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Fixed-point tile sets and their applicationsI

Bruno Durand1, Andrei Romashchenko1,1,, Alexander Shen1,1

Abstract

An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the
domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic
(the Entscheidungsproblem) to physics (quasicrystals).

We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point
construction instead of geometric arguments. This construction is similar to J. von Neumann’s
self-reproducing automata; similar ideas were also used by P. Gács in the context of error-
correcting computations.

This construction is rather flexible, so it can be used in many ways. We show how it can be
used to implement substitution rules, to construct strongly aperiodic tile sets (in which any tiling
is far from any periodic tiling), to give a new proof for the undecidability of the domino problem
and related results, to characterize effectively closed one-dimensional subshifts in terms of two-
dimensional subshifts of finite type (an improvement of a result by M. Hochman), to construct a
tile set that has only complex tilings, and to construct a “robust” aperiodic tile set that does not
have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors.
For the latter, we develop a hierarchical classification of points in random sets into islands of
different ranks. Finally, we combine and modify our tools to prove our main result: There exists
a tile set such that all tilings have high Kolmogorov complexity even if (sparse enough) tiling
errors are allowed.

Some of these results were included in the DLT extended abstract [? ] and in the ICALP
extended abstract [? ].
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1. Introduction

In this paper, tiles are unit squares with colored sides. Tiles are considered as prototypes: we
may place translated copies of the same tile into different cells of a cell paper (rotations are not
allowed). Tiles in the neighbor cells should match (i.e., the common sides should each have the
same color).

Formally speaking, we consider a finite set C of colors. A tile is a quadruple of colors (left,
right, top, and bottom ones), i.e., an element of C4. A tile set is a subset τ ⊂ C4. A tiling of
the plane with tiles from τ (τ-tiling) is a mapping U : Z2 → τ that respects the color-matching
condition.

A tiling U is periodic if it has a period, i.e., a nonzero vector T ∈ Z2 such that U(x + T ) =
U(x) for all x ∈ Z2. Otherwise, the tiling is aperiodic. The following classical result was proved
in [? ]:

Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them are aperiodic.

The construction from the proof of Theorem ?? was used in [? ] as the main tool to prove
Berger’s theorem: The domino problem (to find out whether or not a given tile set has tilings) is
undecidable.

The first tile set of Berger was rather complicated. Later, many other constructions were
suggested. Some of them are simplified versions of Berger’s construction ([? ]; see also the
expositions in [? ? ? ]). Some others are based on polygonal tilings (including the famous
Penrose and Ammann tilings; see [? ]). An ingenious construction suggested in [? ] is based on
multiplication in a kind of positional number system and gives a small aperiodic set of 14 tiles
(and in [? ] an improved version with 13 tiles is presented). Another nice construction with a
short and simple proof (based explicitly on ideas of self-similarity) was recently proposed in [?
].

In this paper, we present yet another construction of an aperiodic tile set. It does not provide
a small tile set; however, we find it interesting for the following reasons:

• The existence of an aperiodic tile set becomes a simple application of the classical con-
struction used in Kleene’s fixed-point (recursion) theorem, in von Neumann’s self-reprodu-
cing automata [? ], and, more recently, in Gács’ reliable cellular automata [? ? ]; we do
not use any geometric tricks. An aperiodic tile set is not only an interesting result but an
important tool (e.g., this construction was invented to prove that the domino problem is
undecidable); our construction makes this tool easier to use.

• The construction is rather general, so it is flexible enough to achieve some additional prop-
erties of the tile set. We illustrate this flexibility by providing new proofs for several
known results and proving new results; these new results add robustness (resistance to
sparse enough errors) to known results about aperiodic tile sets and tile sets that have only
complex tilings.

It is unclear whether this kind of robustness can be achieved for previously known construc-
tions of tile sets. On the other hand, robustness properties appear to be important. For example,
mathematical models for processes such as quasicrystal growth or DNA computation should take
errors into account. Note that our model (with its independent choice of places where errors are
allowed) has no direct physical meaning; it is just a simple mathematical model that can be used
as a playground to develop tools for estimating the consequences of tiling errors.
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The paper is organized as follows:

• In Section ??, we present the fixed-point construction of an aperiodic tile set (new proof of
Berger’s theorem), and we illustrate the flexibility of this construction by several examples.

• In Section ??, we show that any “uniform” substitution rule can be implemented by a tile
set (thus providing a new proof for this rather old result).

• In Section ??, we use substitutions to show that there are strongly aperiodic tile sets (which
means that any tiling is strongly aperiodic, i.e., any shift changes at least some fixed frac-
tion of tiles).

• The fixed-point construction of Section ?? provides a self-similar tiling: Blocks of size
n×n (“macro-tiles”) behave exactly as individual tiles, so on the next level we have n2×n2

blocks made of n×n macro-tiles that have the same behavior, etc. In Section ??, we make
some changes in our construction that allow us to get variable zoom factors (the numbers
of tiles in macro-tiles increase as the level increases).

Variable zoom factor tilings can be used for simulating computations (with higher levels
performing more computation steps); we use them to give a simple proof of the undecid-
ability of the domino problem. The main technical difficulty in the standard proof was to
synchronize computations on different levels. In our construction this is not needed. We
show also that other undecidability results can be obtained in this way.

• This technique can be used to push the strong aperiodicity to its limits: The distance
between every tiling and every periodic configuration (or between every tiling and its non-
trivial shift) can be made arbitrarily close to 1, not only separated from 0. This is done in
Section ?? using an additional tool: error-correcting codes.

• In [? ], a tile set was constructed such that every tiling has maximal Kolmogorov com-
plexity of fragments (Ω(n) for n×n squares); all tilings for this tile set are noncomputable
(thereby implying a classical result of Hanf [? ] and Myers [? ] as a corollary). The
construction in [? ] was rather complicated and was based on a classical construction of
an aperiodic tile set. In Section ??, we provide another proof of the same result that uses
variable zoom factors. It is simpler in some respects and can be generalized to produce
robust tile sets with complex tiling, which is our main result (Section ??).

• In Section ??, we use the same technique to give a new proof for some results by Simp-
son [? ] and Hochman [? ] about effectively closed subshifts: Every one-dimensional
effectively closed subshift can be obtained as a projection of some two-dimensional sub-
shift of finite type (in an extended alphabet). Our construction provides a solution of Prob-
lem 9.1 from [? ]. (Another solution, based on the classical Robinson-type construction,
was independently suggested by Aubrun and Sablik; see [? ].)

• To prove the robustness of tile sets against sparse errors we use a hierarchical classification
of the elements of random sets into islands of different levels (a method that goes back to
Gács [? ? ]). This method is described in Section ??. In Section ??, we give definitions and
establish some probabilistic results about islands that are used later to prove robustness.
We show that a sparse random set on Z2 with probability 1 (for Bernoulli distribution)
can be represented as a union of “islands” of different ranks. The higher the rank, the
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bigger is the size of an island; the islands are well isolated from each other (i.e., in some
neighborhood of an island of rank k, there are no other islands of rank ≥ k). Then, in
Section ??, we illustrate these tools using standard results of percolation theory as a model
example. In Section ??, we modify the definition of an island by allowing two (but not
three!) islands of the same rank to be close to each other. This more complicated definition
is necessary to obtain the most technically involved result of the paper in Section ?? but
can be skipped if the reader is interested in the other results.

• In Section ??, we use a fixed-point construction to get an aperiodic tile set that is robust
in the following sense: If a tiling has a “hole” of size n, then this hole can be patched by
changing only an O(n)-size zone around it. Moreover, we do not need for this a tiling of
the entire plane. An O(n) zone (with bigger constant in O notation) around the hole is
enough.

• In Section ??, we explain how to get robust aperiodic tile sets with variable zoom factors.
Again, this material is used in Section ?? only.

• In Section ??, we combine the developed techniques to establish one of our main results:
There exists a tile set such that every tiling of the plane minus a sparse set of random points
is far from every periodic tiling.

• Finally, Section ?? contains our most technically difficult result: a robust tile set such that
all tilings, even with sparsely placed holes, have linear complexity of fragments. To this
end we need to combine all our techniques: fixed-point construction with variable zoom
factors, splitting of a random set into doubled islands (we shall call them bi-islands), and
“robustification” with filling of holes.

2. Fixed-point aperiodic tile set

2.1. Macro-tiles and simulation

Fix a tile set τ and an integer N > 1 (zoom factor). A macro-tile is an N×N square tiled
by τ-tiles matching each other (i.e., a square block of N2 tiles with no color conflicts inside).
We can consider macro-tiles as “preassembled” blocks of tiles; instead of tiling the plane with
individual tiles, we may use macro-tiles. To get a correct τ-tiling in this way, we need only to
ensure that neighbor macro-tiles have matching macro-colors, so there are no color mismatches
on the borders between macro-tiles. More formally, by macro-color we mean a sequence of N
colors on the side of a macro-tile (i.e., the right macro-color is a sequence of the right colors
of the tiles on the right edge of a macro-tile, and the same for the left, the top, and the bottom
macro-color). Each macro-tile has four macro-colors (one for each side). We always assume
that macro-tiles are placed side to side, so the plane is split into N×N squares by vertical and
horizontal lines.

In the following we are interested in the situation when τ-tilings can be split uniquely into
macro-tiles that behave like tiles from some other tile set ρ . Formally, let us define the notion of
a simulation.

Let τ and ρ be two tile sets, and let N > 1 be an integer. By simulation of ρ by τ with
zoom factor N we mean a mapping S of ρ-tiles into N×N τ-macro-tiles such that the following
properties hold:
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• S is injective (i.e., different tiles are mapped into different macro-tiles).

• Two tiles r1 and r2 match if and only if their images S(r1) and S(r2) match. This means
that the right color of r1 equals the left color of r2 if and only if the right macro-color of
S(r1) equals the left macro-color of S(r2), and the same is true in the vertical direction.

• Every τ-tiling can be split by vertical and horizontal lines into N ×N macro-tiles that
belong to the range of S, and such a splitting in unique.

The second condition guarantees that every ρ-tiling can be transformed into a τ-tiling by
replacing each tile r ∈ ρ by its image, macro-tile S(r). Taking into account other conditions, we
conclude that every τ-tiling can be obtained in this way, and the positions of grid lines as well as
the corresponding ρ-tiles can be reconstructed uniquely.

Example 1 (negative). Assume that τ consists of one tile with four white sides. Fix some
N > 1. There exists a single macro-tile of size N×N. Does this mean that τ simulates itself
(when its only tile is mapped to the only macro-tile)? No. The first and second conditions are
true, but the third one is false: The placement of cutting lines is not unique.

(i+1, j)(i, j)

(i, j)

(i, j +1)

0

0

0 0

N

Figure 1: Tiles and macro-tiles for Example 2.

Example 2 (positive). In this example ρ consists of one tile with all white sides. The tile set
τ consists of N2 tiles indexed by pairs (i, j) of integers modulo N. A tile from τ has colors on
its sides as shown on Fig. ?? (each color is a pair of integers modulo N, so set C of all colors
consists of N2 elements). The simulation maps the single ρ-tile to a macro-tile that has colors
(0,0), . . . ,(0,N−1) and (0,0), . . . ,(N−1,0) on its vertical and horizontal borders, respectively
(see Fig. ??).

Definition. A self-similar tile set is a tile set that simulates itself.

The idea of self-similarity is used (more or less explicitly) in most constructions of aperiodic
tile sets (but [? ? ] are exceptions). However, not all of these constructions provide literally
self-similar tile sets in our sense.

It is easy to see that self-similarity guarantees aperiodicity.

Proposition 1. A self-similar tile set τ may have only aperiodic tilings.

Proof. Let S be a simulation of τ by itself with zoom factor N. By definition, every τ-tiling U
can be uniquely split into N×N macro-tiles from the range of S. So every period T of U is a
multiple of N (since the T -shift of a cut is also a cut, the shift should respect borders between
macro-tiles). Replacing each macro-tile by its S-preimage, we get a τ-tiling that has period T/N.
Therefore, T/N is again a multiple of N. Iterating this argument, we conclude that T is divisible
by Nk for every k, so T .
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Note also that every self-similar tile set has arbitrarily large finite tilings. Starting with some
tile, we apply S iteratively and get a big tiled square. The standard compactness argument guar-
antees the existence of a tiling of the entire plane. Therefore, to prove the existence of aperiodic
tile sets it is enough to construct a self-similar tile set.

Theorem 2. There exists a self-similar tile set τ .

Theorem ?? was explicitly formulated and proven by Ollinger [? ]; in his proof a self-similar
tile set (consisting of 104 tiles) is constructed explicitly. This tile set is then used to implement
substitution rules (cf. Theorem ?? below). Another example of a self-similar tile set (with many
more tiles) is given in [? ]. (Note that the definition of self-similarity used in [? ] is a bit
stronger.)

We prefer a less specific and more flexible argument based on the fixed-point idea. Our proof
works for a vast class of tile sets (though we cannot provide explicitly an aperiodic tile set of a
reasonably small size). The rest of this section is devoted to our proof of Theorem ??. Before we
prove this result, we explain a few techniques used in our construction and show how to simulate
a given tile set by embedding computations.

2.2. Simulating a tile set
Let us start with some informal discussion. Assume that we have a tile set ρ whose colors are

k-bit strings (C = {0,1}k) and the set of tiles ρ ⊂C4 is presented as a predicate R(c1,c2,c3,c4)
with four k-bit arguments. Assume that we have some Turing machine R that computes R. Let
us show how to simulate ρ using some other tile set τ .

This construction extends Example 2, but it simulates a tile set ρ that contains not a single
tile but many tiles. We keep the coordinate system modulo N embedded into tiles of τ; these
coordinates guarantee that all τ-tilings can be uniquely split into blocks of size N×N and every
tile “knows” its position in the block (as in Example 2). In addition to the coordinate system,
now each tile in τ carries supplementary colors (from a finite set specified below) on its sides.
These colors form a new “layer” which is superimposed with the old one; i.e., the set of colors
is now a Cartesian product of the old one and the set of colors used in this layer.

On the border of a macro-tile (i.e., when one of the coordinates is zero) only two supplemen-
tary colors (say, 0 and 1) are allowed. So the macro-color encodes a string of N bits (where N is
the size of macro-tiles). We assume that N is much bigger than k and let k bits in the middle of
macro-tile sides represent colors from C. All other bits on the sides are zeros. (This is a restric-
tion on tiles: Each tile “knows” its coordinates so it also knows whether nonzero supplementary
colors are allowed.)

Now we need additional restrictions on tiles in τ that guarantee that macro-colors on the sides
of each macro-tile satisfy relation R. To achieve this, we ensure that bits from the macro-tile sides
are transferred to the central part of the tile where the checking computation of R is simulated
(Fig. ??).

For that we need to fix which tiles in a macro-tile form “wires” (this can be done in any
reasonable way; we assume that wires do not cross each other) and then require that each of
these tiles carries equal bits on two sides (so some bit propagates along the entire wire); again
this is easy to arrange since each tile knows its coordinates.

Then, we check R by a local rule that guarantees that the central part of a macro-tile represents
a time-space diagram of R’s computation (with the tape being horizontal, and time increasing
upward). This is done in a standard way: The time-space diagram (tableau) of a Turing machine
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Turing
machine

Figure 2: Wires and processing zones; wires appear quite narrow since N� k.

computation can be described by local rules, and these rules can be embedded into a tile set3 (see
details in, e.g., [? ? ]). We require that computation terminates in an accepting state; if not, the
tiling cannot be formed.

To make this construction work, the size of the macro-tile (N) should be large enough; we
need enough space for k bits to propagate and enough time and space (= height and width) for
all accepting computations of R to terminate.

In this construction the number of supplementary colors depends on the machine R (the more
states it has, the more colors are needed in the computation zone). To avoid this dependency, we
replace R by a fixed universal Turing machine U that runs a program simulating R. Let us
agree that the tape of the universal Turing machine has an additional read-only layer. Each cell
carries a bit that is not changed during the computation; these bits are used as a program for the
universal machine U . (We may assume that the program bits occupy some part of the reserved
read-only layer, e.g., the leftmost bits on this layer; see Fig. ??.) In terms of our simulation, the
columns of the computation zone carry unchanged bits (considered as a program for U), and the
tile set restrictions guarantee that the central zone represents the record (time-space diagram) of
an accepting computation of U (with this program). In this way, we get a tile set τ that simulates
ρ with zoom factor N using O(N2) tiles. (Again we need N to be large enough, but the constant
in O(N2) does not depend on N.)

2.3. Simulating itself
We know how to simulate a given tile set ρ (represented as a program for the universal Turing

machine) by another tile set τ with a large enough zoom factor N. Now we want τ to be identical
to ρ in which case Proposition ?? guarantees aperiodicity). For this we use a construction that
follows the proof of Kleene’s recursion (fixed-point) theorem.

We cannot refer here to the statement of the theorem; we need to recall its proof and adapt
it to our framework. Kleene’s theorem [? ] says that for every computable transformation π of
programs one can find a program p such that p and π(p) are equivalent, i.e., produce the same

3Speaking about local rules, we mean that one can check the correctness of the time-space diagram by looking through
a O(1)-size window; in the standard representation width 3 and height 2 is enough. However, our definition of a tile set is
even more local: We compare colors on matching sides only. It is easy to see that we can still simulate any local rules by
tiles. Each tile keeps the contents of the corresponding window, and colors are used to ensure that overlapping windows
are consistent.
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Turing

machine

program

Figure 3: Checking tiles with a universal Turing machine.

output. (For simplicity we consider programs with no input, but this restriction does not really
matter.) In other words, there is no guaranteed way to transform a given program p into some
other program π(p) that produces different output. As a sketch of the proof, first we note that the
statement is language-independent since we may use translations in both directions before and
after π . Therefore, without loss of generality, we may assume that the programming language has
some special properties. First, we assume that it has a function GetText() that returns the text
of the program (or a pointer to a memory address where the program text is kept). Second, we
assume that the language contains an interpreter function Execute(string s) that interprets
the content of its string argument s as a program written in the same language. It is not difficult
to develop such a language and write an interpreter for it. Indeed, the interpreter can access the
program text anyway, so it can copy the text into some string variable. The interpreter also can
recursively call itself with another program as an argument when it sees the Execute call. If our
language has these properties, it is easy to construct the fixed point for π: Just take the program
Execute(π(GetText())).

This theorem shows that a kind of self-reference, in which we write the program as if its full
text is already given to us, is still acceptable. A classical example is a program that prints its own
text. The proof shows a way how to do this by using a computation model where the immutable
text of the program is accessible to it.

Constructing a self-similar tiling, we have the same kind of problems. We have already seen
how to construct a tile set τ that simulates a given tile set ρ . [Counterpart: It is easy to write a
program that prints any given text.] What we need is to construct a tile set that simulates itself.
[Counterpart: What we need is to write a program that prints its own text.]

Let us look again at our construction that transforms the description of ρ (a Turing machine
that computes the corresponding predicate) into a tile set τ that simulates ρ . Note that most
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rules of τ do not depend on the program for R, dealing with information transfer along the
wires, the vertical propagation of unchanged program bits, and the space-time diagram for the
universal Turing machine in the computation zone. Making these rules a part of ρ’s definition (by
letting k = 2logN +O(1) and encoding O(N2) colors by 2logN +O(1) bits), we get a program
that checks that macro-tiles behave like τ-tiles in this respect. Macro-tiles of the second level
(“macro-macro-tiles”) made of them would have the correct structure, wires that transmit bits to
the computation zone, and even the record of some computation in this zone, but this computation
could have an arbitrary program. Therefore, at the third level all the structure is lost.

What do we need to add to our construction to close the circle and get self-simulation? The
only remaining part of the rules for τ (not implemented yet at the level of macro-tiles) is the
hard-wired program. We need to ensure that macro-tiles carry the same program as τ-tiles do.
For that our program (for the universal Turing machine) needs to access the bits of its own text.
As we have discussed, this self-referential action is in fact quite legal: The program is written on
the tape, and the machine can read it. The program checks that if a macro-tile belongs to the first
line of the computation zone, this macro-tile carries the correct bit of the program.

How should we choose N (hard-wired in the program)? We need it to be large enough so the
computation described above (which deals with O(logN) bits) can fit in the computation zone.
Note that the computation never deals with the list of tiles in τ or a truth table of the correspond-
ing 4-ary relation on bit strings; all these objects are represented by programs that describe them.
The computation needs to check simple things only: that numbers in the 0, . . . ,N− 1 range on
four sides are consistent with each other, that rules for wires and computation time-space dia-
gram are observed, that program bits on the next level coincide with actual program bits, etc. All
these computations are rather simple. They are polynomial in the input size, which is O(logN)),
so for large N they easily fit in Ω(N) available time and space.

This finishes the construction of a self-similar aperiodic tile set.
Remark. Let us also make a remark that will be useful later. We defined a tile set as a

subset of C4, where C is a set of colors. Using this definition, we do not allow different tiles to
have the same colors on their sides. The only information carried by the tile is kept on its sides.
However, sometimes a more general definition is preferable. We can define a tile set as a finite
set T together with a mapping of T into C4. Elements of T are tiles, and the mapping tells us for
each tile which colors it has on its four sides.

One can easily extend the notions of macro-tiles and simulation to this case. In fact, macro-
tiles are well suited to this definition since they already may carry information that is not reflected
in the side macro-colors. The construction of a self-similar tile set also can be adapted. For
example, we can construct a self-similar tile set where each tile carries an auxiliary bit, i.e.,
exists in two copies having the same side colors. Since the tile set is self-similar, every macro-
tile at every level of the hierarchy also carries one auxiliary bit, and the bits at different levels
and in different macro-tiles are unrelated to each other. Note that the total density of information
contained in a tiling is still finite, since the density of information contained in auxiliary bits
assigned to high-level macro-tiles decreases with level as a geometric sequence.

3. Implementing substitution rules

The construction of a self-similar tiling is rather flexible and can be easily augmented to get a
self-similar tiling with additional properties. Our first illustration is the simulation of substitution
rules.
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Let A be some finite alphabet and m > 1 be an integer. A substitution rule is a mapping s : A→
Am×m. This mapping can be naturally extended to A-configurations. By A-configuration we mean
an integer lattice filled with A-letters, i.e., a mapping Z2→ A considered modulo translations. A
substitution rule s applied to a configuration X produces another configuration s(X) where each
letter a ∈ A is replaced by an m×m matrix s(a).

We say that a configuration X is compatible with substitution rule s if there exists an infinite
sequence

· · · s→ X3
s→ X2

s→ X1
s→ X ,

where Xi are some configurations. This definition was proposed in [? ]. The classical definition
(used, in particular, in [? ]) is slightly different: Configuration X : Z2→A is said to be compatible
with a substitution rule s if every finite part of X occurs inside of some s(n)(a) (for some n ∈ N
and some a∈ A). We prefer the first approach since it looks more natural in the context of tilings.
However, all our results can be reformulated and proven (with some technical efforts) for the
other version of the definition; we do not go into details here.

Example 3. Let A = {0,1},

s(0) = (0 1
1 0), s(1) = (0 1

1 0).

It is easy to see that the only configuration compatible with s is the chess-board coloring where
zeros and ones alternate horizontally and vertically.

Example 4 (Fig. ??). Let A = {0,1},

s(0) = (0 1
1 0), s(1) = (1 0

0 1).

One can check that all configurations that are compatible with this substitution rule (called Thue–
Morse configurations in the following) are aperiodic. (In Section ?? we will prove a stronger
version of this fact.) One may note, for example, that every configuration compatible with this
substitution rule can be uniquely decomposed into disjoint 2×2 blocks (0 1

1 0) and (1 0
0 1) by vertical

and horizontal lines; since neighbor cells of the same color should be separated by one of those
lines, the position of the lines is unique. Then, we can apply the argument from Proposition ??
(with N = 2).

→ → →

Figure 4: Three steps of Thue–Morse substitution.

The following theorem goes back to Mozes [? ]. It says that every substitution rule can be
enforced by a tile set.
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Theorem 3. Let A be an alphabet and let s be a substitution rule over A. Then, there exist a tile
set τ and a mapping e : τ → A such that

(a) the e-image of any τ-tiling is an A-configuration compatible with s;
(b) every A-configuration compatible with s can be obtained in this way.

A nice proof of this result for 2×2 substitutions is given in [? ], where an explicit construc-
tion of a tile set τ for every substitution rule s is provided. We prove this theorem using our
fixed-point argument. In this way we avoid the boring technical details; but the tile sets that can
be extracted from our proof contain a huge number of tiles.

Proof. . Let us modify the construction of the tile set τ (with zoom factor N) by taking s into
account. First consider a very special case when

• the substitution rule maps each A-letter into an N×N matrix (i.e., m = N) and

• the substitution rule is easy to compute: Given a letter u ∈ A and (i, j), we can compute
the (i, j)-th letter of s(u) in a time much less than N.

In this case we proceed as follows. In our basic construction every tile knows its coordinates
in the macro-tile and some additional information needed to arrange “wires” and simulate cal-
culations of the universal Turing machine.4 Now, in addition to this basic structure, each tile
keeps two letters of A. The first is the label of a tile itself, and the second is the label of the
N×N macro-tile it belongs to. This means that we keep additional 2 log |A| bits in each tile, i.e.,
multiply the number of tiles by |A|2. It remains to explain how the local rules work. We add two
requirements:

(i) The second letter is the same for neighbor tiles (unless they are separated by a border of
some N×N macro-tile). This constraint can be easily enforced by colors on sides of tiles.
We multiply the number of colors in our basic construction by |A|; now each color of the
new construction is a pair: its first component is a color from the basic construction and its
second component is a letter of A. The second component of the new color guarantees that
every two neighbor tiles keep the same “father” letter (unless these tiles are separated by
a border and do not belong to the same father macro-tile, in which case we do not exhibit
the letter to those borders).

(ii) The first letter in a tile is determined by the second letter and the coordinates of the tile
inside the macro-tile, according to the substitution rule. Indeed, each tile “knows” its
coordinates in a macro-tile. Therefore, its first letter must appear in s(second letter) at the
corresponding position. We do not need to extend the set of colors to enforce this property.
This requirement is only a restriction on tiles. It explains which combinations

〈coordinates in the father macro-tile,first letter,second letter〉

4We use this anthropomorphic terminology in the hope it makes the proof more intuitive. By saying “each tile knows
its coordinates,” we mean that the tile set is split into N2 disjoint groups; each group corresponds to tiles that appear in
one of N2 positions in the macro-tiles. The correct positioning of the tiles is ensured (as we have seen) by side colors.
The self-similarity guarantees that the same is true for macro-tiles, where the group (i.e., the coordinates in a macro-tile
of the next level) is determined by the content of the computation zone and corresponding bits (macro-colors) on the
sides.

12



can be combined in one tile of our tile set.5

We want the new tile set to be self-similar. Therefore, we should guarantee that the require-
ments (i) and (ii) hold also for macro-tiles. Fortunately, both requirements are easy to integrate
in our basic self-referential construction. In each macro-tile, two letters of A are encoded by
strings of bits in some specially reserved locations on the tape of the Turing machine (simu-
lated in the computation zone of this macro-tile). Requirement (i) is enforced by adding extra
log |A| bits to macro-colors; to achieve (ii), a macro-tile should check that its first letter appears
in s(second letter) at the required position. This is possible when s is easy to compute. (Knowing
the coordinates and the second letter, the program computes the required value of the first letter
and then compares it with the actual value.)

Requirements (i) and (ii) ensure that if we take first letters from A assigned to each tile, we
get an A-configuration that is an s-image of some other configuration. Also (because of self-
similarity) we have the same property on the level of macro-tiles. But this is not enough. We
need to guarantee that the first letter on the level of macro-tiles is identical to the second letter
on the level of tiles. This is also achievable. The first letter of a macro-tile is encoded by bits
in its computation zone, and we can require that those bits match the second letter of the tiles at
that place. (Recall that the second letter is the same across the tiles that constitute one macro-
tile; note also that each tile “knows” its coordinates and can determine whether it is in the zone
for the first letter in the macro-tile and which bit should be there.) By self-similarity, the same
arguments work for macro-tiles of all levels. It is easy to see that now the tile set τ has the
required properties (each tiling projects into a configuration compatible with s and vice versa).

However, this construction assumes that N (the zoom factor) is equal to the matrix size in the
substitution rule, which is usually not the case. In fact, usually the value of m (a parameter of the
substitution rule) is fixed in advance, and we have to choose N, which needs to be large enough.
To overcome this difficulty, we let N be equal to mk for some k, and we use the substitution rule
sk, i.e., the kth iteration of s (a configuration is compatible with sk if and only if it is compatible
with s). Now we do not need s to be easily computable: For every s, if k is large enough, the
computation of sk will fit into the available space (exponential in k).

4. The Thue–Morse lemma and strongly aperiodic tile sets

Let α > 0 be a real number. We say that a configuration U : Z2 → A is α-aperiodic if for
every nonzero vector T ∈ Z2 there exists N such that in every square whose side is at least N the
fraction of points x such that U(x) 6= U(x+T ) exceeds α .

Remark. If U is α-aperiodic, then the Besicovitch distance between U and any periodic
pattern is at least α/2. (The Besicovitch distance between two configurations is defined as
limsupN dN , where dN is the fraction of points where two configurations differ in the N ×N
centered square. It is easy to see that the distance does not depend on the choice of the center
point.)

5A natural question arises: What does it mean to add a letter that is determined by other information? Adding a letter
means that we create |A| copies of the same tile (with different letters); but then, the restriction prohibits all of them
except one, so is there any change at all? In fact, the actual change is occurring on higher levels: We want the macro-tiles
to have both letters written on the tape as binary strings (in some prearranged places). This is important for checking
consistency between levels.
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Theorem 4. There exists a tile set τ such that τ-tilings exist and every τ-tiling is α-aperiodic
for every α < 1/4.

Proof. The proof is obtained by applying Theorem ?? to the Thue–Morse substitution rule T
(Example 4). Let C be a configuration compatible with T . We have to show that C is α-aperiodic
for every α < 1/4. It is enough to prove that every configuration compatible with the Thue–
Morse substitution rule is α-aperiodic.

Informally, we can reduce the statement to the one-dimensional case, since Thue–Morse
substitution is an xor-combination of two one-dimensional substitutions. Here are the details.

Consider a one-dimensional substitution system with two rules, 0→ 01 and 1→ 10. Apply-
ing these rules to 0 and 1, we get

0→ 01→ 0110→ 01101001→ . . . ,

1→ 10→ 1001→ 10010110→ . . .

Let an and bn be the nth terms in these sequences (a0 = 0, a1 = 01, . . . , b0 = 1, b1 = 10, etc.); it
is easy to see that an+1 = anbn and bn+1 = bnan.

For some n we consider the xor-combination of these strings, where the (i, j)-th bit is xor
of the ith bit in the first string and the jth bit in the second string. Since bn is a bitwise negation
of an, we get only two different combinations (one obtained from two copies of an or two copies
of bn, and the other obtained from different strings), which are bitwise opposite. It is easy to
see (e.g., by induction) that these two square patterns are images of 0 and 1 after n steps of
two-dimensional Thue–Morse substitution.

To prove the statement for aperiodicity of the Thue–Morse configuration, we start with an
estimate for (one-dimensional) aperiodicity of an and bn:

Lemma 1 (folklore). For any integer u > 0 and for any n such that u≤ |an|/4 the shift by u steps
to the right changes at least |an|/4 positions in an and leaves unchanged at least |an|/4 positions.
(Formally, in the range 1, . . . ,(2n− u) there exist at least (1/4) · 2n positions i such that the ith
and the (i+u)-th bits in an coincide and at least (1/4)2n positions where these bits differ.)

Proof. String an can be represented as abbabaab, where a = an−3 and b = bn−3. One may
assume without loss of generality that u ≥ |a| (or otherwise we apply Lemma ?? separately to
the two halves of an). Note that ba appears in the sequence twice: once preceded by a copy of a
and once preceded by a copy of b. Since these copies have opposite bits, the shifted bits match
in one of the cases and do not match in the other one. The same is true for ab, which appears
preceded both by a and b.

Now consider a large N ×N square in a two-dimensional Thue–Morse configuration and
some shift vector T . We assume that N is much bigger than components of T (since we are
interested in the limit behavior as N→ ∞). Moreover, we may assume that some power of 2 (let
us call it m) is small compared to N and large compared to T . Then, the N×N square consists
of a large number of m×m Thue–Morse blocks and some boundary part (which can be ignored
by changing α slightly). Then, we can consider each m×m block separately to estimate the
fraction of positions that are changed by the T -shift. If T is horizontal or vertical, we can use the
statement of the lemma directly: At least 1/4 of all positions are changed. If not (i.e., if the shift
has two nonzero components), we are interested in the probability of some event that is an xor
combination of two independent events with probabilities in the interval (1/4,3/4). It is easy to
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check that such an event also has probability in (1/4,3/4) (in fact, even in (3/8,5/8), but we do
not need this stronger bound).

Theorem ?? is proved.

In fact, the bound 1/4 can be replaced by 1/3 if we use a more professional analysis of the
Thue–Morse sequence (see, e.g., [? ]). However, if we want to get the strongest result of this
form and make the bound close to 1, this substitution rule does not work. We can use some other
rule (in a bigger alphabet) as Pritykin and Ulyashkina have shown [? ], but we prefer to give
another construction with variable zoom factors (see Section ??).

5. Variable zoom factor

The fixed-point construction of an aperiodic tile set is flexible enough and can be used in
other contexts. For example, the “zoom factor” N could depend on the level. This means that
instead of one tile set τ we have a sequence of tile sets τ0,τ1,τ2, . . ., and instead of one zoom
factor N we have a sequence of zoom factors N0,N1, . . .. The tile set τ0 simulates τ1 with zoom
factor N0, the tile set τ1 simulates τ2 with zoom factor N1, etc.

In other words, τ0-tilings can be uniquely split (by horizontal and vertical lines) into N0×N0
macro-tiles from some list, and the macro-tiles in this list are in one-to-one correspondence
(which respects matching rules) with τ1. So τ0-tilings are obtained from τ1-tilings by replacing
each τ1-tile by the corresponding τ0-macro-tile, and each τ0-tiling has a unique reconstruction.

Further, every τ1-tiling can be split into macro-tiles of size N1×N1 that correspond to τ2-tiles.
So after two steps of zooming out, every τ0-tiling looks like a τ2-tiling; only a closer look reveals
that each τ2-tile is in fact a τ1-macro-tile of size N1×N1, and an even closer look is needed to
realize that every τ1-tile in these macro-tiles is in fact a τ0-macro-tile of size N0×N0.

For such a τ0-tiling we can say that it consists of level 1 macro-tiles of size N0×N0 (isomor-
phic to τ1); at the same time it consists of level 2 macro-tiles of size N0N1×N0N1 (isomorphic
to τ2), etc.

This is what we want to achieve (together with other things needed to get the tile set with
desired properties). How do we achieve this? Each macro-tile should “know” its level: A macro-
tile that simulates a τk-tile and is made of τk−1-tiles, should have k in some place on the tape of
the Turing machine simulated in this macro-tile. To make this information consistent between
neighbors, k is exhibited as a part of the macro-colors at all four sides. The value of k is used
for the computations. Macro-colors on the sides of a macro-tile encode the coordinates of this
macro-tile inside its father, and the computation should check that they are consistent modulo
Nk (i.e., the x coordinate on the right side should be equal to the x coordinate on the left side
plus 1 modulo Nk, etc.). This means that Nk should be computable from k; moreover, it should
be computable fast enough to fit into the computation zone (which carries only Θ(Nk−1) steps
of computation). After Nk is computed, there should be enough time to perform the arithmetic
operations modulo Nk, and so on.

Let us look at these restrictions more closely. We need to keep both k and the coordinates
(modulo Nk) on the tape of level k macro-tiles, and logk + O(logNk) bits are required for that.
Both logk and logNk should be much less than Nk−1, so all the computations could fit in the
available time frame. This means that Nk should not increase too fast or too slowly. Say, Nk =
logk is too slow (in this case k occupies almost all available space in macro-tiles of level k−1,
and we do not have enough time even for simple computations), and Nk = 2Nk−1 is too fast (in
this case logNk is too large compared to time and space available on the computation zone of a
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macro-tile of level k). Also we need to compute Nk when k is known, so we assume that not only
the size of Nk (i.e., logNk) but also the time needed to compute it (given k) is small compared
to Nk−1. These restrictions still allow many possibilities: Say, Nk could be proportional to

√
k,

k, 2k, 2(2k), or k! Note that we say “proportional” since Nk needs to be reasonably large even for
small k (we need some space in the macro-tile for wires and all our estimates for computation
time are not precise but only asymptotic, so we need some reserve for small k).

There is one more problem: It is not enough to ensure that the value of k is the same for
neighbor macro-tiles. We also need to ensure that this value is correct, i.e., is 1 for level 1 macro-
tiles made of τ0-tiles, is 2 for level 2 macro-tiles made of τ1-tiles, etc. To guarantee this, we need
to compare somehow the level information that is present in a macro-tile and its sons. Using the
anthropomorphic terminology, we say that each macro-tile “knows” its level, since it is explicitly
written on its tape, and this is, so to say, “conscious” information processed by a computation
in the computation region of the macro-tile. One may say also that a macro-tile of any level
contains “subconscious” information (“existing in the mind but not immediately available to
consciousness” [? ]). This is the information that is conscious for its sons, grandsons, and so
on (all the way down to the ground level). The problem is that the macro-tile cannot check
consistency between conscious and subconscious information since the latter is unavailable (the
problem studied by psychoanalysis in a different context).

The solution is to check consistency in the son, not in the father. Every tile knows its level
and also knows its position in its father. So it knows whether it is in the place where its father
should keep level bits, and it can check whether indeed the level bit that its father keeps in this
place is consistent with the level information the tile has. (In fact we used the same trick when
we simulated a substitution rule: A check that the father letter of a tile coincides with the letter
of the father tile is done in the same way.) The careful reader will also note here that now the
neighbor tiles will automatically have the same level information, so there is no need to check
consistency between neighbors.

This kind of “self-similar” structure with variable zoom factors can be useful in some cases.
Though it is not self-similar according to our definition, one can still easily prove that any tiling
is aperiodic. Note that now the computation time for the Turing machine simulated in the central
part increases with level, and this can be used for a simple proof of undecidability of the domino
problem. The problem in the standard proof (based on the self-similar construction with fixed
zoom factor) is that we need to place computations of unbounded size into this self-similar struc-
ture, and for that we need special geometric tricks (see [? ? ]). With our new construction, if we
want to reduce an instance of the halting problem (some machine M) to the domino problem, we
add to the program embedded in our construction the parallel computation of M on the empty
tape; if it terminates, this destroys the tiling.

In a similar way we can show that the existence of a periodic tiling is an undecidable property
of a tile set, and, moreover, the tile sets that admit periodic tilings and tile sets that have no tilings
form two inseparable sets (another classical result; see [? ]). Recall that two sets A and B are
called (computably) inseparable if there is no computable set C such that A⊂C and B∩C = /0.

Here is an example of a more exotic version of the latter result (which probably is of no
interest in itself but just serves as an illustration of the technique). We say that a tile set τ is
m-periodic if τ-tilings exist and for each of them the set of periods is the set of all multiples of
m, in other words, if the group of periods is generated by (0,m) and (m,0). Let E [respectively
O] be all m-periodic tile sets for all even m [respectively odd m].

Theorem 5. The sets E and O are inseparable enumerable sets.
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Proof. It is easy to see that the property “to be an m-periodic tile set” is enumerable (both the
existence of an m-periodic tiling and enforcing periods (m,0) and (0,m) are enumerable proper-
ties).

It remains to reduce some standard pair of inseparable sets (say, machines that terminate
with output 0 and 1) to (E,O). It is easy to achieve this by using the technique explained above.
Assume that the numbers Nk increase, being odd integers as long as the computation of a given
machine does not terminate. When and if it terminates with output 0 [respectively 1], we require
periodicity with odd [respectively even] period at the next level.

Another application of a variable zoom factor is the proof of the following result obtained
by Lafitte and Weiss (see [? ]) using a Turing machine simulation inside a Berger–Robinson
construction.

Theorem 6. Let f be a total computable function whose arguments and values are tile sets.
Then, there exists a tile set τ that simulates a tile set f (τ).

Here we assume that some computable encoding for tile sets is fixed. Since there are no
restrictions on the computation complexity of f , the choice of the encoding is not important.

Proof. Note that for identity function f this result provides the self-simulating tile set of Sec-
tion ??. To prove it in the general case, we may use the same kind of fixed-point technique.
However, there is a problem: The computation resources inside a tile are limited (by its size)
while time needed to compute f can be large (and, moreover, depends on the tile size).

The solution is to postpone the simulation to large levels. If a tile set τ0 simulates τ1, which
simulates τ2, which simulates, etc., up to τn, then τ0 simulates τn, too. Therefore we may proceed
as follows.

We use the construction explained above with a variable zoom factor. Additionally, at each
level the computation starts with a preliminary step that may occupy up to (say) half of the
available time. On this step we read the program that is on the tape and convert it into the tile
set. (Recall that each program determines some tile set τ0 such that τ0-tilings can be uniquely
split into macro-tiles, and this program is written on a read-only part of the tape simulated in the
computation zone of all macro-tiles, as was explained in Section ??.) Then, we apply f to the
obtained tile set.

This part of the computation checks also that it does not use more than half of the available
time and that the output is small enough compared to the macro-tile size. If this time turns out
to be insufficient or the output is too big, this part is dropped and we start a normal computation
for the variable zoom factor, as explained above. In this case, the zoom factor on the next level
should be greater than the zoom factor on the current level (e.g., we may assume Nk = Ck for
some large enough constant C). However, if the time is large enough and the result (the list of
tiles that corresponds to f ’s output) is small compared to the macro-tile size, we check that the
macro-tile (of the current level) belongs to the tile set computed. The hierarchy of macro-tiles
stops at this level. The behavior of macro-tiles at this level depends on f : They are isomorphic
to f (τ0)-tiles. Since the program is the same at all levels and the computation of f should be
finite (though may be very long), at some (big enough) level the second possibility is activated,
and we get a macro-tile set isomorphic to f (τ), where τ is the tile set on the ground level.

Another application of the variable zoom factor technique is the construction of tile sets with
any given computable density. Assume that a tile set is given and, moreover, that all tiles are
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divided into two classes, say, A-tiles and B-tiles. We are interested in a fraction of A-tiles in a
tiling of an entire plane or its large region. If the tile set is flexible enough, this fraction can
vary. However, for some tile sets this ratio tends to a limit value when the size of a tiled region
increases. This phenomenon is captured in the following definition: We say that tile set τ divided
into A- and B-tiles has a limit density α if for every ε > 0 there exists N such that for any n > N
the fraction of A-tiles in any tiling of the n×n square is between α− ε and α + ε .

Theorem 7. (i) If a tile set has a density α , then α is a computable real number in [0,1]. (ii) Any
computable real number α ∈ [0,1] is a density of some tile set.

Proof. The first part of the proof is a direct corollary of the definitions. For each n we can
consider all tilings of the n×n square and look for the minimal and maximal fractions of A-tiles
in them. Let us denote the minimal and maximal fractions by mn and Mn respectively. These
rational numbers are computable given n. It is easy to see that the limit frequency (if it exists)
is in the interval [mn,Mn]. Indeed, in a large square split into squares of size n× n the fraction
of A-tiles is between mn and Mn, being at the same time arbitrarily close to α . Therefore, α is
computable (to get its value with precision ε , we increase n until the difference between Mn and
mn becomes smaller than ε).

It remains to prove (ii). Since α is computable, there exist two computable sequences of
rational numbers li and ri that converge to α in such a way that

[l1,r1]⊃ [l2,r2]⊃ [l3,r3]⊃ ·· · .

Our goal will be achieved if macro-tiles of the first level have density of either l1 or r1, macro-
macro-tiles of the second level have density of either l2 or r2, and so on. Indeed, each large
square can be split into macro-tiles (and the border that does not change the density much), so
in any large square the fraction of A-tiles is (almost) in [l1,r1]. The same argument works for
macro-macro-tiles, etc.

However, this plan cannot be implemented directly. The main difficulty is that the computa-
tion of li and ri may require a lot of time whereas the computation abilities of macro-tiles of level
i are limited. (We use variable zoom factors, e.g., we may let Nk = Ck, but they cannot grow too
fast.)

The solution is to postpone the switch from densities li and ri to densities li+1 and ri+1 to the
higher level of the hierarchy where the computation has enough time to compute all these four
rational numbers and find out in which proportion li- and ri-tiles should be mixed in li+1- and
ri+1-tiles. (We need the denominators in both fractions li+1 and ri+1 to be equal to the number
of i-level macro-tiles in the (i+1)-level macro-tile, but this restriction can always be satisfied by
a slight change in the sequences lk and rk, which leaves α unchanged.) So, we allocate, say, the
first half of the available time for a controlled computation of all these values; if the computation
does not finish in time, the densities for the next level are the same as for the current level. (We
require that all macro-tiles in the same father tile have the same density, either li or ri). If the
computation terminates in time, we use the result of the computation to have two types of the next
level tiles: one with density li+1 and one with density ri+1. They are made by using prescribed
amounts of li- and ri-tiles. (Since each tile knows its coordinates, it can find out whether it should
be of the first or second type.) This finishes the construction.
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6. Strongly aperiodic tile sets revisited

In Section ?? we constructed a tile set such that every tiling is α-aperiodic for every α < 1/4.
Now we want to improve this result and construct a tile set such that every tiling is, say, 0.99-
aperiodic (here 0.99 can be replaced by any constant less than 1). It is easy to see that this cannot
be achieved by the same argument, with Thue–Morse substitutions, nor with any substitutions in
a two-letter alphabet; we need a large alphabet to make the constant close to 1.

It is possible to achieve 0.99-aperiodicity with a carefully chosen substitution rule (in a bigger
alphabet), as recently proposed by Pritykin and Ulyashkina [? ], by just applying Theorem ??
(similarly to the argument for the Thue–Morse substitution presented in Section ??). In this
section we present an alternative proof of this result. We exploit substitution rules with variable
zoom factors (and different substitutions on each level) and use the idea of an error-correcting
code.

Instead of one single alphabet, A, we now consider an infinite sequence of finite alphabets,
A0,A1,A2, . . .; the cardinality of Ak will grow as k grows. Then, we consider a sequence of
mappings:

s1 : A1→ AN0×N0
0 , s2 : A2→ AN1×N1

1 , s3 : A3→ AN2×N2
2 , . . . ,

where N0,N1,N2, . . . are some positive integers (zoom factors); Nk will increase as k increases.
Then, we can compose these mappings. For example, a letter z in A2 can be first replaced

by an N1×N1 square s2(z) filled by A1-letters. Then, each of these letters can be replaced by an
N0×N0 square filled by A0-letters according to s1, and we get an N0N1×N0N1 square filled by
A0-letters; we denote this square by s1(s2(z)) (slightly abusing the notation).

We call all this (i.e., the sequence of Ak, Nk, sk) a substitution family. Such a family defines
a class of A0-configurations compatible with it (in the same way as in Section ??). Our plan is to
construct a substitution family such that

• every configuration compatible with this family is 0.99-aperiodic, and

• there exists a tile set and projection of it onto A0 such that only compatible configurations
(and all compatible configurations) are projections of tilings.

In other words, we use the same argument as before (proving Theorem ??) but use a sub-
stitution family instead of one substitution rule. This substitution family will have two special
properties:

A. Symbols used in different locations are different. This means that Ak-letters that appear in a
given position of the squares sk+1(z) for some z ∈ Ak+1 never appear in any other places of
these squares (for any z); thus, set Ak is split into Nk×Nk disjoint subsets used for different
positions in Nk×Nk squares.

B. Different letters are mapped to squares that are far away in terms of Hamming distance. This
means that if z,w∈ Ak+1 are different, then the Hamming distance between images sk+1(z)
and sk+1(w) is large: The fraction of positions in the Nk×Nk square, where si+1(z) and
si+1(w) have equal letters does not exceed εk.

Here εi will be a sequence of positive reals such that ∑i≥0 εi < 0.01.

This implies that composite images of different letters are also far apart. For example, the
fraction of positions in the N0N1×N0N1 square where s1(s2(z)) and s1(s2(w)) coincide does
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not exceed ε0 + ε1 < 0.01. Indeed, in s2(z) and s2(w) we have at most ε1-fraction of matching
letters; these letters generate ε1-fraction of matching A0-letters on the ground level; all other
(nonmatching) pairs add ε0-fraction. In fact, we get even a stronger bound 1− (1− ε0)(1− ε1).

For the same reasons, if we take two different letters in Ak and then drop to the ground level
and obtain two squares of size N0N1 · · ·Nk−1×N0N1 · · ·Nk−1 filled by A0-letters, the fraction of
coincidences is at most ε0 + · · ·+ εk−1 < 0.01.

This property of the substitution family implies the desired property:

Lemma 2. If an A0-configuration U is compatible with a substitution family having properties
(A) and (B), then U is 0.99-aperiodic.

Proof. Consider a shift vector T . If T is not a multiple of N0 (one of the coordinates is not a
multiple of N0), then property (A) guarantees that the original configuration and its T shift differ
everywhere. Now assume that T is a multiple of N0. Then, T induces a (T/N0)-shift of an A1-
configuration U1 that is an s1-preimage of U . If T is not a multiple of N0N1, then T/N0 is not a
multiple of N1 and for the same reason this (T/N0)-shift changes all the letters in U1. Different
letters in A1 are mapped to N0×N0 squares that coincide in at most ε0-fraction of positions.

If T is a multiple of N0N1 but not N0N1N2, we get a T/(N0N1) shift of A2-configuration U2
that changes all its letters, and different letters give squares that are 1−(ε0 +ε1) apart. The same
argument works for the higher levels.

It remains to construct a substitution family that has properties (A) and (B) and can be en-
forced by a tile set. Property (B) (large Hamming distance) is standard for coding theory, and the
classical tool is the Reed–Solomon code.

Let us recall the idea of the Reed–Solomon code (for details see, e.g., [? ]). The codewords of
the Reed–Solomon code are tables of (values of) polynomials of bounded degree. More precisely,
we fix some finite field Fq of size q and an integer d > 0. Let p(x) = a0 +a1x+ · · ·+ad−1xd−1 be
a polynomial over Fq of degree less than d. Then the codeword corresponding to p(x) (i.e., the
encoding of the sequence a0, . . . ,ad−1) is a vector in (Fq)q (i.e., a sequence of q elements of the
field), which consists of the values of this polynomial computed at all points x ∈ Fq. Thus, for
given parameters d and q, the code consists of qd codewords. Since two polynomials of degree
less than d can coincide in at most (d− 1) points, the distance between any two codewords is
at least q− d + 1. Of course, this construction can be used even if the desired length of the
codewords is not a size of any finite field; we can choose a slightly larger field and use only part
of its elements.

Now we embed these codes in a family of substitution rules. First, let Bk be a finite field (the
size of which is specified below) and let Ak be equal to Bk×{0,1, . . . ,Nk−1}×{0,1, . . . ,Nk−1};
let us agree that we use letters 〈b, i, j〉 only in the (i, j)-position of an sk+1-image. This trivially
implies requirement (A).

Then, we construct a code that encodes each Ak+1-letter w by a string of length N2
k made of

Bk-letters (arranged in a square); adding the coordinates, we get the sk+1-image of w. Thus, we
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need a sequence of codes:

s1 : A1→ BN0×N0
0 , such that s1(w) and s1(w′) coincide at most in ε0 fraction

of all positions (if w 6= w′),

s2 : A2→ BN1×N1
1 , such that s2(w) and s2(w′) coincide at most in ε1 fraction

of all positions (if w 6= w′),
. . . .

To satisfy requirement (B), we need a code with the Hamming distance (between every two
codewords) at least (1− εk)N2

k . The Reed–Solomon code works well here. The size of the field
can be equal to the length of the codeword, i.e., N2

k . Let us decide that Nk is a power of 2 and the
size of the field Bk is exactly N2

k . (There are fields of size 2t for every t = 1,2,3, . . .; we could
also use Z/pZ for prime p of an appropriate size.) To achieve the required code distance, we
use polynomials of degree less than εkN2

k . The number of codewords (polynomials of degree less
than εkN2

k ) is at least 2εkN2
k (even if we use only polynomials with coefficients 0 and 1). This is

enough if
|Ak+1| ≤ 2εkN2

k .

Recalling that |Ak+1|= |Bk+1| ·N2
k+1 and that Bk+1 is a field of size N2

k+1, we get the inequality

N4
k+1 ≤ 2εkN2

k , or 4 logNk+1 ≤ εkN2
k .

Now let Nk = 2k+c for some constant c; we see that for large enough c this inequality is satisfied
for εk with sum less than 0.01 (or any other constant), since the left-hand side is linear in k while
the right-hand side is exponential.

Now it remains to implement all this scheme using tiling rules. As we have discussed, the
zoom factor Nk = 2k+c is acceptable for the construction. This factor leaves enough space to
keep on the tape two substitution letters (for the tile itself and its father tile), since these letters
require linear size (in k). Moreover, we have enough time to perform the computations in the
finite fields needed to construct the error-correction code mappings. Indeed, in a k-level macro-
tile we are allowed to use exponential (in the bit size of the field element) time. Recall that one
can operate with elements in the field of size 2r using polynomial (in r) time; to this end, we
need to construct some irreducible polynomial p of degree r over the field of two elements and
then perform arithmetic operations (on polynomials) modulo p. All these operations can be done
by deterministic algorithms in polynomial time (see, e.g., [? ]). Thus, we can reuse here the
construction of the proof of Theorem ??.

The construction above works with every constant α < 1 instead of 0.99. So, we get a
stronger version of Theorem ??:

Theorem 8. For every α < 1 there exists a tile set τ such that τ-tilings exist and every τ-tiling
is α-aperiodic.

Remark. We can also get an α-aperiodic tile set (for every α < 1) as a corollary of the result
of the next section; indeed, we construct there a tile set such that any tiling embeds a horizontal
sequence with high-complexity substrings, and such a sequence cannot match itself well after a
shift (in fact, to get α-aperiodicity we would need to replace a binary alphabet by a larger finite
alphabet in this argument). We can superimpose this with a similar 90◦-rotated construction;
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then, any nonzero translation will shift either a vertical or a horizontal sequence and therefore
change most of the positions. Note that in this way we can also get a tile set that is α-far from
every periodic pattern (a slightly different approach to defining “strong aperiodicity”). However,
the arguments used in Section ?? are more complicated than the proof of this section. So we
preferred to present here a simpler and more direct proof of Theorem ??.

7. Tile sets with only complex tilings

In this section we provide a new proof of the following result from [? ]:

Theorem 9. There exist a tile set τ and constants c1 > 0 and c2 such that τ-tilings exist and in
every τ-tiling T every N×N square has Kolmogorov complexity at least c1N− c2.

Here Kolmogorov complexity of a tiled square is the length of the shortest program that de-
scribes this square. We assume that programs are bit strings. Formally speaking, Kolmogorov
complexity of an object depends on the choice of programming language. (Consult [? ] for the
definition and properties of Kolmogorov complexity.) However, in our case the choice of pro-
gramming language does not matter, and you may think of Kolmogorov complexity of an object
as the length of the shortest program in your favorite programming language that prints out this
object. We need to keep in mind only two important properties of Kolmogorov complexity. First,
the Kolmogorov complexity function is not computable, but it is upper semicomputable. This
means that there is an algorithm that for a given n enumerates all objects that have complexity
less than n. The enumeration can be done by a brute force search over all short descriptions. We
cannot say in advance which programs stop with some output and which do not, but we can run
all programs of length less than n in parallel, and enumerate the list of their outputs, as some pro-
grams terminate. Second, any computable transformation (e.g., the change of encoding) changes
Kolmogorov complexity at most by O(1). We refer to [? ] for a discussion of Theorem ?? (why
it is optimal, why the exact value of c1 does not matter, etc.) and other related results.

7.1. A biinfinite bit sequence

Proof. We start the proof in the same way as in [? ]: We assume that each tile keeps a bit that
propagates (unchanged) in the vertical direction. Then, any tiling contains a biinfinite sequence
of bits ωi (where i ∈ Z). Any N×N square contains an N-bit substring of this string, so if (for
large enough N) every N-bit substring of ω has complexity at least c1N for some fixed c1, we are
done.

We say that a sequence ω has Levin’s property if every N-bit substring x of ω has complexity
Ω(N). Such a biinfinite sequence indeed exists (see [? ]; another proof can be obtained by using
the Lovasz local lemma; see [? ]). So our goal is to formulate tiling rules in such a way that a
correct tiling “ensures” that the biinfinite sequence embedded in it indeed has this property.

The set of all “forbidden” binary strings, i.e., strings x such that K(x) < c1|x| − c2 (where
K(x) denotes the Kolmogorov complexity of x, and |x| denotes the length of x) is enumerable:
There is an algorithm that generates the list of all forbidden substrings. It would be nice to
embed into the tiling a computation that runs this algorithm and compares its output strings with
the substrings of ω; such a computation blows up (creates a tiling error) if a forbidden substring
is found.

However, there are several difficulties.
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• Our self-similar tiling contains only finite computations. The higher is rank k, the bigger
are the k-level macro-tiles, and the longer computations they can contain. But at any level
the computation remain finite. This is a problem since for a given string x we do not know
a priori how much time the shortest program for x uses, so we never can be sure that the
Kolmogorov complexity of x is large. Hence, each substring of ω should be examined in
computations somehow distributed over infinitely many macro-tiles.

• The computation at some level deals with bits encoded in the cells of that level, i.e., written
on the computation tape. So the computation cannot access the bits of the sequence (that
are “deep in the subconscious”) directly and some mechanism to dig them out is needed.

Let us explain how to overcome these difficulties.

7.2. Delegation of bits

A macro-tile of level k is a square whose side is Lk = N0 ·N1 · · ·Nk−1, so there are Lk bits
of the sequence that intersect this macro-tile. Let us delegate each of these bits to one of the
macro-tiles of level k it intersects. (We do it for every k.) Note that the macro-tile of the next
level is made of Nk×Nk macro-tiles of level k. We assume that Nk is much bigger than Lk (see
the end of this subsection for more details on the choice of Nk); this guarantees that there are
enough macro-tiles of level k (in the next level macro-tile) to serve all bits that intersect them.
Let us decide that the ith (from bottom to top) macro-tile of level k in a (k + 1)-level macro-tile
serves (consciously knows, so to say) the ith bit (from the left) in its zone (see Fig. ??). Since
Nk� Lk, we have many more macro-tiles of level k (inside some macro-tile of level k +1) than
needed to serve all bits. So some k-level macro-tiles remain unused.

· · ·

· · ·

· · ·

· · ·

N
k

til
es

of
si

ze
L k
×

L k

Figure 5: Bit delegation.

Thus, each bit (each vertical line) has a representative on every level—a macro-tile that con-
sciously knows this bit. However, we need some mechanisms that guarantee that this information
is indeed true (i.e., consistent on different levels). On the bottom level this is easy to achieve,
since the bits are available directly.
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To guarantee the consistency we use the same trick as in Section ??: At each level a macro-
tile keeps not only its own bit but also its father’s bit, and makes necessary consistency checks.
Namely, each macro-tile knows (has on its computation tape):

• the bit delegated to this macro-tile;

• the coordinates of this macro-tile in its father macro-tile (which are already used in the
fixed-point construction); note that the y-coordinate is at the same time the position of the
bit delegated to this macro-tile (relative to the left boundary of the macro-tile);

• the bit delegated to the father of this macro-tile; and

• the coordinates of the father macro-tile in the grandfather macro-tile.

This information is subject to consistency checks:

• The information about the father macro-tile should coincide with the same information in
the neighbor tiles (unless they have a different father, i.e., one of the coordinates is zero).

• If the bit delegated to the father macro-tile is from the same vertical column as the bit
delegated for this macro-tile, these two bits should match.

• If the macro-tile occupies a place in its father macro-tile where the bit delegated to the
father or some bits of the father’s coordinates (inside the grandfather macro-tile) are kept,
then this partial information on the father level should be should be consistent with the
information about father coordinates and bit.

These tests guarantee that the information about the father is the same in all brothers, and
some of these brothers (which are located on the father tape) can check it against actual father
information; at the same time some other brother (that has the same delegated bit as the father)
checks the consistency of the delegated bits information.

Note that this scheme requires that not only logNk but also logNk+1 is much less than Nk−1.
This requirement, together with the inequality Lk = N0N1 · · ·Nk−1 ≤ Nk (discussed earlier), is
satisfied if Nk = Qck

, where Q is a large enough constant (which is needed also to make macro-
tiles of the first level large enough) and c > 2 (so 1+ c+ c2 + · · ·+ ck−1 < ck).

Later, in Section ??, the choice of c has to be reconsidered: We need 2 < c < 3 to achieve
error correction, but for our current purposes this does not matter.

7.3. Checking bit blocks

We explained how macro-tile of any level can have true information about one bit (delegated
to it). However, we need to check not bits but substrings (and artificially introduce a tiling error if
a forbidden string appears). Note that it is acceptable to test only very short substrings compared
to the macro-tile size (Nk). If this test is done on all levels, this restriction does not prevent us
from detecting any violation. (Recall that short forbidden substrings can appear very late in the
generation process, so we need computation at arbitrary high levels for this reason, too.)

So we need to provide more information to macro-tiles. This can be done in the following
way. Let us require that a macro-tile contains not one bit but a group of bits to check: a group
of bits that starts at the delegated bit and has length depending on the level k (and growing very
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Figure 6: Degenerate case: An infinite vertical line is a boundary between macro-tiles of all levels.

slowly with k; e.g., log loglogk is slow enough). If this group is not completely inside a macro-
tile (i.e., it extends out of the region occupied by the macro-tile), we ignore the outstanding
part.

Similarly, a macro-tile should have this information for the father macro-tile (even if the bits
are outside its own region). This information about the father macro-tile should be the same
for brothers (which is checked by matching macro-colors of neighboring brothers). Also each
macro-tile checks (on its computational zone) that the value of its own delegated bit is coherent
with its father’s string of bits to check: A macro-tile knows its coordinate in the father macro-tile
and the coordinates of the father tile in the grandfather, so it knows whether its delegated bit
makes a part of the father’s bits to check.

The computation in the computation zone generates the list of all forbidden strings (strings
that have too small Kolmogorov complexity) and checks the generated forbidden strings against
all the substrings of the group of bits available to this macro-tile. This process is bounded in time
and space, but this does not matter since every string is considered on a high enough level.

Our construction has a kind of duplication: We first guarantee the consistency of information
for individual bits, and then, we do the same for substrings. The first part of the construction
is still needed, since we need arbitrarily long substrings to be checked by macro-tiles (of high
enough level); thus delegation of substrings cannot start from the ground level where the tile size
is limited, so we need to deal with bits separately.

7.4. Last correction

The argument just explained still needs some correction. We claim that every forbidden
string will be detected at some level where it is short enough compared to the level parameters.
However, some strings may never become a part of one macro-tile. Imagine that there is some
vertical line that is a boundary between macro-tiles of all levels (so we have bigger and bigger
tiles on both sides, and this line is still the boundary between them; see Fig. ??). Then, a substring
that crosses this line will never be checked and therefore we cannot guarantee that it is not
forbidden.
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There are several ways to get around this problem. One can decide that each macro-tile
contains information not only about blocks inside its father macro-tile but in a wider region
(say, three times wider, including “uncle” macro-tiles); this information should be checked for
consistency between “cousins”, too. This trick (extending zones of responsibility for macro-tiles)
will be used later in Section ??.

But to prove Theorem ?? a simpler solution is enough. Note that even if a string on the
boundary is never checked, its parts (on both sides of the boundary) are, so their complexity is
proportional to their length. One of the parts has length at least half of the original length, so we
still have a complexity bound, though the constant will be twice smaller.

This finishes the proof of Theorem ??.

8. Subshifts

The analysis of the proof in the previous section shows that it can be divided into two parts.
We defined forbidden strings as bit strings that are sufficiently long and have complexity at most
α · (length). We started by showing that biinfinite strings without forbidden factors (substrings)
exist. Then, we constructed a tile set that embeds such a biinfinite string in every tiling.

The second part can be separated from the first one, and in this way we get new proofs for
some results of Simpson [? ] and Hochman [? ] about effectively closed subshifts.

Fix some alphabet A. Let F be a set of A-strings. Consider a set SF of all biinfinite A-
sequences that have no factors (substrings) in F . This set is a closed one-dimensional subshift
over A, i.e., a closed shift-invariant subset of the space of all biinfinite A-sequences. If the set F
is (computably) enumerable, SF is called an effectively closed one-dimensional subshift over A.
If F is finite, SF is called a subshift of finite type.

We can define two-dimensional subshifts in a similar way. More precisely, let F be a set
of two-dimensional patterns (squares filled with A-letters). Then, we can consider a set SF of
all A-configurations (= mappings Z2 → A) that do not contain any pattern from F . This is a
closed shift-invariant set of A-configurations (= two-dimensional closed subshift over A). If F is
(computably) enumerable, SF is called a two-dimensional effectively closed subshift over A. If F
is finite, SF is called a two-dimensional subshift of finite type.

As we have mentioned, subshifts of finite type (interpreted as local rules) are closely related
to tilings. Each tile set determines a subshift where A is the set of tiles and forbidden patterns
are pairs of neighbor nonmatching tiles. Going in the other direction, we should be more careful.
A tile set in our definition cannot contain two different tiles with exactly the same colors. This
leads to some problems. For example, the full shift over a two-letter alphabet (i.e., the set of
all biinfinite sequences over a two-letter alphabet) cannot be represented by a set of two tiles.
However, any subshift of finite type can be represented by some tile set. More precisely, for any
subshift S of finite type over alphabet A there is a tile set τ and some mapping E : τ → A such
that E induces a bijection between the set of all τ-tilings and the set of all configurations of the
subshift S: we apply E pointwise to a τ-tiling and get some A-configuration from the subshift;
for each configuration in the subshift there exists exactly one τ-tiling in the E-preimage of this
configuration. Such a tile set can be constructed as follows: Tiles are squares of large enough
size filled by A-letters (a square with no patterns forbidden for this subshift); each tile represents
a part of the configuration, and side colors are used to ensure that neighbor tiles overlap correctly.
The mapping extracts (say) the central letter from a square.

Thus, subshifts of finite type and tilings are essentially the same kind of objects. On the other
hand, the effectively closed subshifts of dimension make a more general class of objects than
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subshifts of finite type. E.g., every nonempty one-dimensional subshift of finite type must contain
a periodic configuration; for one-dimensional effectively closed subshifts this is not the case.
However, the following theorem shows that two-dimensional subshifts of finite type are powerful
enough to simulate any effectively closed one-dimensional subshift in the following sense (i.e.,
to simulate an effectively closed subshift, we need a subshift of finite type of dimension higher
by 1):

Theorem 10. Let A be some alphabet and let S be a one-dimensional effectively closed subshift
over A. Then, there exist an alphabet B, a mapping r : B→ A, and a two-dimensional subshift S′

of finite type over B such that r-images of configurations in S′ are (exactly) elements of S extended
vertically (vertically aligned cells contain the same A-letter).

(As we have mentioned, this result was independently obtained by Aubrun and Sablik using
Robinson-style aperiodic tilings [? ].)

Proof. The proof uses the same argument as in Theorem ??. Each cell now contains an A-
letter that propagates vertically. Computation zones in macro-tiles generate (in available space
and time) elements of the enumerable set of forbidden A-substrings and compare them with A-
substrings that are made available to them. It remains to note that tiling requirements (matching
colors) are local; that is, they define a finite type two-dimensional subshift.

Note that now the remark of Section ?? (the trick of extension of zones of responsibility
for macro-tiles) becomes crucial, since otherwise the image of a configuration from S′ may be
a concatenation of two sequences (a left-infinite one and a right-infinite one); neither sequence
contains forbidden patterns but forbidden patterns may appear at the point of concatenation.

A similar argument shows that every two-dimensional effectively closed subshift can be rep-
resented as an image of a three-dimensional subshift of finite type (after a natural extension
along the third dimension), any three-dimensional effectively closed subshift is an image of a
four-dimensional subshift of finite type, etc.

This result is an improvement of a similar one proved by Hochman (Theorem 1.4 in [? ],
where the dimension increases by 2), thus providing a solution of Problem 9.1 from [? ]. Note
also that it implies the result of Simpson [? ] where one-dimensional sequences are embedded
into two-dimensional tilings but in some weaker sense (defined in terms of Medvedev degrees).

One can ask whether a dimension reduction is essential here. For example, is it true that
every two-dimensional effectively closed subshift is an image of some two-dimensional subshift
of finite type? The answer to this question (as well as related questions in higher dimensions)
is negative. This follows from an upper bound in [? ] saying that every tile set (unless it has
no tilings at all) has a tiling such that all n× n squares in it have complexity O(n) (a result that
immediately translates for subshifts of finite type) and a result from [? ] that shows that some
nonempty effectively closed two-dimensional subshift has n× n squares of complexity Ω(n2).
Therefore the latter cannot be an image of the first one (complexity can only decrease when we
apply an alphabet mapping).

9. Random errors

9.1. Motivation and discussion
In what follows we discuss tilings with faults. This means that there are some places (faults)

where colors of neighbor tiles do not match. We are interested in “robust” tile sets: those that
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maintain some structure (for example, can be converted into an error-free tiling by changing a
small fraction of tiles) if faults are sparse.

There are two almost equivalent ways to define faulty tilings. We can speak about errors
(places where two neighbor tiles do not match) or holes (places without tiles). Indeed, we can
convert a tiling error into a hole (by deleting one of two nonmatching tiles) or convert a one-tile
hole (one missing tile) into a small number of errors (at most 4) by placing an arbitrary tile there.
Holes look more natural if we start with a set of holes and then try to tile the rest; however,
if we imagine some process similar to crystallization when a tiling tries to become correct by
some trial-and-error procedure, it is more natural to consider tiling errors. Since it makes little
difference from the mathematical point of view, we use both metaphors.

We use a hierarchical approach to hole patching that can be traced back to Gács, who used
it in a much more complicated situation [? ]. This means that first we try to patch small holes
that are not too close to each other (by changing small neighborhoods around them). This (if we
are lucky enough) makes larger (and still unpatched) holes more isolated since there are fewer
small holes around. Some of these larger holes (which are not too large and not too close to
each other) can be patched again. Then, the same procedure can be repeated again for the next
level. Of course, we need some conditions (that guarantee that holes are not too dense) to make
this procedure successful. These conditions are described later in full detail, but the important
question is the following: How do we ensure that these conditions are reasonable (i.e., general
enough)? Our answer is as follows: We prove that if holes are generated at random (with each
position becoming a hole independently of other positions with small enough probability ε), then
the generated set satisfies these conditions with probability 1.

From the physics viewpoint, this argument sounds rather weak. If we imagine some crystal-
lization process, errors in different positions are not independent at all. However, this approach
could be a first approximation until a more adequate one is found.

Note that patching holes in a tiling could be considered as a generalization of percolation
theory. Indeed, let us consider a simple tile set made of two tiles: one with all black sides and the
other with all white sides. Then, the tiling conditions reduce to the following simple condition:
Each connected component of the complement to the set of holes is either completely black or
completely white. We want to make small corrections in the tiling that patch the holes (and
therefore make the entire plane black or white). This means that initially either we have small
black “islands” in a white ocean or vice versa, which is exactly what percolation theory says (it
guarantees that if holes are generated at random independently with small probability, the rest
consists of one large connected component and many small islands.)

This example shows also that simple conditions such as low density (in the Besicovitch sense)
of the hole set are not enough. A regular grid of thin lines can have low density but still splits the
plane into nonconnected squares; if half of these squares are black and the others are white, no
small correction can patch the holes.

One can define an appropriate notion of a sparse set in the framework of algorithmic random-
ness (Martin-Löf definition of randomness) by considering individual random sets (with respect
to the Bernoulli distribution Bε ) and their subsets as “sparse.” Then, we can prove that any sparse
set (in this sense) satisfies the conditions that are needed to make the iterative patching procedure
work. This algorithmic notion of “sparseness” is discussed in [? ]. However, in the current paper
we do not assume that the reader is familiar with algorithmic randomness and restrict ourselves
to classical probability theory.

So our statements become quite lengthy and use probabilistic quantifiers “for almost all” (=
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with probability 1). The order of quantifiers (existential, universal, and probabilistic) is important
here. For example, the statement “a tile set τ is robust” means that there exists some ε > 0
such that for almost all E (with probability 1 with respect to the distribution where each point
independently belongs to E with probability ε) the following is true: For every (τ,E)-tiling U
there exists a τ-tiling U ′ (of the entire plane) that is “close” to U . Here by (τ,E)-tiling we mean
a tiling of Z2 \E (where existing pairs of neighbor tiles match).

9.2. Islands of errors

In this section we develop the notion of “sparsity” based on the iterative grouping of errors
(or holes) and prove its properties.

Let E ⊂ Z2 be a set of points; points in E are called dirty; other points are clean. Let
β ≥ α > 0 be integers. A nonempty set X ⊂ E is an (α,β )-island in E if

(1) the diameter of X does not exceed α and
(2) in the β -neighborhood of X there is no other point from E.
(The diameter of a set is a maximal distance between its elements; the distance d is defined

as l∞, i.e., the maximum of distances along both coordinates; the β -neighborhood of X is a set of
all points y such that d(y,x)≤ β for some x ∈ X .)

It is easy to see that two (different) islands are disjoint (and the distance between their points
is greater than β ).

Let (α1,β1),(α2,β2), . . . be a sequence of pairs of integers and αi ≤ βi for all i. Consider
the following iterative “cleaning” procedure. At the first step we find all (α1,β1)-islands (rank 1
islands) and remove all their elements from E (thus getting a smaller set E1). Then, we find
all (α2,β2)-islands in E1 (rank 2 islands); removing them, we get E2 ⊂ E1, etc. The cleaning
process is successful if every dirty point is removed at some stage.

At the ith step we also keep track of the βi-neighborhoods of islands deleted during this step.
A point x ∈ Z2 is affected during the ith step if x belongs to one of these neighborhoods.

The set E is called sparse (for a given sequence αi,βi) if the cleaning process is successful,
and, moreover, every point x∈Z2 is affected at finitely many steps only (i.e., x is far from islands
of sufficiently large ranks).

The values of αi and βi should be chosen in such a way that for sufficiently small ε > 0 a
Bε -random set is sparse with probability 1. (As we have said, this justifies that our notion of
sparsity is not unreasonably restrictive.) The sufficient conditions are provided by the following
statement:

Lemma 3. Assume that

8 ∑
k<n

βk < αn ≤ βn for every n and ∑
i

logβi

2i < ∞.

Then, for all sufficiently small ε > 0 a Bε -random set is sparse with probability 1.

Proof. Let us estimate the probability of the event “x is not cleaned after n steps” for a given
point x (the probability of this event does not depend on x). If x ∈ En, then x belongs to En−1
and is not cleaned during the nth step (when (αn,βn)-islands in En−1 are removed; by definition
we let E0 = E). Then, x ∈ En−1 and, moreover, there exists some other point x1 ∈ En−1 such
that d(x,x1) is greater than αn/2 but not greater than βn + αn/2 (note that βn + αn/2 < 2βn).
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Figure 7: Explanation tree; vertical lines connect different names for the same points.

Indeed, if there were no such x1 in En−1, then the (αn/2)-neighborhood of x in En−1 would be
an (αn,βn)-island in En−1 and x would be removed.

Further, we apply the same argument on level (n− 1). Each of the points x1 and x (we use
notation x0 for x, to make the notation more uniform) belongs to En−1; therefore it belongs to
En−2 together with some other point (at a distance greater than αn−1/2 but not exceeding 2βn−1).
Denote these two other points in En−2 by x01 (which exists because x0 ∈ En−1) and x11 (which
exists because x1 ∈En−1) respectively. Thus, we have at least four points denoted by x00 = x0 = x,
x01, x10 = x1, and x11 in En−2. Then, we repeat the same argument for levels (n−2),(n−3), etc.
In this way we get a tree (Fig. ??) that “explains” why x belongs to En.

The distance between x0 and x1 in this tree is at least αn/2 whereas the diameter of the
subtrees starting at x0 and x1 does not exceed ∑i<n 2βi. Therefore, the lemma’s assumption guar-
antees that these subtrees cannot intersect. Since it is true on all levels, all the leaves of the tree
are different. Note that all 2n leaves of the tree belong to E = E0. As every point appears in E
independently of other points, each “explanation tree” is valid with probability ε2n

. It remains to
estimate the number of possible explanation trees for a given point x.

To specify x1 we need to specify the difference (vertical and horizontal distances) between
x0 and x1. Neither distance exceeds 2βn; therefore we need about 2 log(4βn) bits to specify them
(including the sign bits). Then, we need to specify the difference between x00 and x01 as well as
the difference between x10 and x11; this requires at most 4 log(4βn−1) bits. To specify the entire
tree we therefore need

2log(4βn)+4log(4βn−1)+8log(4βn−2)+ · · ·+2n log(4β1)

bits. Reversing the sum and taking out the factor 2n, we can rewrite this expression as

2n(log(4β1)+ log(4β2)/2+ · · ·).

Since the series ∑ logβn/2n converges by assumption, the total number of explanation trees for
a given point (and given n) does not exceed 2O(2n), so the probability for a given point x to be
in En for a Bε -random E does not exceed ε2n

2O(2n), which tends to 0 (even super-exponentially
fast) as n→ ∞, assuming that ε is small enough.

We conclude that the event “x is not cleaned” (for a given point x) has zero probability; the
countable additivity guarantees that with probability 1 all points in Z2 are cleaned.

It remains to show that every point with probability 1 is affected at finitely many steps only.
Indeed, if x is affected at step n, then some point in its βn-neighborhood belongs to En, and the
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probability of this event is at most

O(β 2
n )ε2n

2O(2n) = 22logβn+O(2n)−log(1/ε)2n
;

the convergence conditions guarantees that logβn = o(2n), so the first term is negligible com-
pared to the others, the probability series converges (for small enough ε) and the Borel–Cantelli
lemma gives the desired result.

For our next step, we note that by definition a sparse set is split into a union of islands of
different ranks. Now we prove that these islands together occupy only a small part of the plane.
To formalize this statement, we use the notion of Besicovitch size (density) of a set E ⊂ Z2. Let
us recall the definition. Fix some point O of the plane and consider squares of increasing size
centered at O. For each square consider the fraction of points in this square that belong to E.
The limsup of these frequencies is called the Besicovitch density of E. (Note that the choice of
the center point O does not matter, since for any two points O1 and O2 large squares of the same
size centered at O1 and O2 share most of their points.)

By definition the distance between two rank k islands is at least βk. Therefore the (βk/2)-
neighborhoods of these islands are disjoint. Each of the islands contains at most α2

k points (it
can be placed in a rectangle that has sides at most αk). Each neighborhood has at least β 2

k points
(since it contains a βk×βk square centered at any point of the island). Therefore the union of all
rank k islands has Besicovitch density at most (αk/βk)2. Indeed, for a large square the islands
near its border can be ignored, and all other islands are surrounded by disjoint neighborhoods
where their density is bounded by (αk/βk)2, see Fig. ??.

βk/2

βk/2

Figure 8: Rank k islands form a set of low density. (In this picture each island is shown as a rectangle, which is not
always the case.)

One would like to conclude that the overall density of all islands (of all ranks) does not
exceed ∑k(αk/βk)2. However, the Besicovitch density is in general not countably semiadditive
(for example, the union of finite sets having density 0 may have density 1), but in our case we
are helped by the second requirement of the definition of a sparse set (each point is covered by
only finitely many neighborhoods of islands).

Lemma 4. Let E be a sparse set for a given family of αk and βk. Then, the Besicovitch density
of E is O(∑(αk/βk)2).
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Proof. Let O be a center point used in the definition of Besicovitch density. By definition of
sparsity, this point is not covered by βk-neighborhoods of rank k islands if k is greater than some
K. Now we split the set E into two parts: one (E≤) formed by islands of rank at most K and the
other (E>) formed by all islands of bigger ranks. As we have just seen, in a large square the share
of E≤ is bounded by ∑k≤K(αk/βk)2 up to negligible (as the size goes to infinity) boundary effects
(where we consider each k≤K separately and then sum over all k≤K). A similar bound is valid
for rank k islands with k > K, though the argument is different and a constant factor appears.
Indeed, the βk-neighborhood of every island I does not contain the center point O. Therefore,
any square S centered at O that intersects the island also contains a significant part of its (βk/2)-
neighborhood N: The intersection of N and S contains at least (βk/2)2 elements, see Fig. ??.
Therefore, the share of E> in S is bounded by 4∑k>K(αk/βk)2.

βk/2βk/2

O

S

part of the βk/2-neighborhood

of an island

part of the βk/2-neighborhood

of the island that is guaranteed
to be inside S

Figure 9: Together with a point in a rank k island, every square S contains at least (βk/2)2 points of its (βk/2)-
neighborhood.

Remark. It is easy to choose αk and βk satisfying the conditions of Lemma ?? and having
arbitrarily small ∑(αk/βk)2 (by taking geometric sequences that grow fast enough). Therefore
we get the following well-known result as a corollary of Lemmas ?? and ??: For every α > 0
there exists ε > 0 such that with probability 1 a Bε -random set has Besicovitch density less
than α . (In fact, a much stronger result is well known: By the strong law of large numbers a
Bε -random set has Besicovitch density ε with probability 1.)

In fact we will need a slightly more complicated version of Lemma ??. We are interested
not only in the Besicovitch density of a sparse set E but also in the Besicovitch density of a
larger set: the union of γk-neighborhoods of rank k islands in E. Here γk are some parameters;
in most applications we set γk = cαk for some constant c. The same argument gives the bound
4∑((αk +2γk)/βk)2. Assuming that γk ≥ αk, we can rewrite this bound as O(∑(γk/βk)2). So we
arrive at the following statement:

Lemma 5. Let E be a sparse set for a given family of αk and βk and let γk ≥ αk be some integers.
Then, the union of γk-neighborhoods of level k islands (over all k and all islands) has Besicovitch
density O(∑(γk/βk)2).
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9.3. Islands as a tool in percolation theory

Let us show how some basic results of percolation theory can be proved using the island
technique.

Theorem 11. For some αk and βk satisfying the requirements of Lemma ?? the complement of
any sparse set E contains exactly one infinite connected component C; the complement of C has
Besicovitch density O(∑αk/βk)2.

Proof. Let γk = 2αk. (The choice of αk and βk will be discussed later.) For every k and for every
rank k island fix a point in this island and consider the γk-neighborhood of this point. It is a
square containing the entire island plus an additional “security zone” of width αk, contained in
the γk-neighborhood of the island, see Fig. ??.

αk

γk γk

Figure 10: A point in a rank k island, its γk-neighborhood, and the security zone of width αk .

It is enough to prove the following three statements:

• The union U of all these squares (for all ranks) contains the set E and has Besicovitch
density O(∑(αk/βk)2).

• The complement of U is connected.

• There are no other infinite connected component in the complements of E.

The first statement is a direct corollary of Lemma ?? above.
To prove the second statement, consider two points x and y outside U . We need to prove that

x and y can be connected by a path that is entirely outside U . Let us connect x and y by some path
(say, one of the shortest paths) and then push this path out of U . Consider squares of maximal
rank that intersect this path. For each of them, consider the first moment when the path gets into
the square and the last moment when the path goes out, and connect these two points by a path
outside the square, see Fig. ??.

Now the new path is αk-separated from this island of rank k. Provided βk − γk > αk, the
path after the correction is αk-separated from all other islands of rank greater than k−1. Indeed,
the “modified” part of the corrected path (the points of the path involved into the correction
procedure) remains at a distance of at most γk from the given k level island; hence, it must
remain at a distance at least αk from all other islands of rank k and higher. Note also that the
shift (the distance between the original path and the corrected one) does not exceed 2γk.

Then, we can do the same for islands of rank k− 1 (pushing the path out of surrounding
squares). Note that since at each step the drift is bounded by 2γk−1, we will not bump into
islands of rank k.
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αk

γk γk

Figure 11: Pushing a path out of the square.

Repeating this process for decreasing k, we finally get a path that connects x and y and goes
entirely outside U . For this we need only the total drift on the smaller levels (which is bounded
by 2∑i<k γi) to be less than αk. This is easy to achieve if αk, βk, and γk are suitable geometric
sequences.

It remains to show that every infinite connected set intersects the complement of U . To show
this, let us take a big circular path centered at the origin and then push it out of U as described
above. Since the center is outside the βk-neighborhoods of islands for large enough k, we may
assume that the sizes of islands that intersect this circle are small compared to its radius (say,
less than 1% of it, which can be guaranteed if the geometric sequences αk, βk, and γk grow fast
enough). Then, after the change the circle will still encircle a large neighborhood of the origin,
so any infinite connected component should cross such a circle.

9.4. Bi-islands of errors

In the proof of our main result (Section ??) we need a more delicate version of the definition
of islands. In fact we need such a definition that some counterpart of Lemma ?? could be applied
even if the sequence logβn grows much faster than 2n (e.g., for βn = c(2.5)n

). In this section we
define bi-islands (a generalization of the notion of islands from Section ??) and prove bi-island
versions of Lemmas ??, ??, and ??. The reader can safely skip this section for now and return
here before reading Section ??.

Let E ⊂ Z2 be a set of points. As in Section ??, we call points in E dirty, and the other points
clean. Let β ≥ α > 0 be integers. A nonempty set X ⊂ E is an (α,β )-bi-island in E if X can be
represented as the union of some sets X0, X1 such that

(1) in the β -neighborhood of X = X0∪X1 there are no points from E \X ;
(2) the diameters of X0 and X1 do not exceed α; and
(3) the distance between X0 and X1 does not exceed β .

(See Fig. ??.) In particular, an (α,β )-island is a special case of an (α,β )-bi-island (by letting
X1 be empty).

Note that one may split the same bi-island into X0 and X1 in different ways.
Obviously, every two different bi-islands are disjoint. Moreover, the distance between them

is greater than β . The diameter of a bi-island is at most (2α +β ).
Let (α1,β1),(α2,β2), . . . be a sequence of pairs of integers and αi ≤ βi for all i. We define

an iterative cleaning procedure for bi-islands. At the first step we find all (α1,β1)-bi-islands and
remove all their elements from E (getting a smaller set E1). Then, we find in E1 all (α2,β2)-bi-
islands; removing them, we get E2 ⊂ E1, etc. The cleaning process is successful if every dirty
point is removed at some stage.
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Figure 12: A bi-island, a union of two “islands” that are close to each other.

Similarly to the case of islands, we say that a point x∈Z2 is affected during step i if x belongs
to the βi-neighborhood of one of the bi-islands of rank i.

The set E is called bi-sparse (for a given sequence αi,βi) if the cleaning process defined
above is successful, and, moreover, every point x ∈ Z2 is affected at finitely many steps only
(which means that x is far from bi-islands of sufficiently large ranks).

We choose the values of αi and βi in such a way that for sufficiently small ε > 0 a Bε -random
set is bi-sparse with probability 1. The main achievement here is that the convergence condition
is now weaker than in the corresponding statement for islands (Lemma ??):

Lemma 6. Assume that

12 ∑
k<n

βk < αn ≤ βn for every n, and ∑
i

logβi

3i < ∞.

Then, for all sufficiently small ε > 0, a Bε -random set is bi-sparse with probability 1.

Proof. The proof of Lemma ?? is very similar to the proof of Lemma ??. At first we estimate
the probability of the event “x is not cleaned after n steps” for a given point x. If x ∈ En, then
x belongs to En−1 and is not cleaned during the nth step (when (αn,βn)-bi-islands in En−1 are
removed). Then, x ∈ En−1. Moreover, we show that there exist two other points x1,x2 ∈ En−1
such that the three distances d(x,x1), d(x,x2), and d(x1,x2) are all greater than αn/2 but not
greater than 2βn +2(αn/2) < 3βn.

Let X0 be the (αn/2)-neighborhood of x in E. If X0 were an island, it would be removed.
Since this does not occur, there is a point x1 outside X0 but in the βn-neighborhood of X0.

Let X1 be the (αn/2)-neighborhood of x1 in E. Again X0 and X1 do not form a bi-island.
Both sets X0 and X1 have diameter at most αn, and the distance between them is at most βn. So
the only reason why they are not a bi-island is that there exists a point x2 ∈ E outside X0 ∪X1
but in the βn-neighborhood of it. The points x1 and x2 have the required properties (the distances
d(x,x1), d(x,x2), and d(x1,x2) are greater than αn/2 but not greater than 3βn).
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To make the notation uniform, we denote x by x0. Each of the points x0,x1,x2 belongs to
En−1. This means that each of them belongs to En−2 together with a pair of other points (at a
distance greater than αn−1/2 but not exceeding 3βn−1). In this way we get a ternary tree that
“explains” why x belongs to En.

The distance between every two points among x0, x1, and x2 in this tree is at least αn/2
whereas the diameters of the subtrees starting at x0, x1, and x2 do not exceed ∑i<n 3βi. Thus, the
lemma’s assumption guarantees that these subtrees cannot intersect and that all the leaves of the
tree are different. The number of leaves in this ternary tree is 3n, and they all belong to E = E0.
Every point appears in E independently of other points; hence, one such “explanation tree” is
valid with probability ε3n

. It remains to count the number of all explanation trees for a given
point x.

To specify x1 and x2 we need to specify horizontal and vertical distances between x0 and
x1,x2. These distances do not exceed 3βn; therefore we need about 4 log(6βn) bits to specify
them (including the sign bits). Then, we need to specify the distances between x00 and x01,x02 as
well as the distances between x10 and x11,x12 and between x20 and x21,x22. This requires at most
12log(6βn−1) bits. To specify the entire tree we therefore need

4log(6βn)+12log(6βn−1)+36log(6βn−2)+ · · ·+4 ·3n−1 log(6β1),

which is equal to 4 · 3n−1(log(6β1) + log(6β2)/3 + · · ·). The series ∑ logβn/3n converges by
assumption; so, the total number of explanation trees for a given point (and given n) does not
exceed 2O(3n). Hence, the probability for a given point x to be in En for a Bε -random E does not
exceed ε3n

2O(3n), which tends to 0 as n→ ∞ (assuming that ε is small enough).
We conclude that the event “x is not cleaned” (for a given point x) has zero probability; hence,

with probability 1 all points in Z2 are cleaned.
It remains to show that every point with probability 1 is affected by finitely many steps only.

Indeed, if x is affected by step n, then some point in its βn-neighborhood belongs to En, and the
probability of this event is at most

O(β 2
n )ε3n

2O(3n) = 22logβn+O(3n)−log(1/ε)3n
.

From the convergence conditions we have logβn = o(3n), so the first term is negligible compared
to others. The probability series converges (for small enough ε) and the Borel–Cantelli lemma
gives the result.

By definition, a bi-sparse set is split into a union of bi-islands of different ranks. Such bi-
islands occupy only a small part of the plane:

Lemma 7. Let E be a bi-sparse set for a given family of αk and βk. Then, the Besicovitch density
of E is O(∑(αk/βk)2).

Proof. The proof of Lemma ?? repeats the proofs of Lemma ??.

Recalling Lemma ??, we may consider a sequence of numbers γk such that γk ≥ αk. Then,
the Besicovitch density of the union of γk-neighborhoods of rank k bi-islands (for all k and for
all islands) is bounded by O(∑(γk/βk)2).

However, this statement is not enough for us. In Section ?? we will need a kind of “closure”
of the γk-neighborhood of a bi-island:
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Figure 13: An extended neighborhood of a bi-island consists of the neighborhoods of its two parts and a zone between
them.

Definition. Let S be a k-level bi-island. We say that (x,y) ∈ Z2 belongs to the extended γ-
neighborhood of S if there exist two points (x,y′),(x,y′′) ∈ Z2 (with the same first coordinate)
such that dist(S,(x,y′))≤ γ , dist(S,(x,y′′))≤ γ , and y′ ≤ y≤ y′′ (see Fig. ??).

The meaning of the last definition is quite simple: We take not only the points that are close
to S but also those points that are placed somehow between the neighborhoods of S0 and S1.

Lemma 8. Let E be a bi-sparse set for a given family of αk and βk satisfying the conditions
of Lemma ??. Let γk be a sequence of numbers such that αk < γk, and the series ∑(γk/βk)
converges. Then, the Besicovitch density of the union of extended γk-neighborhoods of rank k
bi-islands in E is bounded by O(∑(γk/βk)).

Proof. The arguments are similar to the proof of Lemma ??. An extended γk-neighborhood of a
k-level island can be covered by a rectangle of width O(γk) and height O(βk + γk); so its area is
O(γkβk) (since γk ≤ βk). The distance between any two bi-islands of rank k is at least βk. Hence,
the fraction of extended γk-neighborhoods of islands is O(∑γk/βk) (this is similar to the bound
O(∑(γk/βk)2), which holds for simple γn-neighborhoods).

Lemmas ??–?? will be used in Section ??. (The arguments of Sections ??–?? do not refer
to bi-islands.) These lemmas will be used for αk,βk such that logαk ∼ qk for q > 2, βk ∼ αk+1,
and γk = O(αk) or γk = O(α2

k ). Note that we cannot apply Lemmas ?? and ?? (about islands) for
these parameters because logβk grows faster than 2k. So we need to deal with bi-islands.

In the definition of sparse sets in Section ?? each single island of rank k must be isolated
from other islands of rank k. In this section we modified this definition and allowed an island
to be close to at most one other island of the same rank. In a similar way, we could define s-
islands for any s ≥ 2, assuming that clusters of s islands of rank k (rather close to each other)
are authorized. A set that can be represented as a union of s-islands of different ranks can be
called s-sparse. A generalization of Lemmas ?? can be proven: A random set is s-sparse with
probability 1 if ∑(logβi)/(s+1)i converges. However, we do not develop here the general theory
of s-sparse sets. The concept of bi-islands and bi-sparsity (i.e., the case s = 2) is enough for all
our applications in Section ??.
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10. Robust tile sets

In this section we construct an aperiodic tile set where isolated defects can be healed.

∆

c1∆c2∆

Figure 14: Patching holes.

Let c1 < c2 be positive integers. We say that a tile set τ is (c1,c2)-robust if the following
holds: For every ∆ and for every τ-tiling U of the (c2∆)-neighborhood of a square ∆×∆ ex-
cluding the square itself there exists a tiling V of the entire (c2∆)-neighborhood of the square
(including the square itself) that coincides with U outside of the (c1∆)-neighborhood of the
square (see Fig. ??).

Theorem 12. There exists a self-similar tile set that is (c1,c2)-robust for some c1 and c2.

Proof. For every tile set µ it is easy to construct a “robustified” version µ ′ of µ , i.e., a tile set µ ′

and a mapping δ : µ ′ → µ such that (a) δ -images of µ ′-tilings are exactly µ-tilings and (b) µ ′

is “5-robust”: Every µ ′-tiling of a 5× 5 square minus 3× 3 hole (see Fig. ??) can be uniquely
extended to the tiling of the entire 5×5 square.

Figure 15: Filling a 3×3 hole.

Indeed, it is enough to keep in one µ ′-tile the information about the 5×5 square in µ-tiling.
Matching rules will guarantee that the information about the intersection (4× 5 rectangle) is
consistent in neighbor tiles. Then, a 3× 3 hole (as shown in the picture) is not fatal. It is easy
to see that the tiles at its border (gray) are consistent and contain all the information the missing
tiles should have. (In fact, using more careful estimates one can replace in our argument the 5×5
squares by 4×4 squares; but we do not care much about constants.)
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This robustification can be easily combined with the fixed-point construction. In this way we
can get a “5-robust” self-similar tile set τ if the zoom factor N (which is considered to be fixed in
this argument) is large enough. It remains to explain that “5-robustness” (in the sense described
above) implies also (c1,c2)-robust for some c1 and c2. (The values of c1 and c2 depend on N, but
N is fixed.)

Indeed, assume that a tiling of a large enough neighborhood around a ∆×∆ hole is given.
Denote by k the minimal integer such that Nk ≥ ∆ (so the k-level macro-tiles are greater than the
hole under consideration). Note that the size of the k-level macro-tiles is linear in O(∆) since
Nk ≤ N ·∆.

In the tiling around the hole, an N×N block structure is correct except for the N-neighbor-
hood of the central ∆×∆ hole. Indeed, the colors encode coordinates, so in every connected
tiled region the coordinates are consistent. For similar reasons an N2×N2 structure is correct
except for the (N + N2)-neighborhood of the hole, etc. Hence, for the chosen k we get a k-
level structure that is correct except for (at most) 9 = 3× 3 squares of level k, so we can delete
everything in these squares and use 5-robustness to replace them with macro-tiles that correspond
to replacement tiles.

To start this procedure (and fill the hole), we need a correct tiling only in the O(Nk) neigh-
borhood of the hole. (Technically, we need to have a correct tiling in the (3Nk)-neighborhood of
the hole; as 3Nk ≤ 3N∆, we let c2 = 3N.) The correction procedure involves changes in another
O(Nk)-neighborhood of the hole. (Technically, the changes touch (2Nk)-neighborhood of the
hole; 2Nk ≤ 2N∆, so we let c1 = 2N.)

11. Robust tile sets with variable zoom factors

The construction from the previous section works only for self-similar tilings with a fixed
zoom factor. It is enough for simple applications, as we will see in Section ??. However, in the
proof of our main result in Section ?? we need a variable zoom factor. So here we develop a
technique suitable for this case. This section can be skipped now but it should be read before
Section ??.

Now we explain how to get “robust” fixed-point tilings with variable zoom factors N1,N2, . . ..
As well as in the case of a fixed zoom factor, the idea is that k-level macro-tiles are “responsible”
for healing holes of size comparable with these macro-tiles.

Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be a sequence of integers. Let c1 < c2 be positive integers. We say
that a tile set τ is (c1,c2)-robust against holes of size ∆0,∆1, . . . if the following holds: For every
n and for every τ-tiling U of the c2∆k neighborhood of a square ∆k×∆k excluding the square
itself there exists a tiling V of the entire c2∆k neighborhood of the square (including the square
itself) that coincides with U outside of the c1∆k neighborhood of the square. The difference
from the definition of Section ?? is that we take only values ∆ ∈ {∆0,∆1, . . .} instead of holes of
arbitrary size.

Lemma 9. Assume a sequence of zoom factors Nk grows not too fast and not too slow (it is
enough to assume that Nk ≥C logk and C logNk+1 < Nk for a large enough C; cf. the discussion
in Section ??). Then, there exists a tile set with variable zoom factors Nk (k-level macro-tiles of
size Lk = N0 · · ·Nk−1) that is (c1,c2)-robust (for some c1 and c2) against holes of size L0,L1, . . ..

Proof. First, we apply the fixed-point construction from Section ?? and get a tile set that is “self-
similar” with variable zoom factors N1,N2, . . .. Denote by µk the family of k-level macro-tiles
corresponding to this tile set.
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Further we make a “robustified” version of this tile set. To this end we basically repeat the
arguments from Section ?? (the proof of Theorem ??). The difference in the argument is that now
we deal with variable zoom factors, and sizes of holes are taken from the sequence L0,L1, . . ..

Denote by µ ′k the family of k-level macro-tiles for the new tiling. We need that there exists a
mapping δ : µ ′k→ µk such that (a) δ -images of µ ′k-tilings are exactly µk-tilings and (b) µ ′k is “5-
robust”: Every µ ′k-tiling of a 5×5 square minus a 3×3 hole (see again Fig. ??) can be uniquely
extended to the tiling of the entire 5×5 square.

To get such a robustification, it is enough to keep in every µ ′k-macro-tile the information about
the 5×5 square in the µk-tiling and use the colors on the borders to ensure that this information
is coherent in neighbor macro-tiles.

As usual, this robustification can be combined with the fixed-point construction. We get 5-
robust macro-tiles for all levels of our construction. “Self-similarity” guarantees that the same
property holds for macro-tiles of all levels, which implies the required property of generalized
robustness.

Indeed, assume that a tiling of a large enough neighborhood around a ∆×∆ hole is given, and
∆ ≤ Lk for some k. In the tiling around the hole, an (L1×L1) block structure, is correct except
for only the L1 neighborhood of the hole. For similar reasons an (L2×L2) structure is correct
except for the (L1 + L2) neighborhood, etc. So we get a k-level structure that is correct except
for (at most) 9 = 3× 3 squares of size Lk×Lk. Because of 5-robustness, this hole can be filled
with k-level macro-tiles. Note that reconstruction of ground-level tiles inside a high-level macro-
tile is unique after we know its “conscious known” information, i.e., the content of the tape of
the Turing machine simulated on the computation zone of this macro-tile. (This information is
reconstructed from the consciously known information of the neighbor macro-tiles.) [For the
maximal complexity tile set (Section ??) it is not the case, and the absence of this property will
become a problem in Section ?? where we robustify it. To solve this problem, we will need to
use error-correcting codes.]

To implement the patching procedure (and fill the hole) we need to have a correct tiling
in the O(Lk) neighborhood of the hole. The correction procedure involves changes in another
O(Lk) neighborhood of the hole. More technically, we need to have a correct tiling in the (3Lk)-
neighborhood of a hole of size Lk, so we let c2 = 3. Since the correction procedure involves
changes in the (2Lk)-neighborhood of the hole, we let c1 = 2.

We can robustify tiling not only against holes but against pairs of holes. To this end we
slightly modify our definition of robustness. Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be an increasing sequence
of integers, and let c1 < c2 be positive integers. We say that a tile set τ is (c1,c2)-robust against
pairs of holes of size ∆0,∆1, . . . if the following holds: Let us have two sets H1,H2 ⊂ Z2, each
of them of diameter at most ∆k (for some k > 0). For every τ-tiling U of the c2∆k neighborhood
of the union (H1∪H2) excluding H1 and H2 themselves there exists a tiling V of the entire c2∆k
neighborhood of (H1 ∪H2) (including H1 and H2 themselves) that coincides with U outside of
the c1∆k neighborhood of (H1∪H2).

A robustification against pairs of holes can be done in the same way as the robustification
against a single isolated hole. Indeed, if these two holes are far apart from each other, we can
“correct” them independently; if they are rather close to each other, we correct them as one hole
of (roughly) doubled size. So we can employ the same robustification technique as before; we
need only to take a large enough “radius of multiplication” D (and use D-robustness instead of
5-robustness). So we get the following generalization of Lemma ??:
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Lemma 10. Assume a sequence of zoom factors Nk grows not too fast and not too slow (e.g.,
Nk ≥C logk and C logNk+1 < Nk for a large enough C). Then, there exists a tile set with zoom
factors Nk (i.e., with k-level macro-tiles of size Lk = N0 · · ·Nk−1) that is (c1,c2)-robust (for some
c1 and c2) against pairs of holes of size L0,L1, . . . for some c1 and c2.

Of course, similar propositions can be also proven for triplets, quadruplets, and any other sets
of holes of bounded cardinality. However, in this paper we consider only pairs of holes; this is
enough for our argument in Section ??.

12. Strongly aperiodic robust tile sets

Now we are ready to apply the islands technique to construct a robust strongly aperiodic tile
set. We start with a formal definition of a tiling with errors (see the motivation and discussion in
Section ??).

Definition. For a subset E ⊂ Z2 and a tile set τ we call by a (τ,E)-tiling any mapping

T : (Z2 \E)→ τ

such that for every two neighbor cells x,y ∈ Z2 \E, tiles T (x) and T (y) satisfy the tiling rules
(colors on adjacent sides match). We may say that T is a τ-tiling of the plane with holes at points
of E.

Theorem 13. There exists a tile set τ with the following properties: (1) τ-tilings of Z2 exist
and (2) for all sufficiently small ε for almost every (with respect to Bε ) subset E ⊂ Z2 every
(τ,E)-tiling is at least 1/10 Besicovitch apart from every periodic mapping F : Z2→ τ .

Remark 1. Since the tiling contains holes, we need to specify how we treat the holes when
defining the Besicovitch distance. We do not count points in E as points where two mappings
differ; this makes our statement stronger.

Remark 2. The constant 1/10 is not optimal and can be replaced by any other constant
α < 1.

Proof. Consider a tile set τ such that (a) all τ-tilings are α-aperiodic for every α < 1/4 and
(b) τ is (c1,c2)-robust for some c1 and c2. Such a tile set can be constructed by combining the
arguments used for Theorems ?? and ??. More precisely, we take as the “basic” construction
the tile set from the proof of Theorem ?? (which simulates the Thue–Morse substitution). Then,
we “robustify” it by the procedure from the proof of Theorem ??. For the robustified tile set
we know that each macro-tile in a tiling keeps the conscious information that was given (in the
“basic” tile set) to all macro-tiles in its 5×5-neighborhood; so the new tiling is not only strongly
aperiodic but also 5-robust. It remains to show that this construction implies claim (2) of the
theorem.

We want to apply our probabilistic lemmas concerning “island of errors”. We need to choose
αk and βk such that

• the conditions of Lemma ?? (p. ??) are satisfied, and therefore a random error set with
probability 1 is sparse with respect to these αk and βk;

• for every sparse set E ⊂ Z2, every (τ,E)-tiling can be iteratively corrected (by changing it
in the neighborhoods of islands of all ranks) into a τ-tiling of the entire plane; and
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• the Besicovitch distance between the tilings before and after correction is small.

Then, we conclude that the original (τ,E)-tiling is strongly aperiodic since the corrected
tiling is strongly aperiodic and close to the original one.

To implement this plan, we use the following lemma that describes the error-correction pro-
cess.

Lemma 11. Assume that a tile set τ is (c1,c2)-robust, βk > 4c2αk for every k, and a set E ⊂ Z2

is sparse (with parameters αk, βk). Then, every (τ,E)-tiling can be transformed into a τ-tiling
of the entire plane by changing it in the union of (2c1αk)-neighborhoods of rank k islands (for
all islands of all ranks).

Proof. Note that (βk/2)-neighborhoods of rank k islands are disjoint and large enough to perform
the error correction of rank k islands, since βk > 4c2αk. The definition of a sparse set guarantees
also that every point is changed only finitely many times (so the limit tiling is well defined) and
that the limit tiling has no errors.

The Besicovitch density of the changed part of a tiling can be estimated using Lemma ??.
Here γk = 2c1αk is proportional to αk, so the Besicovitch distance between the original and
corrected tilings (in Lemma ??) is O(∑k(αk/βk)2). (Note that the constant in O notation depends
on c1.)

It remains to choose αk and βk. We have to satisfy all the inequalities in Lemmas ??, ??,
and ??. To satisfy Lemmas ?? and ??, we may let βk = ckαk for large enough c. To satisfy
Lemma ??, we may let αk+1 = 8(β1 + · · ·+ βk) + 1. Then, αk and βk grow faster than any
geometric sequence (like k! multiplied by some exponent in k), but still logβk is bounded by a
polynomial in k and the series in Lemma ?? converges.

With these parameters (and taking c large enough) we guarantee that the Besicovitch distance
between the original (τ,E)-tiling and the corrected τ-tiling does not exceed, say, 1/100.

Now assume that some (τ,E)-tiling V is at a distance less than 1/10 from some periodic
configuration W (with a period v). As we just explained, the original (τ,E)-tiling V must be at a
distance at most 1/100 from some correct τ-tiling V ′. Let us consider the v-shift of both config-
urations V and V ′ (W is shifted to itself). It is easy to see that the distance between the initial and
the shifted copies of configuration V ′ is not greater than the sum dist(V ′,V )+ dist(V,W ) taken
twice. Since the corrected tiling V ′ must be 1/4-aperiodic, and 1/4 > 2(1/10 + 1/100), we get
a contradiction.

13. Robust tile sets that enforce complex tilings

In this section we prove the main result of the paper. We construct a tile set that guarantees
large Kolmogorov complexity of every tiling and that is robust with respect to random errors.

Theorem 14. There exists a tile set τ and constants c1,c2 > 0 with the following properties:
(1) a τ-tiling of Z2 exists;
(2) for every τ-tiling T of the plane, every N×N square of T has Kolmogorov complexity at

least c1N−C2;
(3) for all sufficiently small ε for almost every (with respect to the Bernoulli distribution Bε )

subset E ⊂ Z2, every (τ,E)-tiling is at most 1/10 Besicovitch apart from some τ-tiling of the
entire plane Z2;
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(4) for all sufficiently small ε for almost every Bε -random subset E ⊂ Z2, for every (τ,E)-
tiling T the Kolmogorov complexity of centered squares of T of size N×N is Ω(N).

The rest of the section is devoted to the proof of this theorem. It combines almost all tech-
nique developed in this paper: self-similar tile sets with variable zoom factors, embedding a
sequence with Levin’s property (i.e., with linear Kolmogorov complexity of all factors) into
tilings, bi-sparse sets, incremental error correcting, and robustness against doubled holes.

In this section the basic idea of incremental error correcting is applied in a slightly modi-
fied form. Here we cannot apply directly the technique of (c1,c2)-robustness from Section ??.
Instead we use the idea of robustness against holes of some sequence of sizes ∆0,∆1,∆2, . . ., as
explained in Section ??. More precisely, we do it as follows: We split the set of random errors
into bi-islands of different ranks. Then, we eliminate them one by one, starting from lower ranks.
When we correct an isolated bi-island of rank k, we need a precondition (similarly to the argu-
ment in Section ??): In a large enough neighborhood of this bi-island there are no other errors.
Elimination of a k-level bi-island involves corrections in its extended O(∆k)-neighborhood (with
all parameters as specified below).

13.1. The main difficulties and ways to circumvent them

We want to combine the construction from Section ?? with error-correcting methods based
on the idea of “islands” of errors. There are two main difficulties in this plan: fast growing zoom
factors and gaps in vertical columns. Let us discuss these two problems in some detail.

The first problem is that our construction of tiling with high Kolmogorov complexity from
Section ?? requires variable zoom factors. What is even worse is that zoom factors Nk must
increase very fast (with logarithms growing faster than 2k). Hence, we cannot directly apply
the technique of islands from Section ?? since it works only when ∑

logβk
2k < ∞ (where βk is the

parameter from the definition of islands, which, in our construction, must be of the same order
as the size of k-level macro-tiles). To overcome this obstacle, we replace islands by bi-islands
(the technique developed in Section ??).

The second problem is that now we cannot reconstruct a macro-tile from the information
“consciously known” to this macro-tile. The missing information is the sequence of bits assigned
to the vertical columns (with each vertical column of tiles carrying one bit of a high-complexity
sequence ω). Random errors make gaps in vertical columns, so now the columns are split into
parts, which a priori can carry different bits. To overcome this problem we organize additional
information flows between macro-tiles to guarantee that each infinite vertical column carries in
most of its tiles one and the same bit value.

13.2. General scheme

Here we explain the general ideas of our proof. First, we use macro-tiles with variable zoom
factors Nk = Qb2.5kc for a large enough integer Q > 0. This means that every k-level macro-tile
is an (Nk−1×Nk−1) array of (k− 1)-level macro-tiles. So the size (the number of columns and
the number of rows) of a k-level macro-tile is Lk = N0 · · ·Nk−1, and Lk < Nk. (The constant 2.5
in our construction can be replaced by any rational number between 2 and 3.)

To get tilings with high Kolmogorov complexity, we reuse the construction from Section ??
with the zoom factors defined above. Let us recall the idea of that construction (proof of Theo-
rem ??). In a correct tiling, in the ith column all tiles keep some bit ωi, and we want every N-bit
substring in the corresponding biinfinite sequence ω to have Kolmogorov complexity Ω(N). To
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enforce this property we organize our computation on macro-tiles of all levels. The crucial point
of the construction is propagation of bits ωi to the computation zones of macro-tiles of high lev-
els. Let us recall the main points of this construction (following the argument from Section ??):

• We say that for each (infinite) column of tiles in a tiling there is an assigned bit ωi, which
is “known” to each tile in the column. (In other words, there is a mapping that attributes
to each tile the corresponding bit ωi; vertically neighboring tiles must keep the same value
of the bit.)

• For a k-level macro-tile (of size Lk×Lk) its zone of responsibility is the sequence of Lk bits
ωi assigned to all columns of this macro-tile. Vertically aligned macro-tiles of the same
level have the same zone of responsibility.

• For some k-level macro-tile M there is one delegated bit; this is a bit ωi from the zone
of responsibility of this macro-tile. This bit must be known to the “consciousness” of the
macro-tile; that is, it must be presented explicitly on the tape in the computation zone of
this macro-tile. For technical reasons, we decide that the position of the delegated bit ωi in
the zone of responsibility of M (this position is an integer between 0 and Lk−1) is equal to
the position (vertical coordinate) of M in its father macro-tile (see Fig. ??). The father is a
macro-tile of level k+1, which consists of Nk×Nk macro-tiles of level k (thus, the vertical
coordinate of a k-level macro-tile in its father ranges over 0, . . . ,Nk− 1). In our settings,
Nk > Lk−1. If a k-level macro-tile M has a vertical coordinate in its father greater than Nk,
then M does not have a delegated bit.

• If a k-level macro-tile M has a delegated bit in its computation zone, it also contains a
group of bits to check that starts at the delegated bit and has rather small length (say,
log loglogk). If this group of bits leaves the responsibility zone, we truncate it. The Turing
machine simulated in the computation zone of M enumerates the forbidden strings of “too
small Kolmogorov complexity” and verifies that the checked group of bits does not contain
any of them. This process is bounded by time and space allocated to the computation zone
of a k-level macro-tile.

The last item requires additional comments. Technically, we fix constants α ∈ (0,1) and c and
check that for every string x in zones of responsibility of all macro-tiles K(x) ≥ α|x| − c. To
check this property, a macro-tile enumerates all strings x of complexity less than α|x|− c. This
enumeration requires infinite time, though computations in each macro-tile are time-bounded.
However, this is not a problem since every such x is checked in macro-tiles of arbitrarily high
levels (i.e., if x is covered by a macro-tile of level k, then it is also covered by macro-tiles of all
levels greater than k). Thus, we guarantee the following property:

For every k-level macro-tile M (k = 1,2, . . .), and for every substring
x of ω that is contained in M’s zone of responsibility (its horizontal
projection), it holds that K(x)≥ α|x|− c.

(∗)

Notice that K(x)≥ α|x|−c holds only for strings x covered by some macro-tile (i.e., strings that
belong to some macro-tile’s zone of responsibility). In “degenerate” tilings there can exist an
infinite vertical line that is a border line for macro-tiles of all levels (see Fig. ??). A string x that
intersects this line is not covered by any macro-tile of any level. Hence, (∗) does not guarantee
for such a string x that its Kolmogorov complexity is greater than α|x| − c. However, as we
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noticed in Section ??, the parts of x on both sides of the boundary are covered by some macro-
tile. Hence, it follows from (∗) that K(x)≥ α

2 |x|−O(1) = Ω(|x|) for all factors x of the biinfinite
string ω .

Thus, we reuse the argument from Section ??, and it works well if there are no errors, but
when we introduce random errors, the old construction is broken. Indeed, vertical columns can
be damaged by islands of errors. Now we need to make an effort to enforce that copies of
ωi consciously kept by different macro-tiles are coherent (at least for macro-tiles that are not
seriously damaged by local errors). To this end we will use some checksums, which guarantee
that neighbor macro-tiles keep coherent conscious and subconscious information. We discuss
this topic in the next section.

To deal with random errors we use the technique of bi-islands (see Section ??). Our argu-
ments work if diameters of k-level bi-islands are comparable with the size of k-level macro-tiles.
Technically, we set αk = 26Lk−1 and βk = 2Lk. (In the following we will see that this choice of βk
is important for the error-correcting procedure; αk is set to 13βk−1, so that lemmas on bi-islands
can be applied.) Recall that Nk = Qb2.5kc and Lk = N0 · · ·Nk−1. Note that Lemmas ?? and ?? can
be used with these values of parameters α,β . We will also employ Lemma ?? with γk = O(αk).

13.3. The new construction of the tile set

We take the construction from Section ?? as the starting point and superimpose some new
structures on k-level macro-tiles. We introduce these supplementary structures in several steps.

First step (introducing checksums): Every k-level macro-tile M (in a correct tiling) consists
of an Nk−1×Nk−1 array of (k−1)-level macro-tiles; each of these (k−1)-level macro-tiles may
keep one delegated bit. Let us take one horizontal row (bits assigned to Nk−1 macro-tiles of level
k−1) in this two-dimensional array of size Nk−1×Nk−1. Denote the corresponding sequence of
bits by η1, . . . ,ηNk−1 . We introduce a sort of erasure code for this string of bits. In other words,
we will calculate some checksums for this sequence. These checksums should be suitable to
reconstruct all bits η1, . . . ,ηNk−1 if at most D of these bits are erased (i.e., if we know values ηi
for only Nk−1−D positions); here D > 0 is a constant (to be fixed later). We want the checksums
to be easily computable. Here we use again the checksums of the Reed–Solomon code (discussed
in Section ??).

Let us explain this technique in more detail. We take a finite field Fk of large enough size
(greater than Nk−1 + D). Then, we calculate a polynomial of degree less than Nk−1 that takes
values η1, . . . ,ηNk−1 at some Nk−1 points of the field. Further, we take as checksums the values
of this polynomial at some other D points from Fk (where all (Nk−1 + D) points of the field are
fixed in advance). Two polynomials of degree less than Nk−1 can coincide in at most (Nk−1−1)
points. Hence, if D bits from the sequence η1, . . . ,ηNk−1 are erased, we can reconstruct them
given the other (nonerased) bits η j and the checksums defined above.

These checksums contain O(logNk−1) bits of information. We next discuss how to compute
them.

Second step (calculating checksums): First, we explain how to compute the checksums,
going from left to right along the sequence η1, . . . ,ηNk−1 . This can be done in a rather standard
way as follows.

Let η1, . . . ,ηNk−1 be the values of a polynomial p(x) (of degree less than Nk−1) at points
x1, . . . ,xNk−1 . Assume we want to reconstruct all coefficients of this polynomial. We can do this
by the following iterative procedure. For i = 1, . . . ,Nk−1 we calculate polynomials pi(x) and

45



qi(x) (of degree ≤ (i−1) and i, respectively) such that

pi(x j) = η j for j = 1, . . . , i

and
qi(x) = (x− x1) · · ·(x− xi).

It is easy to see that for each i, polynomials pi+1 and qi+1 can be computed from polynomials pi
and qi and the values xi+1 and ηi+1.

If we do not need to know the resulting polynomial p = pNk−1(x) but want to get only the
value p(a) at some particular point a, then we can perform all these calculations modulo (x−
a). Thus, to obtain the value of p(x) at D different points, we run in parallel D copies of this
process. At each step of the computation we need to keep in memory only O(1) elements of Fk,
which is O(logNk−1) bits of temporary data (with the multiplicative constant in this O(·) notation
depending on the value of D).

This calculation can be simulated by a tiling. We embed the procedure just explained into
the computation zones of (k− 1)-level macro-tiles. The partial results of the calculation are
transferred from one (k− 1)-level macro-tile to another one, from the left to the right (in each
row of length Nk−1 in a k-level macro-tile). The final result (for each row) is embedded into the
conscious information (bits on the tape of the Turing machine in the computation zone) of the
rightmost (k−1)-level macro-tile of the row.

To organize these computations, we need to include into conscious information kept by (k−
1)-level macro-tiles additional O(logNk−1) bits and add the same number of bits to their macro-
colors. This fits well our fixed-point construction since zoom factors Nk grow fast, and we have
enough room in the computation zone.

Third step (consistency of checksums between macro-tiles): So far, every k-level macro-
tile contains O(Nk−1 logNk−1) bits of checksums and O(logNk−1) bits for every row. We want
these checksums to be the same for every two vertical neighbor macro-tiles. It is inconvenient to
keep the checksums for all rows only in the rightmost column (since it would create too much
traffic in this column if we try to transmit the checksums to the neighbor macro-tiles of level k).
So we propagate the checksums of the ith row in a k-level macro-tile M (i = 1, . . . ,Nk−1) along
the entire ith row and along the entire ith column of M. In other words, these checksums must be
“consciously” known to all (k− 1)-level macro-tiles in the ith row and in the ith column of M.
In Fig. ?? we show the area of propagation of checksums for two rows (the ith and the jth rows).

On the border of two neighbor k-level macro-tiles (one above another) we check that in each
column i = 1, . . . ,Nk−1 all the corresponding checksums computed in both macro-tiles coincide.
This check is redundant if there are no errors in the tiling: The checksums are computed from the
delegated bits (which come from the sequence of bits ω encoded into tiles of the ground level),
so the corresponding values for all vertically aligned macro-tiles must be equal to each other.
However, this redundancy is useful to resist errors, as we show in the following.

Fourth step (robustification): The features just explained organized in every k-level macro-
tile (bit delegation, computing and propagating checksums, and all the computations simulated in
the computation zone of a macro-tile) are simulated by means of bits kept in the “consciousness”
(i.e., in the computation zone) of (k− 1)-level macro-tiles. Now we fix some constant C and
“robustify” this construction in the following sense: Each (k− 1)-level macro-tile M keeps in
its consciousness not only “its own” data but also the bits previously assigned to (k− 1)-level
macro-tiles from its (C ·Lk−1)-neighborhood (i.e., the (2C +1)× (2C +1) array of (k−1)-level
macro-tiles centered at M). So, the content of the consciousness of each macro-tile is multiplied
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Figure 16: Propagation of checksums inside of a macro-tile.

by some constant factor. Neighbor macro-tiles check that the data in their consciousness are
coherent.

We choose the constant C so that every k-level bi-island (which consist of two parts of size
αk) and even the γk = O(αk)-neighborhood of every k-level bi-island (where we specify γk below)
can involve only a small part of the (CLk−1)-neighborhood of any (k−1)-level macro-tile. (Note
that here we talk about neighborhoods, not about extended neighborhoods of bi-islands defined
in Section ??.)

This robustification allows us to reconstruct the conscious information of a k-level macro-tile
and of its (k−1)-level sons when this macro-tile is damaged by one k-level bi-island (assuming
there are no other errors).

The last remark (the number of bits in the consciousness of a macro-tile): The con-
struction explained above requires that we put into the computation zones of all (k− 1)-level
macro-tiles additional poly(logNk−1) bits of data. (The most substantial part of the data is the in-
formation used to compute the checksums.) Again, this fits our fixed-point construction because
poly(logNk−1) is much less than Nk−2, so we have enough room to keep and process all these
data.

The tile set τ is thus defined. Since there exists an ω with Levin’s property, it follows that τ-
tiling exists, and every N×N square of such a tiling has Kolmogorov complexity Ω(N). Further,
we prove that this τ satisfies also statement (3) of Theorem ??.

13.4. Error-correcting procedure

Denote by τ the tile set described in Section ??. Let ε > 0 be small enough. Lemma ?? says
that a Bε -random set with probability 1 is bi-sparse. Now we assume that E ⊂ Z2 is a bi-sparse
set (for the chosen values of αi and βi), and T is a τ-tiling of Z2 \E. Further, we explain how to
correct errors and convert T into a tiling T ′ of the entire plane (where T ′ should be close to T ).

We follow the usual strategy. The set E is bi-sparse; that is, it can be represented as a union
of isolated bi-islands of different ranks. We correct them one by one, starting from bi-islands
of low ranks. To prove that the correction procedure converges, we need to explain one step of
this process: how to correct one bi-island S of rank k assuming that it is well isolated, i.e., in the
βk-neighborhood of this bi-island there are no other (still noncorrected) errors.
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Let us recall that a k-level bi-island S is a union of two “clusters” S0,S1; the diameters of both
S0 and S1 are at most αk = O(Lk−1). Hence the clusters S0 and S1 touch only O(1) macro-tiles
of level (k−1). The distance between S0 and S1 is at most βk, and the βk-neighborhood of S is
free of other bi-islands of rank k and higher (so we can assume that the βk-neighborhood of S
is already cleaned of errors). Our correction procedure around S will involve only points in the
extended γk-neighborhood of S, where γk = 2αk.

Let M be one of k-level macro-tiles intersecting the extended γk-neighborhood of the k-level
bi-island S. Basically, we need to reconstruct all (k− 1)-level macro-tiles in M destroyed by S.
First, we will reconstruct the conscious information in all (k−1)-level macro-tiles in M. This is
enough to get all bits of ω from the “zone of responsibility” of M. Then, we will reconstruct in
a consistent way all n-level macro-tiles inside M for all n < k.

Thus, we start with reconstructing the consciousness of all (k−1)-level macro-tiles M′ in M.
First, we recall that the consciousness (the content of the computation zone) of every (k−1)-level
macro-tile M′ consists of several groups of bits (cf. the outline of the construction in Section ??,
p. ??):

[A] the binary representation of the number (k− 1) and coordinates (integers from the range
0, . . . ,Nk−1−1) of M′ in the father macro-tile M;

[B] the bits used to simulate a Turing machine on the computation zone of M and the bits used
to implement “wires” of M;

[C] the bit (from the sequence ω) delegated to M′;
[D] the bit (from ω) delegated to M;
[E] the bits used to calculate and communicate the checksums for the corresponding row of

(k−1)-level macro-tiles in M; and
[F] a group of bits to check from the zone of responsibility of M′; these bits are checked by

the macro-tile: M′ checks on its computation zone that this “group of bits to check” does
not contain any factor of low Kolmogorov complexity.

Bits of field [A] in a small isolated group of (k−1)-level macro-tiles are trivially reconstructed
from the surrounding macro-tiles of the same level. Fields [B], [C], [D], and [E] can be recon-
structed because of the robustification on the level of (k− 1)-level macro-tiles. (We organized
the robustification on the level of (k−1)-level macro-tiles in such a way that we are able to re-
construct these fields for any C×C group of missing or corrupt (k−1)-level macro-tiles.) So far
the correcting procedure follows the exactly the same steps as in Section ??.

To reconstruct fields [F] of (k−1)-level macro-tiles in M, we need to reconstruct all bits of
ω from the zone of responsibility of M. We can extract these bits from the neighbor k-level tiles
above or below M. (Recall that bi-island S touches only O(1) k-level macro-tiles, and there is a
“healthy” zone of k-level macro-tiles around them.) However, a problem remains since we are
not sure that the ω bits above M, below M, and inside M are consistent. Now we show that this
consistency is guaranteed by checksums.

Denote by Mu and Md the k-level macro-tiles just above and below S. Since the distance
between S and other k-level bi-islands is greater than βk = 2Lk, we know that Mu and Md must
be free of errors (where we assume that errors of ranks less than k are already corrected). See
Fig. ??. In what follows, our explanations refer to Fig. ??, where bi-island S touches only one k-
level macro-tile; if S touches several k-level macro-tiles, substantially the same arguments work.
It is enough to prove that the bits ωi assigned to corresponding columns of Mu and in Md are
equal to each other.
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macro-tile Mu without errors

macro-tile Md without errors

macro-tile M with an error bi-island

Figure 17: Bi-island of errors in a macro-tile.

The macro-tiles Mu and Md are error free; therefore, the sequences of Lk bits ωi corresponding
to the vertical lines intersecting these k-level macro-tiles are well defined. Since there are no
errors, the conscious information (including checksums) in all macro-tiles of all levels inside Mu
and Md is consistent with these bit sequences. So, the Lk bits assigned to the vertical columns are
correctly delegated to the corresponding (k−1)-level macro-tiles inside Mu and Md . However, it
is not evident that the sequences of Lk bits embedded in Mu and Md are equal to each other.

In fact, it is easy to see that bit sequences for Mu and Md coincide with each other at most
positions. They must be equal for all columns (from the range 0, . . . ,Lk−1) that do not intersect
bi-island S (i.e., in nondamaged columns of tiles on the ground level, the assigned bits ωi cor-
rectly spread though macro-tiles Mu, M, and Md). Hence, the bits delegated to the corresponding
(k− 1)-level macro-tiles in Mu and Md are equal to each other, except for only (k− 1)-level
macro-tiles in the “gray zone” of Fig. ??, which contains the (k− 1)-level macro-tiles involved
in the correction of S and all vertical stripes touching the involved sites. (The width of this gray
stripe is only O(1) macro-tiles of level (k−1).) Hence, for i = 0, . . . ,(Nk−1−1), in the ith rows
of (k−1)-level macro-tiles in Mu and Md , the sequences of delegated bits are equal to each other
except possibly for only O(1) bits (delegated to (k−1)-level macro-tiles in the “gray zone”).

The robustness property guarantees that all checksums are correctly transmitted through M.
Hence, checksums for corresponding rows in Mu and in Md must be equal to each other.

Thus, for every two corresponding rows of (k−1)-level macro-tiles in Mu and in Md we know
that (a) all except O(1) delegated bits in the corresponding positions are equal to each other and
(b) the checksums are equal to each other. From the property of our erasure code it follows that
in fact all delegated bits in these rows are equal to each other (with every ith bit in Mu being
equal to the ith bit in Md). Therefore, all bits ωi in Mu and Md are the same (on the ground level).
We can use these bits to reconstruct subconsciousness of M and get a consistent tiling in M.

We are almost done. Bi-island S is corrected; we reconstructed conscious information for the
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k-level macro-tile M and for all its (k− 1)-level sons. Now we can reconstruct fields [F] in the
damaged (k−1)-level macro-tiles inside M. This is simple to do. We just take the corresponding
bits ωi from the zone of responsibility (shared by M, Mu, and Md). It remains only to explain why
the checking procedure does not fail for these groups of bits (i.e., (k−1)-level macro-tiles do not
discover in these bit strings any factors of low Kolmogorov complexity). But this is true because
macro-tiles of levels (k−1) (and also below (k−1)) inside M apply exactly all the same checks
to exactly the same groups of bits ωi as the macro-tiles in the corresponding positions in Mu and
Md . Since there is no errors in Mu and Md , these computations do not lead to a contradiction.

Let us inspect again the correction procedure just explained; we should notice which tiles
are involved in the error-correcting process around bi-island S. In the (k− 1)-level macro-
tiles outside the “gray zone” we change nothing. Moreover, not all the gray zone needs to be
changed—only the part between two clusters of S (and their small neighborhoods) is affected.
Indeed, in all tiles of M that are above S the assigned bits ωi are the same as in the corresponding
columns of Mu; in the tiles of M that are below S the assigned bits ωi are the same as in the
corresponding columns of Md . Hence, there is no need to correct “subconscious information”
of (k− 1)-level macro-tiles that are above or below S. Only the area between two clusters of
S requires corrections. More precisely, the area involved in the correcting procedure is inside
the extended neighborhood of S. (In fact, this argument is the motivation of our definition of
extended neighborhood.)

Thus, we have proven that this step-by-step correcting procedure eliminates all bi-islands of
errors and only extended γk-neighborhoods of k-level bi-islands are involved in this process. Now
Theorem ?? (part 3) follows from Lemma ??. It remains only to prove part 4 of the theorem. We
do this in the next section.

13.5. Levin’s property for ω embedded into a (τ,E)-tiling
It remains to prove part (4) of Theorem ??. In the previous section we proved that if the set

of errors E is bi-sparse, then a (τ,E)-tiling T can be converted into a τ-tiling T ′ of the entire
plane, and the difference between T and T ′ is covered by extended γk neighbors of k-level bi-
islands from E (k = 0,1, . . .). Now we want to show that, in the initial tiling T , the Kolmogorov
complexity of centered squares of size N×N was Ω(N).

Fix a point O. Since E is bi-sparse, O is covered by βk-neighborhoods of only finitely many
bi-islands. Hence, for large enough ∆, the ∆×∆ square Q∆ centered at O intersects extended
γk-neighborhoods of k-level bi-islands only if βk < ∆. (If the extended γk-neighborhood of some
bi-island intersects Q∆ and βk ≥ ∆, then βk− γk > ∆/2 and O is covered by the βk-neighborhood
of this bi-island.) Therefore, to reconstruct T ′ in Q∆ it is enough to correct there all bi-islands of
bounded levels (such that βk < ∆).

To reconstruct T ′ in Q∆ we need to know the original tiling T in Q∆ and some neighborhood
around it (i.e., in some centered O(∆)×O(∆) square Q∆′ , which is only greater than Q∆ by a
constant factor). Indeed, given the tiling T restricted on Q∆′ , we can locally correct there bi-
islands of levels 1,2, . . . ,k (such that βk < ∆) one by one. Correcting a bi-island of errors in
Q∆′ we obtain the same results as in the error-correcting procedure on the entire plane Z2 unless
this bi-island is too close to the border of Q∆′ (and the local correction procedure should involve
information outside Q∆′ ). Thus, we can reconstruct T ′-tiling not in the entire Q∆′ but in points
that are far enough from the border of this square. If ∆′ = c∆ for large enough c, then Q∆′

provides enough information to reconstruct T ′ in Q∆.
We know that Kolmogorov complexity of error-free tiling T ′ in Q∆ is Ω(∆). Therefore, the

Kolmogorov complexity of the original T -tiling in the greater square Q∆′ is also Ω(∆). Since
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∆′ is only greater than ∆ by a constant factor, we get that the Kolmogorov complexity of the
(τ,E)-tiling T restricted to the centered (∆′×∆′) square is Ω(∆′).

Theorem ?? is proven.
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Problems, Springer-Verlag, Berlin, 1996.

[] N. Aubrun, M. Sablik, Simulation of recursively enumerable subshifts by two-dimensional SFT and a generaliza-
tion, preprint available at the home page of M. Sablik,
http://www.latp.univ-mrs.fr/~sablik/article/SimulSRE.pdf (as of August 5, 2010).

[] R. Berger, The Undecidability of the Domino Problem, Mem. Am. Math. Soc., 66, 1–72, 1966.
[] E. R. Berlekamp, Algebraic Coding Theory, Aegean Park, Laguna Hills, CA, 1984.
[] L. Bienvenu, A. Romashchenko, A. Shen, Sparse Sets, Journées Automates Cellulaires 2008 (Uzès), 18–28,

Moscow Center for Continuous Mathematical Education, Moscow, 2008, available online at http://hal.archives-
ouvertes.fr/docs/00/27/40/10/PDF/18-28.pdf

[] K. Culik, An Aperiodic Set of 13 Wang Tiles, Discrete Math., 160, 245–251, 1996.
[] B. Durand, L. Levin, A. Shen, Complex Tilings, J. Symbolic Logic, 73(2), 593–613, 2008; see also Proc. 33rd Ann.

ACM Symp. Theory Computing, pp. 732–739, 2001, and www.arxiv.org/cs.CC/0107008 for an earlier version.
[] B. Durand, L. Levin, A. Shen, Local Rules and Global Order, or Aperiodic Tilings, Math. Intelligencer, 27(1),

64–68, 2004.
[] B. Durand, A. Romashchenko, A. Shen, Fixed Point and Aperiodic Tilings, in Developments in Language Theory,

12th International Conference, DLT 2008, Kyoto, Japan, September 16–19, 2008, Proceedings, Lecture Notes in
Computer Science, 5257, Springer-Verlag, Berlin, 276–288, 2008.

[] B. Durand, A. Romashchenko, A. Shen, High Complexity Tilings with Sparse Errors, in Automata, Languages and
Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part
I, Lecture Notes in Computer Science, 5555, Springer-Verlag, Berlin, 403–414, 2009.
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