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The k-Sparsest Subgraph Problem

Given a simple undirected graph G = (V, E) and an integer k ≤ |V |, the ksparsest subgraph problem asks for a set of k vertices that induce the minimum number of edges. As a generalization of the classical independent set problem, k-sparsest subgraph cannot admit (unless P = N P) neither an approximation nor an FPT algorithm (parameterized by the number of edges in the solution) in all graph classes where independent set is N P-hard . Thus, it appears natural to investigate the approximability and fixed parameterized tractability of k-sparsest subgraph in graph classes where independent set is polynomial, such as subclasses of perfect graphs. In this paper, we first present a simple greedy tight 2-approximation algorithm in proper interval graphs, and then we use dynamic programming to design a PTAS in proper interval graph and an FPT algorithm in interval graphs (parameterized by the number of edges in the solution).

Introduction and related Problems

Introduction

Given a graph G = (V, E) and k ≤ |V | the k-sparsest subgraph problem (or the k-lightest subgraph for the weighted version) asks for a set S of exactly k vertices that minimizes the number of edges of G[S], the subgraph induced by S. As a generalization of the classical independent set problem (where the number of edges in the induced subgraph is required to be 0), this problem is N P-hard in general graphs. Let us first recall the definition of some related problems, and then discuss their relation to k-sparsest subgraph.

In the maximum Quasi-Independent Set (QIS) problem [START_REF] Bourgeois | The max quasi-independent set problem[END_REF] (also called k-edge-in in [START_REF] Goldschmidt | k-edge subgraph problems[END_REF]), we are given a graph G and an integer C, and we ask for a set of vertices S of maximum size such that G[S] has less than C edges. In the minimum Partial Vertex Cover (PVC) problem [START_REF] Guo | Parameterized complexity of vertex cover variants[END_REF], we are given a graph G and an integer C, and we ask for a set of vertices S of minimum size which covers at least C edges (an edge {u, v} is said to be covered by S if either u ∈ S or v ∈ S). Finally, we can mention the corresponding maximization problem of k-sparsest subgraph, namely k-densest subgraph (or k-heaviest subgraph for the weighted version), that consists in finding a subset S of exactly k vertices that maximizes the number of edges in G[S].

The decision versions of QIS, P V C, and k-sparsest subgraph are polynomially equivalent. Indeed, QIS could be considered as a dual version of k-sparsest subgraph where the budget (the number of edges in the solution of k-sparsest subgraph) is fixed. P V C and k-sparsest subgraph are also polynomially equivalent as for any S, the number of edges in G[S] plus the number of edges covered by V \S equals |E|. Finally, it is obvious that any exact result for k-densest subgraph on a graph class immediately transfers to k-sparsest This work has been funded by grant ANR 2010 BLAN 021902 subgraph for the complementary class (and conversely).

As a consequence, the complexity status of k-sparsest subgraph is already known in several subclasses of perfect graphs, namely in co-comparability and co-chordal graphs for N Pcompleteness, and in split graphs and in trees for polynomial algorithms. We believe that the N P-hardness in interval graphs may be a tough question, as for example the complexity in bipartite graphs is still currently studied [2], and the complexity of k-densest subgraph on interval graphs (and even proper interval graphs) is a classical three decades open question raised in [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF]. Notice that despite this open question, a PTAS has been designed for k-densest subgraph in interval graphs in [START_REF] Nonner | Ptas for densest k-subgraph in interval graphs[END_REF].

Graphs classes

k-DS k-SS P V C general N P-h N P-h, not approx. N P-h, W [1]-h [START_REF] Guo | Parameterized complexity of vertex cover variants[END_REF] (c.f. max clique) (c.f. indep. set) 2-approx. [START_REF] Bshouty | Massaging a linear programming solution to give a 2approximation for a generalization of the vertex cover problem[END_REF]] n 1 4 + -approx. [START_REF] Bhaskara | Detecting high log-densities: an O(n 1/4 ) approximation for densest k-subgraph[END_REF] exact O * (1, 4 C ) [START_REF] Kneis | Proceedings of the 34th Workshop of Graph Theoretic Concepts in Computer Science[END_REF] chordal N P-h [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF] N P-h [?] N P-h (c.f. k-SS) 3-approx [START_REF] Liazi | A constant approximation algorithm for the densest k-subgraph problem on chordal graphs[END_REF] interval OPEN OPEN, OPEN PTAS [START_REF] Nonner | Ptas for densest k-subgraph in interval graphs[END_REF] F P T (C) [?] F P T (n -k) 2-approx. (this paper) (c.f. k-SS) proper interval OPEN OPEN, OPEN PTAS [START_REF] Nonner | Ptas for densest k-subgraph in interval graphs[END_REF] P T AS (this paper) bipartite N P-h [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF] N P-h (c.f. PVC) 

Motivation and contributions

Unlike polynomial or N P-hardness results, approximation results on k-densest subgraph do not directly transfer to k-sparsest subgraph not P V C. Moreover, the approximability status of k-sparsest subgraph did not receive as much attention as the one of k-densest subgraph. Indeed, k-sparsest subgraph is clearly inapproximable (unless P = N P) on any class where independent set is N P-hard, as the optimal value of k-sparsest subgraph is 0 whenever k is lower than the maximum independent set of the input graph. Thus, it appears natural to investigate the approximability of k-sparsest subgraph in graph classes where independent set is polynomial, such as subclasses of perfect graphs.

In this paper we first present a simple greedy tight 2-approximation algorithm, and we then use dynamic programming to provide a P T AS in proper interval graphs, and an F P T algorithm in (general) interval graphs parameterized by C, the number of edges in the solution (notice that the last result implies an F P T algorithm for the QIS problem with standard parametrization by k, as well as an F P T algorithm for PVC parameterized by n -k).

The intuition of parameterizing by C is that k-sparsest subgraph becomes easy when looking for a solution of cost 0 (as it corresponds to find an independent set). This motivates the design of an efficient algorithm for small C values. Moreover, parameterization by C is stronger than the natural parameterization by k, as we always have C ≤ k 2 .

Preliminaries

Interval graphs are the intersection graph of a set of intervals on the real line. For a set of intervals, the associated intersection graph has one vertex for each interval, and an edge between two vertices corresponding to intervals I1 and I2 if and only if I1 overlaps I2. A graph is a proper interval graph if it is the intersection graph of a set of intervals on the real line such that no interval properly contains any other interval. As the intersection model of an interval graph can be obtained in polynomial time, we will make no distinction between a vertex and its corresponding interval, as well as we will make no distinction between edges in the graph and overlaps in the corresponding interval model. For S ⊆ I and r ≤ |S|, we define the "r-leftmost intervals of S" as the r first intervals in an ordering of S (where intervals are sorted according to their right endpoints). Notice that the 1-leftmost interval will simply be called the leftmost interval. Given a set S ⊆ I, we denote cost(S) the number of edges in the graph induced by intervals of S. Finally, we refer the reader to the classical literature for definitions of approximation and F P T algorithms.

3 A Simple Greedy 2-Approximation Algorithm

Algorithm

Let us first define the notion of layer by layer decomposition of a given solution:

Definition 1. Given a solution S ⊆ I of k-sparsest subgraph, a layer by layer decomposition of S is a partition (L1, . . . , LC omp) of S such that : -L1 is a maximum independent set in the subgraph induced by S (notice that L1 is not necessarily a maximum independent set in G, the input graph) -L l ef t is recursively defined as a (non empty) maximum independent set in the subgraph induced by S \ lef t-1 i=1 Li Moreover, for all 1 ≤ l ≤ Comp, we define x l ef t = |L l ef t|.

The idea of the Layer-by-Layer algorithm (see Algorithm 1) is to avoid big cliques by creating several layers. Each layer is created by parsing remaining intervals and selecting a maximum independent set in the remaining graph.

Algorithm 1 "Layer-by-Layer algorithm"

Output ← ∅ lef t ← 0 while |Output| ≤ k do l ← l + 1 L l ef t ← ∅ while (|Output| + |L l ef t| ≤ k)
and (L l ef t is not a maximal independent set) do Add to L l ef t the leftmost interval that does not overlap any interval of L l ef t end while Output ← Output ∪ L l ef t end while return Output Notice that the tuple (L1, . . . , LComp) defined in the Layer-by-Layer algorithm is already a layer by layer decomposition of the algorithm output. By definition, any layer L l ef t is even a maximum independent set in G \ lef t-1 i=1 Li. This property is mandatory when k is lower than the maximum independent set of G. Indeed, in this case the optimal value is zero and thus any approximation algorithm must return an independent set.

Analysis

Before starting the proof, let us first introduce some notations and basic facts. Let The key argument is that the number of edges between Ij and intervals of L lef t is either one or two. Indeed, there is at least one interval I j ∈ L lef t such that I j and Ij are connected, otherwise L lef t would not be a maximum independent set. Moreover, if Ij overlap three (or more) intervals of L lef t , then one of these intervals would be included in Ij, which is impossible as G is a proper interval graph.

For any 1 ≤ l < l ≤ Comp, we define cost(l , l) the number of edges between intervals of L lef t and L lef t . From the previous argument we get x l ≤ cost(l , l) ≤ 2x l . Summing over all the layers, we get cost(S)

= C lef t=2 omp lef t-1 lef t =1 cost(l , l) ≤ 2 C lef t=2 omp(lef t -1)
x l ef t. The lower bound is of course obtained using the same summation.

According to the previous proposition, we get cost(Opt) ≥

Comp * lef t=2 (lef t -1)x * l ef t, and cost(Output) ≤ 2 Comp lef t=2 (lef t -1)
x l ef t (recall that x l ef t denotes the size of L l ef t, the layers defined in the Layer-by-Layer algorithm). Thus, to get an approximation ratio of two it remains now to prove that

Comp lef t=2 (lef t -1)x l ef t ≤ Comp * lef t=2 (lef t -1)x * l ef t.
Roughly speaking, the last inequality is true as the Layer-by-Layer algorithm maximizes the first x l ef t (that have a small coefficient), as each layer is a maximum independent set in the remaining graph. More formally, let us prove the following lemma.

Lemma 2. Given respectively (L * 1 , . . . , L * Comp * ) and (L1, . . . , LComp), the layer by layer decomposition of Opt and the output of the Layer-by-Layer algorithm, for all l ∈ {1, . . . , min(Comp, Comp * )} we have l i=1 ef txi ≥ l i=1 ef tx * i Proof. Let Comp = min(Comp, Comp * ). Given any solution S and any lef t ∈ {1, . . . , Comp}, we define F l ef t(S) = l i=1 ef txi (where xi is defined by the layer by layer decomposition of S) and F (S) = (F1(S), . . . , F Comp (S)). Let Opt1 = Opt. We will re-structure Opt1 in several steps by defining intermediate solutions Opti until Opti = Output, and such that F (Opti+1) ≥ F (Opti) (where ≥ is the product order over R Comp ). Let us describe how to turn Opti into Opti+1. Let (L 1 , . . . , L Comp ) be the layer by layer decomposition of Opti. Let us suppose that the (x -1) first layers of Opti are equal to the (x -1) first layers of Output, i.e. let x ≥ 1 be the minimum value such that L x = Lx and L l ef t = L l ef t, ∀1 ≤ lef t < x. Let Lx = {i1, . . . , ia} and L x = {i 1 , . . . , i b } (for the sake of clarity we simply denote by i l the interval Ii l when it is clear from the context). Notice that b ≤ a as by construction Lx is a maximum independent set in the remaining graph G \ x-1 i=1 Li. Let us now distinguish two different cases. We first consider the case where L x ⊂ Lx, implying that L x is not the last layer. In this case we define Opti+1 by adding an interval I ∈ Lx \L x to L x (notice that I is not contained in any L l ef t , lef t > x as L x is maximal), and we remove an interval from a layer L l ef t , l > x. This transformation ensures that F (Opti+1) ≥ F (Opti). In the other case, let j ≤ b be the minimum value such that i j = ij and i l ef t = i l ef t, ∀1 ≤ l < j. In other word, we consider the leftmost non common interval between L x and Lx. Notice that ij < i j (meaning that interval ij is on the left of i j ) as the algorithm created Lx by choosing ij as the leftmost independent interval. Two sub-cases are now possible.

If ij is not used in Opti (ij / ∈ Comp lef t=x+1 L l ef t)
, then we add ij to L x and we remove i j from L x . Notice that L x is still an independent set as ij < i j . Finally, we consider the case where ij is used in Opti in a layer L y , y > x (as depicted in Figure 2). Let L y = {i 1 , . . . , i a }, and let p such that i p = ij. We will execute the following exchanges between L x and L y . First add ij (= i p ) to L x . As L x was maximal, we know that there is an edge between ij and i j . Thus, we remove i j from L x and add it to L y . If there is no edge between i j and i p+1 , the exchange is over (and Opti+1 is defined). Otherwise, we have to continue the exchange until the last exchanged interval does not overlap any interval or one of the layer is empty. More formally, let a ≥ 0 be the greatest integer such that (i p , i j ), (i j , i p+1 ), (i p+1 , i j+1 ), . . . , (i j+a , i p+a+1 ) are in E. First, we remove {i p , . . . , i p+a+1 } from L y and add it to L x . Then, we remove {i j , . . . , i j+a } from L x and we add it to L y . Finally, if (i p+a+1 , i j+a+1 ) ∈ E, we also remove i j+a+1 from L x and we add it to L y . Notice that after the exchange we either have

|L x |new = |L x | old and |L y |new = |L y | old , or |L x |new = |L x | old + 1 and |L y |new = |L y | old -1.
Thus, in both cases we get F (Opti+1) ≥ F (Opti). -

Comp i=1 xi = Comp * i=1 x * i -∀l ∈ {1, . . . , min(Comp, Comp * )}, l i=1 ef tx l ef t ≥ l i=1 ef tx * l ef t -ai ≤ ai+1 We have Comp lef t=1 a l ef tx l ef t ≤ Comp * lef t=1 a l ef tx * l ef t.
Proof. Putting all the pieces together, we can now prove the following result:

Theorem 1. The Layer-by-Layer algorithm is a tight 2-approximation algorithm.

Proof. Let Output denote the solution given the Layer-by-Layer algorithm, and x l the coefficient defined in a layer by layer decomposition of Output. According to Lemma 1 and Lemma 3 we get cost(Output) 3 represents a set of 7 proper intervals, for which with k = 5, the Layer-by-Layer algorithm produces a solution of cost 4, whereas a solution of cost 2 exists, implying a ratio of 2.

≤ 2 Comp lef t=2 (lef t -1)x l ef t ≤ 2 Comp * lef t=2 (lef t -1)x * l ef t ≤ 2Opt. Finally, Figure
Fig. 3: Tight instance for the Layer-by-layer algorithm for k = 5 on an instance with 7 intervals. Instance is drawn with continuous lines, algorithm output in dashed, and the optimal solution in bold.

FPT Algorithm by Dynamic Programming

The objective of this section is to provide an FPT algorithm for the k-sparsest subgraph on general (i.e. non proper) interval graphs, parameterized by the cost of the solution.

Preliminaries

Given x ∈ R we define I ≥x = {I ∈ I : x ≤ lef t(I)} the set of intervals that are after x, I=x = {I ∈ I : lef t(I) < x < right(I)} the set of intervals that cross x, and I ≤x = {I ∈ I : right(I) ≤ x} the set of intervals that are before x. Let us start with two lemmas that allow us to restructure optimal solutions by "flushing" intervals to the left. Proof. We suppose that X = X * and that both sets are non empty. Let X = { Ĩ1, ..., Ĩ| X| }, and X * = {I * 1 , ..., I * | X| }. We suppose moreover that for all j ∈ {2, ..., | X|} we have right( Ĩj-1) < right( Ĩj) and right(I * j-1 ) < right(I * j ) (i.e. X and X * are sorted by their right endpoints). Let j0 be the minimum index such that Ĩj 0 = I * j 0 , and let I ∈ S\( X ∪ X * ) (we thus have right(I * j 0 ) < right( Ĩj 0 )). We will show that if I overlaps I * j 0 , then I also overlaps Ĩj 0 . To do so, suppose that I overlaps I * j 0 , and let us distinguish between two cases (see Figure 4b). If s < right(I), then since right(I * j 0 ) < right( Ĩj 0 ), it is clear that I also overlaps Ĩj 0 . Otherwise, if right(I) < s , then by definition right(I) < s, and thus I cannot overlap I * j 0 .

Algorithm

Recall that our objective is to prove that the decision problem "given an instance (I, k) of k-sparsest subgraph, does Opt(I, k) ≤ C * ?", is FPT parametrized by C * . We construct in Algorithm 2 a dynamic programming algorithm that given any next ∈ R, t ≤ k and C ≤ C * returns a set S of t vertices in I ≥next of cost at most C if it was possible, and returns N O otherwise. We define Ωnext(C) ⊆ P(I) (where P(I) is the set of all subsets of I) such that for all T ∈ Ωnext(C) we have:

-

G[T ] is connected -cost(T ) ≤ C -lef t(T ) = lef t(I ≥next ) Roughly speaking, Ωnext(C)
is the set of all connected components of cost at most C that start immediately after next. Given next and t, the algorithm branches on a subset of Ωnext(C) (namely Γnext(C)) to find what could be the next optimal connected component, and then invokes a recursive call. We prove in Lemma 7 that each T ∈ Ωnext(C) can be restructured into a "well-structured" component of smaller cost, and in Lemma 8 that the size of the set of all "well-structured" components (Γnext(C)) can be enumerated in F P T time.

Algorithm 2 DP (next, t, C)

// For the sake of clarity we drop the classical operations related to the "marking // table" that avoid multiple computations with same arguments build Γnext(C)

(see Definition 2) if Γnext(C) = ∅ then return NO else if ∃T ∈ Γnext(C) with |T | ≥ t then return t vertices of T else return arg min C∈Γ next (C) [cost(T ) + cost(DP (right(T ), t -|T |, C -cost(T )))] end if
Let us now show how to restructure a connected component of a given solution. As one could expect, the idea is to apply the domination rules of Lemmas 4, 5 and 6 that consist in "flushing" the intervals to the left. Thus, for any connected component T , we define (recursively on s) restruct(s, T, i) that turns T ∩ I ≥s (the part of T which is after s) into a well structured solution (see Algorithm 3 and Definition 2). Notice that the parameter i and the yi values will be used in Lemma 8 to show that the output of the algorithm can be encoded in an efficient way. Definition 2. Given s and T ∈ Ωs(C), we define:

-W SS(T ) = restruct(start(T ), T, 0) the Well Structured Solution corresponding to T , where start(T ) is defined as the point after the left endpoint of the leftmost interval of T (see Figure 5). -Γs(C) = {W SS(T ), T ∈ Ωs(C)} the set of well structured connected component of cost at most C that starts just after s.

leftmost interval of T start(T ) Fig. 5: Example of a connected component T and its corresponding start(T ) Remark 1. Notice that at each step of the dynamic programming we branch on Γnext(cost), which is the set of all restructured connected component T such that lef t(C) = lef t(I ≥next ). By Lemma 4, we can suppose that for all optimal solution S * , we have lef t(S * ∩ I ≥next ) = lef t(I ≥next ). Roughly speaking, we can suppose that for all optimal solution, the connected component that starts after I ≥next contains the leftmost interval of I ≥next . As a consequence, the start(T ) in Definition 2 forces Ii 1 to be this leftmost interval. Proof. The first item is clearly true as we only swap sets of intervals of same size. The second item is true as all swapping arguments shift intervals to the left. Let us now turn to the last item. Notice that in the two cases where restruct modifies T , the hypothesis of Lemmas 5 and 6 are verified. Thus, according to these Lemmas the cost of the solution cannot increase.

Lemma 7 confirms that the dynamic programming algorithm can only branch on Γs(C), avoiding thus branching on Ωs(C). It remains now to prove that the dynamic programming algorithm is FPT. 

I ≥s ∩ I =s T ← (T \ X) ∪ X * yi ← |X * | + 1 restruct(s , T, i + 1) end if end if Y (W SS(T )) = (

PTAS for Proper Intervals Graphs

In this section we design a PTAS for k-sparsest subgraph in proper interval. We first assume that the instance has one connected component. We prove that we can re-structure an optimal solution Opt into a near optimal solution Opt such that the pattern used in Opt in each "block" (a block corresponds to a subset of consecutive intervals in the input) is simple enough to be enumerated in polynomial time. Then, a dynamic programming algorithm will process the graph blocks by blocks from left to right and enumerate for each one all the possible patterns.

Definitions

Let us define some notation that will be used in the algorithm. Recall that we are now given a set of proper intervals I = {I1, ..., In} sorted by their right endpoints (and by their left endpoints equivalently).

First, we define by induction the following decomposition of the input graph: Let Im 1 = I1, L1 = Im 1 , R1 = {Ij, j > m1, Ij overlaps Im 1 }. Then, given any i ≥ 1 we define (while there remains some intervals after Ri):

-Im i+1 is the rightmost interval of the set X = {I / ∈ Ri, ∃I ∈ Ri s.t. I overlaps I } (X is well defined as the instance has a unique connected component) -Li+1 = {Ij, j ≤ mi+1, Ij overlaps Im i+1 and Ij / ∈ Ri} -Ri+1 = {Ij, j > mi+1, Ij overlaps Im i+1 }. Let a denote the maximum i such that Im i is defined. Notice that Ra may be empty, and that Im i ∈ Li for all i ∈ {1, ..., a}. For any i ∈ {1, ..., a} we define the block i as Bi = Li Ri. Thus, the set of intervals is partitioned into blocs Bi for 1 ≤ i ≤ a. Such a decomposition is depicted in Figure 6. For any 1 ≤ i ≤ a and any solution S (a subset of k intervals), let L S i = Li S, R S i = Ri S, and B S i = Bi S. Notice that for any S and i, intervals of R S i do not intersect intervals of R S i-1 , and intervals of L S i do not intersect Im i-1 nor intervals of L S i-1 . We can now write the cost of a solution as the sum of the costs inside the blocks and the costs between the blocks. Thus, we have cost

(S) = a i=1 cost(B S i ) + a-1 i=1 cost(R S i , L S i+1
), where cost(B S i ) is the number of edges in the subgraph induced by B S i , and cost(X1, X2) = |{(I l , I l ) ∈ E, I l ∈ X1, I l ∈ X2}|. Indeed, by definition, the only edges between blocks Bi and Bi+1 are edges between Ri and Li+1.

Compacting blocks

Let Comp be an injective function from I to I. For any S ⊆ I, we define Comp(S) = I∈S Comp(I). The function Comp is called a compaction if for any S ⊆ I and any 1 ≤ i ≤ a the following holds:

-for all I ∈ R S i we have Comp(I) ∈ Ri and right(Comp(I)) ≤ right(I). -for all I ∈ L S i we have Comp(I) ∈ Li and right(I) ≤ right(Comp(I)). Roughly speaking, a compaction "pushes" intervals of B S i toward the center Im i . The idea is that a compaction may increase the cost of a solution inside the blocks, but cannot increase the costs between the blocks. Thus, let us define a ρ-compaction as a compaction Comp such that for any S ⊆ I and for all i ∈ {1, ..., a} we have cost(Comp(B S i )) ≤ ρ.cost(B S i ).

Lemma 9. If Comp is a ρ-compaction, then for any solution S, cost(Comp(S)) ≤ ρ.cost(S).

Proof. By definition of the decomposition, we have

cost(Comp(S)) = a i=1 cost(Comp(B S i )) + a-1 i=1 cost(Comp(R S i ), Comp(L S i+1 )) ≤ a i=1 ρ.cost(B S i ) + a-1 i=1 cost(Comp(R S i ), Comp(L S i+1 ))
We now prove that a-1 i=1 cost(Comp(R S i ), Comp(L S i+1 )) ≤ a-1 i=1 cost(R S i , L S i+1 ). Indeed, let IR ∈ R S i and IL ∈ L S i+1 such that IR and IL do not overlap. Then by definition of a compaction, we have right(Comp(IR)) ≤ right(IR) and lef t(IL) ≤ lef t(Comp(IL)). Thus, intervals Comp(IR) and Comp(IL) do not overlap as well, which proves the result.

According to the previous lemma, we only have now to find compactions that preserve costs inside the blocks. Given a fixed , the objective is now to define a (1 + )-compaction that has a simple structure.

Lemma 10. For any fixed P ∈ N, there is a (1 + 4 P )-compaction such that for any X, Comp(X) can be described by (2P + 4) variables ranging in {0, . . . , n}.

Proof. According to Lemma 9, we only describe Comp(X) for X ⊆ Bi, given any 1 ≤ i ≤ a. Let X = XL ∪ XR with XL ⊆ Li and XR ⊆ Ri. We define xL = |XL|, xR = |XR|. Moreover, we set xL = qLP + rL (with rL < P ) and xR = qRP + rR (with rR < P ). Let us split XL into P subsets (G L t ) 1≤t≤P of consecutive intervals (in the ordering of their right endpoints), with |G L t | = qL + 1 for t ∈ {1, ..., rL} and |G L t | = qL for t ∈ {(rL + 1), ..., P } (see Figure 7). Similarly, we split XR into P subsets (G R t ) 1≤t≤P of consecutive intervals, with |G R t | = qR + 1 for t ∈ {1, ..., rR} and |G R t | = qR for t ∈ {(rR + 1), ..., P }. For all t ∈ {1, ..., P }, let I L t (resp. I R t ) be the rightmost (resp. leftmost) interval of G L t (resp. G R t ). The principle of the compaction is to flush every intervals of G L t (resp. G R t ) to the right (resp. left). Thus, for t ∈ {1, ..., rL}, Comp(G L t ) is defined as the (qL + 1)-rightmost intervals I such that right(I) ≤ right(I L t ), and for t ∈ {(rL + 1), ..., P }, Comp(G L t ) is defined as the qL-rightmost intervals I such that right(I) ≤ right(I L t ). Similarly, for t ∈ {1, ..., rR}, Comp(G R t ) is defined as the (qR+1)-leftmost intervals I such that right(I R t ) ≤ right(I), and for t ∈ {(rR + 1), ..., P }, Comp(G R t ) is defined as the qR-rightmost intervals I such that right(I R t ) ≤ right(I). The construction for a block Li is depicted in Figure 7. It is clear that the mapping Comp described above is a compaction. Moreover, given xL, rL, xR, rR and I L t (resp. I R t ) for all 1 ≤ t ≤ P , we are clearly able to construct Comp(X) in polynomial time. Thus, it remains to prove that Comp is a (1 + 4 P )-compaction. The two key arguments are the following:

I m i L i G L 1 G L 2 G L 3 1
Fig. 7: Exemple of a compaction of a set X for a block L i , with P = 3, and x L = 7. Intervals marked with a cross represent X. Intervals marked with a circle represent Comp(X) (i) all intervals of Li form a clique, as well as all intervals of Ri. (ii) for any t1, t2 ∈ {1, ..., P } with t1 = P and t2 = 1, if an interval of Comp(G L t 1 ) overlaps an interval of Comp(G R t 2 ), then for any s1 ∈ {(t1 + 1), ..., P } and any s2 ∈ {1, ..., (t2 -1)}, all intervals of G L s 1 overlap all intervals of G R s 2 . For all t ∈ {1, ..., P }, we define 

x L t = |G L t | = |Comp(G L t )|, x R t = |G R t | = |Comp(G R t )|.
(G L t , X ∩ Ri) ≥ x L t λ t-1 -1 u=1
x R u (since some intervals of G L t-1 overlap some intervals of G R λ t-1 , it implies that all intervals of G L t overlap all intervals of G R λ t-1 -1 ). Combining the previous inequalities, we now have

cost(Comp(X)) ≤ xL 2 + xR 2 + P t=1 x L t λ t u=1 x R u cost(X) ≥ xL 2 + xR 2 + P t=2 x L t λ t-1 -1 u=1 x R u Thus, we have ∆ = cost(Comp(X)) -cost(X) ≤ x L 1 λ 1 u=1 x R u + P t=2 x L t λ t u=λ t-1 x R u .
As in our case we have x L t ≤ (qL + 1), we get ∆ ≤ (qL + 1)( 

x L x R (x L -1)x L +(x R -1)x R ≤ 4 P x L x R 1 2 (x 2 L +x 2 R ) ≤ 4 
P (we lower bounded (xR -1) by x R 2 as cases with xR ≤ 1 lead to even better ratio). -If xL < P , then we set Comp(X ∩ Li) = XL (i.e. we keep the left part unchanged).

If xR < P + 1, then we set Comp(X) = X and we get a 1-compaction. Notice that in these cases we are still able to construct Comp(X) in polynomial time. Suppose now that xR ≥ P + 1. One can improve the previous lower bound and write cost(X) ≥

(x L -1)x L 2 + (x R -1)x R 2 + P t=1 x L t ( λ t -1 u=1 x R u )
. Indeed, for all t ∈ {1, ..., xL} the set G L t is a singleton (and G L t = ∅ for t ∈ {xL + 1, ..., P }), and thus the interval of G L t overlaps some intervals of G R λ t , which implies that it overlaps all intervals of G R λ t -1 . Thus, we get ∆

≤ P t=1 x L t x R λ t ≤ x L t=1 x R λ t ≤ xR, and ∆ cost(X) ≤ 2x R (x L -1)x L +(x R -1)
x R ≤ 2 P , which terminates the proof of the lemma.

Algorithm

Let us now write a dynamic programming algorithm for the instances that have a unique connected component (we will drop this hypothesis after). Let Opt be an optimal solution, P a fixed integer and Comp the previous (1 + 4 P )-compaction. The algorithm constructs a solution which is at least as good as Comp(Opt) by enumerating for all blocks all the possible compacted patterns (i.e. all the possible Comp(X)).

Let us now define more formally the algorithm, starting with the parameters. The first parameter k ≤ k is the number of interval to choose. i is the starting block, meaning that the k interval must be chosen in a l=i B l . Finally, B S i-1 represents the set of 2P + 4 variables that encode the set of intervals Xi-1 chosen in block (i -1). Since we can construct Xi-1 from B S i-1 in polynomial time, we will directly use B S i-1 to denote Xi-1, for the sake of readability.

Algorithm 4 DP (k , i, B S i-1 )

// For the sake of clarity we drop the classical operations related to the "marking // table" that avoid multiple computations with same arguments // We also drop the base case i = a + 1 (i.e. there are no more remaining intervals in the instance) Ω ← all possible patterns for block i using less or equal than k intervals return arg minB∈Ω cost(B S i-1 ∪ B ∪ DP (k -|B|, i + 1, B))

Lemma 11. For any P , DP (k, 1, ∅) outputs a (1 + 4 P )-approximation for the k-sparsest subgraph in O(n O(P ) ).

Proof. The objective is to prove that cost(DP (k, 1, ∅)) ≤ cost(Comp(Opt)), where Comp is the previous ( (recall that cost(X1, X2) = |{(I l , I l ) ∈ E, I l ∈ X1, I l ∈ X2}|). Using the induction hypothesis we get the desired result. The dependency in P in the running time is due to the n 2P +O (1) possible values for the set of parameters and the branching time in n 2P +O (1) when enumerating sets B S i . Finally, let us extend the previous result to instances having several connected component. We only sketch briefly the algorithm as it follows the same idea as, for example, [START_REF] Chen | Densest k-subgraph approximation on intersection graphs[END_REF] for the k densest. Let us suppose that for any k ≤ k we have an algorithm A(k , X) which is a ρ-approximation for k -sparsest subgraph on a instance X having one connected component. Let (Ci) 1≤i≤x denote the connected component of a (general) instance of k-sparsest subgraph. It is sufficient to define a dynamic programming algorithm DP (k , i) that computes a ρ approximation of the k -sparsest subgraph on x t=i (Ct) by keeping the best of all the A(l, Ci) + DP (k -l, i + 1), for 1 ≤ l ≤ k . Thus, we get the following result: Theorem 3. There is a P T AS for k-sparsest subgraph on proper interval graphs running in n O( 1 )

Conclusion and Future Work

In this paper, we studied the fixed-parameter tractability and approximation of the k-sparsest subgraph problem in subclasses of chordal graphs. More precisely, we designed a P T AS in proper interval graphs and an F P T in interval graphs when parameterized by the cost of the solution. Given that obtaining a negative result for our problem in interval graphs seems to be a tough question, it would be interesting to determine the complexity of the problem in chordal graphs, and then to extend our approximation and fixed parameterized algorithms in case of N P-hardness.
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 1 Fig. 1: Main results for k-DS, k-SS and PVC in some restricted graph classes.

For

  the rest of the paper, G = (V, E) will denote the input graph of the problem, and we define as usually n = |V |, m = |E|. The associated interval set will be denoted by I = {I1, ..., In}. Without loss of polynomiality, we suppose that all endpoints are pairwise distinct. Given I ∈ I, we denote by right(I) ∈ R (resp. lef t(I) ∈ R) the right (resp. left) endpoint of I. By extension, for any set S ⊆ I, we define lef t(S) = arg minI∈S lef t(I) (resp. right(S) = arg maxI∈S right(I)). Unless otherwise stated, we suppose that I is sorted according to the right endpoints of the intervals (i.e. for all i ∈ {2, ..., n} we have right(Ii-1) < right(Ii)).

Lemma 3 .

 3 Given Comp ≤ Comp * , (x1, . . . , xComp), (x * 1 , . . . , x * Comp * ) and (a1, . . . , aComp * ) such that:

Lemma 4 .

 4 Let S ⊆ I be a solution, and s ∈ R such that lef t(S) < s < right(S) and S ∩ I=s = ∅. Let Ĩ be the leftmost interval of S ∩ I ≥s and I * be the leftmost interval of I ≥s . Then we can swap Ĩ and I * to get a solution S = (S\{ Ĩ})∪{I * } such that cost(S ) ≤ cost(S).Proof. Let us suppose that Ĩ = I * , and let I ∈ S such that I = Ĩ, I * . We will show that if I overlaps I * , then it also overlaps Ĩ. Thus, suppose that I overlaps I * . By definition of Ĩ and S, we have right(I * ) < right( Ĩ) < right(I), and since I overlaps I * , we have I ∈ I =right(I * ) and thus I also overlaps Ĩ (see Figure4a).

Fig. 4 :Lemma 6 .

 46 Fig. 4: Different positions of interval I in Lemma 4 (Figure (a)) and Lemma 6 (Figure (b)). Dashed intervals represent forbidden positions.

Lemma 7 .

 7 For any s and any T ∈ Ωs(C) we have -|W SS(T )| = |T |, i.e. the restructured set has same size -right(W SS(T )) ≤ right(T ) -cost(W SS(T )) ≤ cost(T ).

Lemma 8 .

 8 For any s, |Γs(C)| ≤ ( √ 2C + 2) C+1 . Proof. Let T ∈ Ωs(C), and W SS(T ) the associated restructured solution. The key argument is to remark that W SS(T ) is entirely determined by the yi values defined in the restruct algorithm. Thus, to each restructured solution W SS(T ) we associate the vector Algorithm 3 restruct(s, T, i) if T ∩ I ≥s = ∅ then Ii 1 ← leftmost interval of I=s ∩ T // Ii 1 is always defined, as in the first call s is set to start(T ) if I ∈ T ∩ I ≥s which overlaps Ii 1 then yi ← 0 restruct(right(Ii 1 ), T, i + 1) else // we restructure a first interval using Lemma 5 Ĩ ← leftmost interval of T ∩ I ≥s which overlaps Ii 1 I * ← leftmost interval of I ≥s which overlaps Ii 1 T ← (T \{ Ĩ}) ∪ {I * } // we restructure a set of intervals using Lemma 6 s ← min(right(I * ), right(Ii 1 )) X ← T ∩ I ≥s ∩ I =s X * ← | X|-leftmost intervals of

  y0, . . . , y lmax ). Then, the dynamic program will enumerate Γs(C) by enumerating the set Y = {Y (W SS(T )), T ∈ Ωs(C)} of all possible Y vectors. Notice first that for any i we have yi ≤ √ 2C + 2. Indeed, in the two possible cases of the restructuration (s = right(I * ) or s = right(Ii 1 )) the |X * | intervals all overlap s , corresponding to the right endpoint of another interval (I * or Ii 1 ). Thus, there is at least a clique of size yi = |X * | + 1 in the solution, whose cost is lower than C. It remains now to bound lmax, the length of the Y vector. To do that, we show that for any step i ∈ {0, ..., lmax -1} and corresponding s, we can find I ∈ I=s and I ∈ I ≥s such that I and I overlaps, and such that in the next recursive call (with parameter s ), either I or I belongs to I ≤s , avoiding multiple counts of same pairs, and implying that C ≥ lmax -1. Let i ∈ {0, ..., lmax -1}. If yi = 0, then by definition of I * , Ii 1 and I * are overlapping. Then, since the next recursive call has parameter s = min{right(I * ), right(Ii 1 )}, either I * or Ii 1 belongs to I ≤s . If yi = 0, then s = right(Ii 1 ), and as i = lmax, we know that there exists Ii 2 ∈ I =s implying that Ii 2 overlaps Ii 1 . Finally, it is clear that Ii 1 ∈ I ≤s . Theorem 2. k-sparsest subgraph can be solved in O(n 2 .k 3 .C * . ( √ 2C * + 2) C * +1 ). Proof. The dynamic programming algorithm has at most n.k.C * different inputs. Given fixed parameters, it runs in O(|Γs(C * )|.k 2 n). Indeed, given a Y vector, the corresponding connected component can be built in O(lmaxn) ⊆ O(C * n) ⊆ O(k 2 n) as for any i ≤ lmax it takes O(n) to find the corresponding yi intervals.
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 16 Fig. 6: Schema of the decomposition used in the algorithm.

  The proof is simply by induction over Comp = min(Comp, Comp * ). Case Comp = 1 is obvious. Let us assume that Lemma is true for any Comp ≤ Comp * ≤ n -1, and consider the case Comp ≤ Comp * ≤ n. According to the hypothesis, we know that in particular x1 ≥ x * 1 . Comp lef t=1 a l ef tx l ef t = a1x1 + Comp lef t=2 a l ef tx l ef t = a1x * 1 + Comp lef t=2 a l ef tx l ef t (as x * 1 = x1). By induction, the last expression is lower than

	L x	I j	I j+1	I j+a	I j+a+1
	L y				
	I p	I p+1	I p+a	I p+a+1	
	Fig. 2: Example of swap when turning Opt i into Opt i+1
	Let ∆ ≥ 0 such that x1 = x * 1 + ∆. We re-balance the coefficient by defining x * 1 = x * 1 + ∆,
	x * 2 = x * 2 -∆ (we may have x * 2 ≤ 0), and x * l ef t = x * l for lef t ≥ 3.	
	Then, we get Comp
		1			

*

lef t=1 a l ef tx * l ef t, which itself is lower than Comp * lef t=1 a l ef tx * l ef t (as (ai)i is non increasing).

  1 + 4 p )-compaction. According to Lemma 10, it is sufficient to get a (1 + 4 p )approximation. For sake of readability, for all i ∈ {1, ..., a}, we defineB * i = Comp(Opt) ∩ Bi and k * i = | a l=i B * i |. We prove by induction on i (starting from i = a + 1) that cost(B * i-1 ∪ DP (k * i , i, B * i-1 )) ≤ cost(Comp(Opt) ∩ a l=i-1 B l ).Let us suppose that the hypothesis is true for i+1 and prove it for i. Considering the iteration where DP chooses B = B * i .

	cost(B * i-1 ∪ DP (k * i , i, B * i-1 )) ≤ cost(B * i-1 ) + cost(B * i-1 , B * i ) + DP (k * i -|B * i |, i + 1, B * i )