ be the leftmost interval of S ∩ I≥s and
I∗ be the leftmost interval of I≥s. Then we can swap Ĩ and I∗ to get a
solution S′ = (S\{Ĩ}) ∪ {I∗} such that cost(S′) ≤ cost(S).

Proof. Let us suppose that Ĩ 6= I∗, and let I ∈ S such that I 6= Ĩ , I∗. We
will show that if I overlaps I∗, then it also overlaps Ĩ. Thus, suppose that
I overlaps I∗. By definition of Ĩ and S, we have right(I∗) < right(Ĩ) <
right(I), and since I overlaps I∗, we have I ∈ I=right(I∗) and thus I also

overlaps Ĩ (see Figure 2a).

s

Ĩ

I∗

II

I

1

(a)

s s′

Ĩj0

I∗
j0

I
I

I

I

1

(b)

Fig. 2: Different positions of interval I in Lemma 1 (Figure (a)) and Lemma 3
(Figure (b)). Dashed intervals represent forbidden positions.

Lemma 2. Let S ⊆ I be a solution, Ii1 ∈ S and s ∈ R such that:
(i) Ii1 is the leftmost interval of S ∩ I=s

(ii) ∃Ĩ ∈ S ∩ I≥s such that Ĩ overlaps Ii1
Let I∗ be the leftmost interval of I≥s. Then, we can swap I∗ and Ĩ to
get a solution S′ = (S\{Ĩ}) ∪ {I∗} such that cost(S′) ≤ cost(S).

Proof. Let us suppose that Ĩ 6= I∗, otherwise the proof is obvious, and
let I ∈ S such that I 6= Ĩ , I∗. We will show that if I overlaps I∗, then
it also overlaps Ĩ. Thus, suppose that I overlaps I∗. If I ∈ I=s, then
by definition of Ii1 , we must have right(Ii1) < right(I), and since s <
left(Ĩ) < right(Ii1), I must overlap Ĩ. Otherwise if I ∈ I≥s, as in the
proof of Lemma 1, by definition of Ĩ we have right(I∗) < right(Ĩ) <
right(I), and since I overlaps I∗, we have I ∈ I=right(I∗) and thus I also

overlaps Ĩ.

Lemma 3. Let S ⊆ I be a solution and s, s′ ∈ R with s < s′ and such
that ∀I ∈ S we have right(I) /∈ [s, s′]. Let X̃ = S ∩ I≥s ∩ I=s′ and X∗

be the |X̃|-leftmost intervals of I≥s ∩I=s′ . Then we can swap X̃ and X∗

to get a solution S′ = (S\X̃) ∪X∗ such that cost(S∗) ≤ cost(S̃).

Proof. We suppose that X̃ 6= X∗ and that both sets are non empty. Let
X̃ = {Ĩ1, ..., Ĩ|X̃|}, and X∗ = {I∗1 , ..., I∗|X̃|}. We suppose moreover that

for all j ∈ {2, ..., |X̃|} we have right(Ĩj−1) < right(Ĩj) and right(I∗j−1) <

right(I∗j) (i.e. X̃ and X∗ are sorted by their right endpoints). Let j0 be

the minimum index such that Ĩj0 6= I∗j0 , and let I ∈ S\(X̃ ∪ X∗) (we

thus have right(I∗j0) < right(Ĩj0)). We will show that if I overlaps I∗j0 ,

then I also overlaps Ĩj0 . To do so, suppose that I overlaps I∗j0 , and let us

distinguish between two cases (see Figure 2b). If s′ < right(I), then since
right(I∗j0) < right(Ĩj0), it is clear that I also overlaps Ĩj0 . Otherwise, if
right(I) < s′, then by definition right(I) < s, and thus I cannot overlap
I∗j0 .

3.2 Algorithm

Recall that our objective is to prove that the decision problem ”given
an instance (I, k) of k-sparsest subgraph, does Opt(I, k) ≤ C∗ ?”, is
FPT parametrized by C∗.
We construct in Algorithm 1 a dynamic programming algorithm that
given any next ∈ R, t ≤ k and C ≤ C∗ returns a set S of t vertices in
I≥next of cost at most C if it was possible, and returns NO otherwise.
We define Ωnext(C) ⊆ P(I) (where P(I) is the set of all subsets of I)
such that for all T ∈ Ωnext(C) we have:

- G[T] is connected
- cost(T) ≤ C
- left(T) = left(I≥next)

Roughly speaking, Ωnext(C) is the set of all connected components of
cost at most C that start immediately after next. Given next and t, the
algorithm branches on a subset of Ωnext(C) (namely Γnext(C)) to find
what could be the next optimal connected component, and then invokes
a recursive call.
We prove in Lemma 4 that each T ∈ Ωnext(C) can be restructured into
a ”well-structured” component of smaller cost, and in Lemma 5 that
the size of the set of all ”well-structured” components (Γnext(C)) can be
enumerated in FPT time.

Algorithm 1 DP (next, t, C)

// For the sake of clarity we drop the classical operations related to the ”marking
// table” that avoid multiple computations with same arguments
build Γnext(C) (see Definition 1)
if Γnext(C) = ∅ then

return NO
else if ∃T ∈ Γnext(C) with |T | ≥ t then

return t vertices of T
else

return arg minC∈Γnext(C) [cost(T) + cost(DP (right(T), t− |T |, C − cost(T)))]
end if

Let us now show how to restructure a connected component of a given
solution. As one could expect, the idea is to apply the domination rules
of Lemmas 1, 2 and 3 that consist in ”flushing” the intervals to the
left. Thus, for any connected component T , we define (recursively on s)
restruct(s, T, i) that turns T ∩I≥s (the part of T which is after s) into a
well structured solution (see Algorithm 2 and Definition 1). Notice that
the parameter i and the yi values will be used in Lemma 5 to show that
the output of the algorithm can be encoded in an efficient way.

Definition 1. Given s and T ∈ Ωs(C), we define:
- WSS(T) = restruct(start(T), T, 0) the Well Structured Solution

corresponding to T , where start(T) is defined as the point after the
left endpoint of the leftmost interval of T (see Figure 3).

- Γs(C) = {WSS(T), T ∈ Ωs(C)} the set of well structured connected
component of cost at most C that starts just after s.

leftmost interval of T
start(T)

1

Fig. 3: Example of a connected component T and its corresponding start(T)

Remark 1. Notice that at each step of the dynamic programming we
branch on Γnext(cost), which is the set of all restructured connected com-
ponent T such that left(C) = left(I≥next). By Lemma 1, we can suppose
that for all optimal solution S∗, we have left(S∗∩I≥next) = left(I≥next).
Roughly speaking, we can suppose that for all optimal solution, the con-
nected component that starts after I≥next contains the leftmost interval
of I≥next. As a consequence, the start(T) in Definition 1 forces Ii1 to be
this leftmost interval.

Lemma 4. For any s and any T ∈ Ωs(C) we have
- |WSS(T)| = |T |, i.e. the restructured set has same size
- right(WSS(T)) ≤ right(T)
- cost(WSS(T)) ≤ cost(T).

Proof. The first item is clearly true as we only swap sets of intervals
of same size. The second item is true as all swapping arguments shift
intervals to the left. Let us now turn to the last item. Notice that in the
two cases where restruct modifies T , the hypothesis of Lemmas 2 and
3 are verified. Thus, according to these Lemmas the cost of the solution
cannot increase.

Lemma 4 confirms that the dynamic programming algorithm can only
branch on Γs(C), avoiding thus branching on Ωs(C). It remains now to
prove that the dynamic programming algorithm is FPT.

Lemma 5. For any s, |Γs(C)| ≤ (
√

2C + 2)C+1.

Algorithm 2 restruct(s, T, i)

if T ∩ I≥s 6= ∅ then
Ii1 ← leftmost interval of I=s ∩ T
// Ii1 is always defined, as in the first call s is set to start(T)
if @I ∈ T ∩ I≥s which overlaps Ii1 then
yi ← 0
restruct(right(Ii1), T, i+ 1)

else
// we restructure a first interval using Lemma 2
Ĩ ← leftmost interval of T ∩ I≥s which overlaps Ii1
I∗ ← leftmost interval of I≥s which overlaps Ii1
T ← (T\{Ĩ}) ∪ {I∗}
// we restructure a set of intervals using Lemma 3
s′ ← min(right(I∗), right(Ii1))
X̃ ← T ∩ I≥s ∩ I=s′
X∗ ← |X̃|-leftmost intervals of I≥s ∩ I=s′
T ← (T\X̃) ∪X∗
yi ← |X∗|+ 1
restruct(s′, T, i+ 1)

end if
end if

Proof. Let T ∈ Ωs(C), and WSS(T) the associated restructured solu-
tion. The key argument is to remark that WSS(T) is entirely deter-
mined by the yi values defined in the restruct algorithm. Thus, to each
restructured solution WSS(T) we associate the vector Y (WSS(T)) =
(y0, . . . , ylmax). Then, the dynamic program will enumerate Γs(C) by
enumerating the set Y = {Y (WSS(T)), T ∈ Ωs(C)} of all possible Y
vectors.

Notice first that for any i we have yi ≤
√

2C + 2. Indeed, in the two
possible cases of the restructuration (s′ = right(I∗) or s′ = right(Ii1))
the |X∗| intervals all overlap s′, corresponding to the right endpoint
of another interval (I∗ or Ii1). Thus, there is at least a clique of size
yi = |X∗|+ 1 in the solution, whose cost is lower than C.

It remains now to bound lmax, the length of the Y vector.

To do that, we show that for any step i ∈ {0, ..., lmax − 1} and corre-
sponding s, we can find I ∈ I=s and I ′ ∈ I≥s such that I and I ′ overlaps,
and such that in the next recursive call (with parameter s′), either I or
I ′ belongs to I≤s′ , avoiding multiple counts of same pairs, and implying
that C ≥ lmax − 1. Let i ∈ {0, ..., lmax − 1}. If yi 6= 0, then by definition
of I∗, Ii1 and I∗ are overlapping. Then, since the next recursive call has
parameter s′ = min{right(I∗), right(Ii1)}, either I∗ or Ii1 belongs to
I≤s′ . If yi = 0, then s′ = right(Ii1), and as i 6= lmax, we know that there
exists Ii2 ∈ I=s′ implying that Ii2 overlaps Ii1 . Finally, it is clear that
Ii1 ∈ I≤s′ .

Theorem 1. k-sparsest subgraph can be solved in O(n2.k3.C∗. (
√

2C∗+
2)C

∗+1).

Proof. The dynamic programming algorithm has at most n.k.C∗ differ-
ent inputs. Given fixed parameters, it runs in O(|Γs(C∗)|.k2n). Indeed,
given a Y vector, the corresponding connected component can be built
in O(lmaxn) ⊆ O(C∗n) ⊆ O(k2n) as for any i ≤ lmax it takes O(n) to
find the corresponding yi intervals.

4 PTAS for Proper Intervals Graphs

In this section we design a PTAS for k-sparsest subgraph in proper
interval. We first assume that the instance has one connected component.
We prove that we can re-structure an optimal solution Opt into a near
optimal solution Opt′ such that the pattern used in Opt′ in each ”block”
(a block corresponds to a subset of consecutive intervals in the input) is
simple enough to be enumerated in polynomial time. Then, a dynamic
programming algorithm will process the graph blocks by blocks from left
to right and enumerate for each one all the possible patterns.

4.1 Definitions

Let us define some notation that will be used in the algorithm. Recall
that we are now given a set of proper intervals I = {I1, ..., In} sorted by
their right endpoints (and by their left endpoints equivalently).

First, we define by induction the following decomposition of the input
graph: Let Im1 = I1, L1 = Im1 , R1 = {Ij , j > m1, Ij overlaps Im1}.
Then, given any i ≥ 1 we define (while there remains some intervals
after Ri):

- Imi+1 is the rightmost interval of the set X = {I /∈ Ri,∃I ′ ∈ Ri
s.t. I overlaps I ′} (X is well defined as the instance has a unique
connected component)

- Li+1 = {Ij , j ≤ mi+1, Ij overlaps Imi+1 and Ij /∈ Ri}
- Ri+1 = {Ij , j > mi+1, Ij overlaps Imi+1}.

Let a denote the maximum i such that Imi is defined. Notice that Ra
may be empty, and that Imi ∈ Li for all i ∈ {1, ..., a}.
For any i ∈ {1, ..., a} we define the block i as Bi = Li

⋃
Ri. Thus,

the set of intervals is partitioned into blocs Bi for 1 ≤ i ≤ a. Such a
decomposition is depicted in Figure 4.

For any 1 ≤ i ≤ a and any solution S (a subset of k intervals), let
LSi = Li

⋂
S, RSi = Ri

⋂
S, and BSi = Bi

⋂
S.

Notice that for any S and i, intervals of RSi do not intersect intervals of
RSi−1, and intervals of LSi do not intersect Imi−1 nor intervals of LSi−1.

We can now write the cost of a solution as the sum of the costs inside
the blocks and the costs between the blocks. Thus, we have cost(S) =∑a
i=1 cost(B

S
i) +

∑a−1
i=1 cost(R

S
i , L

S
i+1), where cost(BSi) is the number of

edges in the subgraph induced by BSi , and cost(X1, X2) = |{(Il, Il′) ∈
E, Il ∈ X1, Il′ ∈ X2}|. Indeed, by definition, the only edges between
blocks Bi and Bi+1 are edges between Ri and Li+1.

Im1

Im2

R1

L2

R2

B1

B2

L3

1

Fig. 4: Schema of the decomposition used in the algorithm.

4.2 Compacting blocks

Let Comp be an injective function from I to I. For any S ⊆ I, we define
Comp(S) =

⋃
I∈S Comp(I). The function Comp is called a compaction

if for any S ⊆ I and any 1 ≤ i ≤ a the following holds:

- for all I ∈ RSi we have Comp(I) ∈ Ri and right(Comp(I)) ≤
right(I).

- for all I ∈ LSi we have Comp(I) ∈ Li and right(I) ≤ right(Comp(I)).

Roughly speaking, a compaction ”pushes” intervals of BSi toward the
center Imi . The idea is that a compaction may increase the cost of a
solution inside the blocks, but cannot increase the costs between the
blocks. Thus, let us define a ρ-compaction as a compaction Comp such
that for any S ⊆ I and for all i ∈ {1, ..., a} we have cost(Comp(BSi)) ≤
ρ.cost(BSi).

Lemma 6. If Comp is a ρ-compaction, then for any solution S, cost(Comp(S)) ≤
ρ.cost(S).

Proof. By definition of the decomposition, we have

cost(Comp(S)) =

a∑
i=1

cost(Comp(BSi)) +

a−1∑
i=1

cost(Comp(RSi), Comp(LSi+1))

≤
a∑
i=1

ρ.cost(BSi) +

a−1∑
i=1

cost(Comp(RSi), Comp(LSi+1))

We now prove that
∑a−1
i=1 cost(Comp(R

S
i), Comp(LSi+1)) ≤

∑a−1
i=1 cost(R

S
i , L

S
i+1).

Indeed, let IR ∈ RSi and IL ∈ LSi+1 such that IR and IL do not over-
lap. Then by definition of a compaction, we have right(Comp(IR)) ≤
right(IR) and left(IL) ≤ left(Comp(IL)). Thus, intervals Comp(IR)
and Comp(IL) do not overlap as well, which proves the result.

According to the previous lemma, we only have now to find compactions
that preserve costs inside the blocks. Given a fixed ε, the objective is
now to define a (1 + ε)-compaction that has a simple structure.

Lemma 7. For any fixed P ∈ N, there is a (1 + 4
P

)-compaction such
that for any X, Comp(X) can be described by (2P + 4) variables ranging
in {0, . . . , n}.

Proof. According to Lemma 6, we only describe Comp(X) for X ⊆ Bi,
given any 1 ≤ i ≤ a. Let X = XL ∪XR with XL ⊆ Li and XR ⊆ Ri. We
define xL = |XL|, xR = |XR|. Moreover, we set xL = qLP + rL (with
rL < P) and xR = qRP + rR (with rR < P).

Let us split XL into P subsets (GLt)1≤t≤P of consecutive intervals (in the
ordering of their right endpoints), with |GLt | = qL + 1 for t ∈ {1, ..., rL}
and |GLt | = qL for t ∈ {(rL + 1), ..., P} (see Figure 5). Similarly, we split
XR into P subsets (GRt)1≤t≤P of consecutive intervals, with |GRt | = qR+1
for t ∈ {1, ..., rR} and |GRt | = qR for t ∈ {(rR + 1), ..., P}.
For all t ∈ {1, ..., P}, let ILt (resp. IRt) be the rightmost (resp. left-
most) interval of GLt (resp. GRt). The principle of the compaction is to
flush every intervals of GLt (resp. GRt) to the right (resp. left). Thus, for
t ∈ {1, ..., rL}, Comp(GLt) is defined as the (qL+1)-rightmost intervals I
such that right(I) ≤ right(ILt), and for t ∈ {(rL + 1), ..., P}, Comp(GLt)
is defined as the qL-rightmost intervals I such that right(I) ≤ right(ILt).
Similarly, for t ∈ {1, ..., rR}, Comp(GRt) is defined as the (qR + 1)-
leftmost intervals I such that right(IRt) ≤ right(I), and for t ∈ {(rR +
1), ..., P}, Comp(GRt) is defined as the qR-rightmost intervals I such that
right(IRt) ≤ right(I). The construction for a block Li is depicted in Fig-
ure 5. It is clear that the mapping Comp described above is a compaction.
Moreover, given xL, rL, xR, rR and ILt (resp. IRt) for all 1 ≤ t ≤ P , we are
clearly able to construct Comp(X) in polynomial time. Thus, it remains
to prove that Comp is a (1 + 4

P
)-compaction.

Imi

Li

GL
1

GL
2

GL
3

1

Fig. 5: Exemple of a compaction of a set X for a block Li, with P = 3, and
xL = 7. Intervals marked with a cross represent X. Intervals marked with a
circle represent Comp(X)

The two key arguments are the following:
(i) all intervals of Li form a clique, as well as all intervals of Ri.

(ii) for any t1, t2 ∈ {1, ..., P} with t1 6= P and t2 6= 1, if an interval of
Comp(GLt1) overlaps an interval of Comp(GRt2), then for any s1 ∈
{(t1 + 1), ..., P} and any s2 ∈ {1, ..., (t2 − 1)}, all intervals of GLs1
overlap all intervals of GRs2 .

For all t ∈ {1, ..., P}, we define xLt = |GLt | = |Comp(GLt)|, xRt = |GRt | =
|Comp(GRt)|. By our construction and (i), we have

cost(Comp(X)) ≤

(
xL
2

)
+

(
xR
2

)
+

P∑
t=1

cost(Comp(GLt), Comp(X)∩Ri)

cost(X) ≥

(
xL
2

)
+

(
xR
2

)
+

P∑
t=1

cost(GLt , X ∩Ri)

Then, for all t ∈ {1, ..., P}, let λt ∈ {0, 1, ..., P} be the maximum s such
that an interval of Comp(GLt) overlaps an interval of Comp(GRs) (we set
λt = 0 if no interval of Comp(GLt) overlaps an interval of Comp(GR1)).
By (ii), for all t ∈ {1, ..., P}, we have cost(Comp(GLt), Comp(X)∩Ri) ≤
xLt
∑λt
u=1 x

R
u and for all t ∈ {2, ..., P}, we have cost(GLt , X ∩ Ri) ≥

xLt
∑λt−1−1
u=1 xRu (since some intervals of GLt−1 overlap some intervals of

GRλt−1
, it implies that all intervals of GLt overlap all intervals of GRλt−1−1).

Combining the previous inequalities, we now have

cost(Comp(X)) ≤

(
xL
2

)
+

(
xR
2

)
+

P∑
t=1

xLt

λt∑
u=1

xRu

cost(X) ≥

(
xL
2

)
+

(
xR
2

)
+

P∑
t=2

xLt

λt−1−1∑
u=1

xRu

Thus, we have∆ = cost(Comp(X))−cost(X) ≤ xL1
∑λ1
u=1 x

R
u+
∑P
t=2 x

L
t

∑λt
u=λt−1

xRu .

As in our case we have xLt ≤ (qL + 1), we get ∆ ≤ (qL + 1)(
∑λP
u=1 x

R
u +∑P

u=1 x
R
λu) ≤ 2(qL + 1)xR ≤ 2(xL

P
+ 1)xR.

It remains now to handle particular cases, according to the values of xL
and xR.

- If xL ≥ P , then 2(xL
P

+1)xR ≤ 4
P
xLxR, and ∆

cost(X)
≤

4
P
xLxR

(xL−1)xL+(xR−1)xR
≤

4
P
xLxR

1
2
(x2
L
+x2

R
)
≤ 4

P
(we lower bounded (xR − 1) by xR

2
as cases with

xR ≤ 1 lead to even better ratio).
- If xL < P , then we set Comp(X ∩ Li) = XL (i.e. we keep the

left part unchanged). If xR < P + 1, then we set Comp(X) = X
and we get a 1-compaction. Notice that in these cases we are still
able to construct Comp(X) in polynomial time. Suppose now that
xR ≥ P + 1. One can improve the previous lower bound and write
cost(X) ≥ (xL−1)xL

2
+ (xR−1)xR

2
+
∑P
t=1 x

L
t (
∑λt−1
u=1 xRu). Indeed, for

all t ∈ {1, ..., xL} the set GLt is a singleton (and GLt = ∅ for t ∈
{xL + 1, ..., P}), and thus the interval of GLt overlaps some inter-
vals of GRλt , which implies that it overlaps all intervals of GRλt−1.

Thus, we get ∆ ≤
∑P
t=1 x

L
t x

R
λt ≤

∑xL
t=1 x

R
λt ≤ xR, and ∆

cost(X)
≤

2xR
(xL−1)xL+(xR−1)xR

≤ 2
P

, which terminates the proof of the lemma.

4.3 Algorithm

Let us now write a dynamic programming algorithm for the instances
that have a unique connected component (we will drop this hypothesis
after). Let Opt be an optimal solution, P a fixed integer and Comp the
previous (1+ 4

P
)-compaction. The algorithm constructs a solution which

is at least as good as Comp(Opt) by enumerating for all blocks all the
possible compacted patterns (i.e. all the possible Comp(X)).
Let us now define more formally the algorithm, starting with the param-
eters. The first parameter k′ ≤ k is the number of interval to choose.
i is the starting block, meaning that the k′ interval must be chosen in⋃a
l=iBl. Finally, BSi−1 represents the set of 2P + 4 variables that encode

the set of intervals Xi−1 chosen in block (i− 1). Since we can construct
Xi−1 from BSi−1 in polynomial time, we will directly use BSi−1 to denote
Xi−1, for the sake of readability.

Algorithm 3 DP (k′, i, BS
i−1)

// For the sake of clarity we drop the classical operations related to the ”marking
// table” that avoid multiple computations with same arguments
// We also drop the base case i = a+ 1 (i.e. there are no more remaining intervals
in the instance)
Ω ← all possible patterns for block i using less or equal than k′ intervals
return arg minB∈Ω cost(B

S
i−1 ∪B ∪DP (k′ − |B|, i+ 1, B))

Lemma 8. For any P , DP (k, 1, ∅) outputs a (1+ 4
P

)-approximation for

the k-sparsest subgraph in O(nO(P)).

Proof. The objective is to prove that cost(DP (k, 1, ∅)) ≤ cost(Comp(Opt)),
where Comp is the previous (1+ 4

p
)-compaction. According to Lemma 7,

it is sufficient to get a (1 + 4
p
)-approximation.

For sake of readability, for all i ∈ {1, ..., a}, we define B∗i = Comp(Opt)∩
Bi and k∗i = |

⋃a
l=iB

∗
i |.

We prove by induction on i (starting from i = a + 1) that cost(B∗i−1 ∪
DP (k∗i , i, B

∗
i−1)) ≤ cost(Comp(Opt) ∩

⋃a
l=i−1Bl).

Let us suppose that the hypothesis is true for i + 1 and prove it for i.
Considering the iteration where DP chooses B = B∗i .

cost(B∗i−1∪DP (k∗i , i, B
∗
i−1)) ≤ cost(B∗i−1)+cost(B∗i−1, B

∗
i)+DP (k∗i−|B∗i |, i+1, B∗i)

(recall that cost(X1, X2) = |{(Il, Il′) ∈ E, Il ∈ X1, Il′ ∈ X2}|). Using the
induction hypothesis we get the desired result.
The dependency in P in the running time is due to the n2P+O(1) possible
values for the set of parameters and the branching time in n2P+O(1) when
enumerating sets BSi .

Finally, let us extend the previous result to instances having several
connected component. We only sketch briefly the algorithm as it follows
the same idea as, for example, [8] for the k densest.

Let us suppose that for any k′ ≤ k we have an algorithm A(k′, X) which
is a ρ-approximation for k′-sparsest subgraph on a instance X having
one connected component.

Let (Ci)1≤i≤x denote the connected component of a (general) instance of
k-sparsest subgraph. It is sufficient to define a dynamic programming
algorithm DP (k′, i) that computes a ρ approximation of the k′-sparsest
subgraph on

⋃x
t=i(Ct) by keeping the best of all the A(l, Ci)+DP (k′−

l, i+ 1), for 1 ≤ l ≤ k′.
Thus, we get the following result:

Theorem 2. There is a PTAS for k-sparsest subgraph on proper

interval graphs running in nO(1
ε
)

5 Conclusion and Future Work

In this paper, we studied the fixed-parameter tractability and approx-
imation of the k-sparsest subgraph problem in subclasses of chordal
graphs. More precisely, we designed a PTAS in proper interval graphs
and an FPT in interval graphs when parameterized by the cost of the
solution. Given that obtaining a negative result for our problem in in-
terval graphs seems to be a tough question, it would be interesting to
determine the complexity of the problem in chordal graphs, and then to
extend our approximation and fixed parameterized algorithms in case of
NP-hardness.

References

1. N. Apollonio and A. Sebő. Minconvex factors of prescribed size in
graphs. SIAM Journal of Discrete Mathematics, 23(3):1297–1310,
2009.

2. Nicola Apollonio. Private communication, 2012.

3. J. Backer and J.M. Keil. Constant factor approximation algo-
rithms for the densest k-subgraph problem on proper interval graphs
and bipartite permutation graphs. Information Processing Letters,
110(16):635–638, 2010.

4. A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vija-
yaraghavan. Detecting high log-densities: an O(n1/4) approximation
for densest k-subgraph. In Proceedings of the 42nd ACM symposium
on Theory of Computing, pages 201–210. ACM, 2010.

5. N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, V. Th. Paschos,
and O. Pottié. The max quasi-independent set problem. Journal of
Combinatorial Optimization, 23(1):94–117, 2012.

6. H. Broersma, P. A. Golovach, and V. Patel. Tight complexity
bounds for fpt subgraph problems parameterized by clique-width.
In Proceedings of the 6th international conference on Parameterized
and Exact Computation, IPEC’11, pages 207–218, Berlin, Heidel-
berg, 2012. Springer-Verlag.

7. N. Bshouty and L. Burroughs. Massaging a linear programming
solution to give a 2-approximation for a generalization of the vertex
cover problem. In Proceedings of the 15th Annual Symposium on
Theoretical Aspects of Computer Science, pages 298–308. Springer,
1998.

8. D. Chen, R. Fleischer, and J. Li. Densest k-subgraph approxima-
tion on intersection graphs. In Proceedings of the 8th international
conference on Approximation and online algorithms, pages 83–93.
Springer, 2011.

9. D.G. Corneil and Y. Perl. Clustering and domination in perfect
graphs. Discrete Applied Mathematics, 9(1):27 – 39, 1984.

10. O. Goldschmidt and D. S. Hochbaum. k-edge subgraph problems.
Discrete Applied Mathematics, 74(2):159–169, 1997.

11. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity
of vertex cover variants. Theory of Computing Systems, 41(3):501–
520, 2007.

12. J. Kneis, A. Langer, and P. Rossmanith. In Proceedings of the 34th
Workshop of Graph Theoretic Concepts in Computer Science, pages
240–251. Springer, 2008.

13. M. Liazi, I. Milis, F. Pascual, and V. Zissimopoulos. The dens-
est k-subgraph problem on clique graphs. Journal of Combinatorial
Optimization, 14(4):465–474, 2007.

14. M. Liazi, I. Milis, and V. Zissimopoulos. Polynomial variants of the
densest/heaviest k-subgraph problem. In Proceedings of the 20th
British Combinatorial Conference, Durham, 2005.

15. M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation
algorithm for the densest k-subgraph problem on chordal graphs.
Information Processing Letters, 108(1):29–32, 2008.

16. T. Nonner. Ptas for densest k-subgraph in interval graphs. In
Proceedings of the 12th international conference on Algorithms and
Data Structures, pages 631–641. Springer, 2011.

17. M. Yannakakis. Node-and edge-deletion NP-complete problems. In
Proceedings of the 10th annual ACM Symposium On Theory of
Computing, pages 253–264. ACM, 1978.

