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Fixed-point tile sets and their applications

Bruno Durand1, Andrei Romashchenko1,2,, Alexander Shen1,2

Abstract

An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It
turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics
(quasicrystals).

We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of
geometric arguments. This construction is similar to J. von Neumann’s self-reproducing automata; similar ideas were
also used by P. Gács in the context of error-correcting computations.

This construction is rather flexible, so it can be used in many ways. We show how it can be used to imple-
ment substitution rules, to construct strongly aperiodic tile sets (in which any tiling is far from any periodic tiling),
to give a new proof for the undecidability of the domino problem and related results, to characterize effectively
closed one-dimensional subshifts in terms of two-dimensional subshifts of finite type (an improvement of a result
by M. Hochman), to construct a tile set that has only complex tilings, and to construct a “robust” aperiodic tile set
that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. For the
latter, we develop a hierarchical classification of points in random sets into islands of different ranks. Finally, we com-
bine and modify our tools to prove our main result: There exists a tile set such that all tilings have high Kolmogorov
complexity even if (sparse enough) tiling errors are allowed.

Some of these results were included in the DLT extended abstract [9] and in the ICALP extended abstract [10].
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1. Introduction

In this paper, tiles are unit squares with colored sides. Tiles are considered as prototypes: we may place translated
copies of the same tile into different cells of a cell paper (rotations are not allowed). Tiles in the neighbor cells should
match (i.e., the common sides should each have the same color).

Formally speaking, we consider a finite set C of colors. A tile is a quadruple of colors (left, right, top, and bottom
ones), i.e., an element of C4. A tile set is a subset τ ⊂C4. A tiling of the plane with tiles from τ (τ-tiling) is a mapping
U : Z2→ τ that respects the color-matching condition.

A tiling U is periodic if it has a period, i.e., a nonzero vector T ∈ Z2 such that U(x + T ) = U(x) for all x ∈ Z2.
Otherwise, the tiling is aperiodic. The following classical result was proved in [3]:

Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them are aperiodic.

The construction from the proof of Theorem 1 was used in [3] as the main tool to prove Berger’s theorem: The
domino problem (to find out whether or not a given tile set has tilings) is undecidable.

The first tile set of Berger was rather complicated. Later, many other constructions were suggested. Some of them
are simplified versions of Berger’s construction ([28]; see also the expositions in [1, 8, 21]). Some others are based on
polygonal tilings (including the famous Penrose and Ammann tilings; see [14]). An ingenious construction suggested
in [18] is based on multiplication in a kind of positional number system and gives a small aperiodic set of 14 tiles (and
in [6] an improved version with 13 tiles is presented). Another nice construction with a short and simple proof (based
explicitly on ideas of self-similarity) was recently proposed in [26].

In this paper, we present yet another construction of an aperiodic tile set. It does not provide a small tile set;
however, we find it interesting for the following reasons:

• The existence of an aperiodic tile set becomes a simple application of the classical construction used in Kleene’s
fixed-point (recursion) theorem, in von Neumann’s self-reproducing automata [25], and, more recently, in Gács’
reliable cellular automata [11, 12]; we do not use any geometric tricks. An aperiodic tile set is not only an
interesting result but an important tool (e.g., this construction was invented to prove that the domino problem is
undecidable); our construction makes this tool easier to use.

• The construction is rather general, so it is flexible enough to achieve some additional properties of the tile set.
We illustrate this flexibility by providing new proofs for several known results and proving new results; these
new results add robustness (resistance to sparse enough errors) to known results about aperiodic tile sets and tile
sets that have only complex tilings.

It is unclear whether this kind of robustness can be achieved for previously known constructions of tile sets. On
the other hand, robustness properties appear to be important. For example, mathematical models for processes such as
quasicrystal growth or DNA computation should take errors into account. Note that our model (with its independent
choice of places where errors are allowed) has no direct physical meaning; it is just a simple mathematical model that
can be used as a playground to develop tools for estimating the consequences of tiling errors.

The paper is organized as follows:

• In Section 2, we present the fixed-point construction of an aperiodic tile set (new proof of Berger’s theorem),
and we illustrate the flexibility of this construction by several examples.

• In Section 3, we show that any “uniform” substitution rule can be implemented by a tile set (thus providing a
new proof for this rather old result).

• In Section 4, we use substitutions to show that there are strongly aperiodic tile sets (which means that any tiling
is strongly aperiodic, i.e., any shift changes at least some fixed fraction of tiles).

• The fixed-point construction of Section 2 provides a self-similar tiling: Blocks of size n× n (“macro-tiles”)
behave exactly as individual tiles, so on the next level we have n2× n2 blocks made of n× n macro-tiles that
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have the same behavior, etc. In Section 5, we make some changes in our construction that allow us to get variable
zoom factors (the numbers of tiles in macro-tiles increase as the level increases).

Variable zoom factor tilings can be used for simulating computations (with higher levels performing more com-
putation steps); we use them to give a simple proof of the undecidability of the domino problem. The main
technical difficulty in the standard proof was to synchronize computations on different levels. In our construc-
tion this is not needed. We show also that other undecidability results can be obtained in this way.

• This technique can be used to push the strong aperiodicity to its limits: The distance between every tiling and
every periodic configuration (or between every tiling and its nontrivial shift) can be made arbitrarily close to 1,
not only separated from 0. This is done in Section 6 using an additional tool: error-correcting codes.

• In [7], a tile set was constructed such that every tiling has maximal Kolmogorov complexity of fragments (Ω(n)
for n×n squares); all tilings for this tile set are noncomputable (thereby implying a classical result of Hanf [16]
and Myers [24] as a corollary). The construction in [7] was rather complicated and was based on a classical
construction of an aperiodic tile set. In Section 7, we provide another proof of the same result that uses variable
zoom factors. It is simpler in some respects and can be generalized to produce robust tile sets with complex
tiling, which is our main result (Section 13).

• In Section 8, we use the same technique to give a new proof for some results by Simpson [31] and Hochman [17]
about effectively closed subshifts: Every one-dimensional effectively closed subshift can be obtained as a pro-
jection of some two-dimensional subshift of finite type (in an extended alphabet). Our construction provides a
solution of Problem 9.1 from [17]. (Another solution, based on the classical Robinson-type construction, was
independently suggested by Aubrun and Sablik; see [2].)

• To prove the robustness of tile sets against sparse errors we use a hierarchical classification of the elements of
random sets into islands of different levels (a method that goes back to Gács [12, 13]). This method is described
in Section 9.1. In Section 9.2, we give definitions and establish some probabilistic results about islands that
are used later to prove robustness. We show that a sparse random set on Z2 with probability 1 (for Bernoulli
distribution) can be represented as a union of “islands” of different ranks. The higher the rank, the bigger is the
size of an island; the islands are well isolated from each other (i.e., in some neighborhood of an island of rank
k, there are no other islands of rank ≥ k). Then, in Section 9.3, we illustrate these tools using standard results
of percolation theory as a model example. In Section 9.4, we modify the definition of an island by allowing
two (but not three!) islands of the same rank to be close to each other. This more complicated definition is
necessary to obtain the most technically involved result of the paper in Section 13 but can be skipped if the
reader is interested in the other results.

• In Section 10, we use a fixed-point construction to get an aperiodic tile set that is robust in the following sense:
If a tiling has a “hole” of size n, then this hole can be patched by changing only an O(n)-size zone around it.
Moreover, we do not need for this a tiling of the entire plane. An O(n) zone (with bigger constant in O notation)
around the hole is enough.

• In Section 11, we explain how to get robust aperiodic tile sets with variable zoom factors. Again, this material
is used in Section 13 only.

• In Section 12, we combine the developed techniques to establish one of our main results: There exists a tile set
such that every tiling of the plane minus a sparse set of random points is far from every periodic tiling.

• Finally, Section 13 contains our most technically difficult result: a robust tile set such that all tilings, even with
sparsely placed holes, have linear complexity of fragments. To this end we need to combine all our techniques:
fixed-point construction with variable zoom factors, splitting of a random set into doubled islands (we shall call
them bi-islands), and “robustification” with filling of holes.
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2. Fixed-point aperiodic tile set

2.1. Macro-tiles and simulation
Fix a tile set τ and an integer N > 1 (zoom factor). A macro-tile is an N×N square tiled by τ-tiles matching each

other (i.e., a square block of N2 tiles with no color conflicts inside). We can consider macro-tiles as “preassembled”
blocks of tiles; instead of tiling the plane with individual tiles, we may use macro-tiles. To get a correct τ-tiling in this
way, we need only to ensure that neighbor macro-tiles have matching macro-colors, so there are no color mismatches
on the borders between macro-tiles. More formally, by macro-color we mean a sequence of N colors on the side of
a macro-tile (i.e., the right macro-color is a sequence of the right colors of the tiles on the right edge of a macro-tile,
and the same for the left, the top, and the bottom macro-color). Each macro-tile has four macro-colors (one for each
side). We always assume that macro-tiles are placed side to side, so the plane is split into N×N squares by vertical
and horizontal lines.

In the following we are interested in the situation when τ-tilings can be split uniquely into macro-tiles that behave
like tiles from some other tile set ρ . Formally, let us define the notion of a simulation.

Let τ and ρ be two tile sets, and let N > 1 be an integer. By simulation of ρ by τ with zoom factor N we mean a
mapping S of ρ-tiles into N×N τ-macro-tiles such that the following properties hold:

• S is injective (i.e., different tiles are mapped into different macro-tiles).

• Two tiles r1 and r2 match if and only if their images S(r1) and S(r2) match. This means that the right color of r1
equals the left color of r2 if and only if the right macro-color of S(r1) equals the left macro-color of S(r2), and
the same is true in the vertical direction.

• Every τ-tiling can be split by vertical and horizontal lines into N×N macro-tiles that belong to the range of S,
and such a splitting in unique.

The second condition guarantees that every ρ-tiling can be transformed into a τ-tiling by replacing each tile r ∈ ρ

by its image, macro-tile S(r). Taking into account other conditions, we conclude that every τ-tiling can be obtained in
this way, and the positions of grid lines as well as the corresponding ρ-tiles can be reconstructed uniquely.

Example 1 (negative). Assume that τ consists of one tile with four white sides. Fix some N > 1. There exists
a single macro-tile of size N×N. Does this mean that τ simulates itself (when its only tile is mapped to the only
macro-tile)? No. The first and second conditions are true, but the third one is false: The placement of cutting lines is
not unique.

(i+1, j)(i, j)

(i, j)

(i, j +1)

0

0

0 0

N

Figure 1: Tiles and macro-tiles for Example 2.

Example 2 (positive). In this example ρ consists of one tile with all white sides. The tile set τ consists of N2

tiles indexed by pairs (i, j) of integers modulo N. A tile from τ has colors on its sides as shown on Fig. 1 (each color
is a pair of integers modulo N, so set C of all colors consists of N2 elements). The simulation maps the single ρ-tile
to a macro-tile that has colors (0,0), . . . ,(0,N − 1) and (0,0), . . . ,(N − 1,0) on its vertical and horizontal borders,
respectively (see Fig. 1).

Definition. A self-similar tile set is a tile set that simulates itself.

The idea of self-similarity is used (more or less explicitly) in most constructions of aperiodic tile sets (but [18, 6]
are exceptions). However, not all of these constructions provide literally self-similar tile sets in our sense.

It is easy to see that self-similarity guarantees aperiodicity.
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Proposition 1. A self-similar tile set τ may have only aperiodic tilings.

Proof. Let S be a simulation of τ by itself with zoom factor N. By definition, every τ-tiling U can be uniquely split
into N×N macro-tiles from the range of S. So every period T of U is a multiple of N (since the T -shift of a cut is
also a cut, the shift should respect borders between macro-tiles). Replacing each macro-tile by its S-preimage, we get
a τ-tiling that has period T/N. Therefore, T/N is again a multiple of N. Iterating this argument, we conclude that T
is divisible by Nk for every k, so T .

Note also that every self-similar tile set has arbitrarily large finite tilings. Starting with some tile, we apply S
iteratively and get a big tiled square. The standard compactness argument guarantees the existence of a tiling of the
entire plane. Therefore, to prove the existence of aperiodic tile sets it is enough to construct a self-similar tile set.

Theorem 2. There exists a self-similar tile set τ .

Theorem 2 was explicitly formulated and proven by Ollinger [26]; in his proof a self-similar tile set (consisting of
104 tiles) is constructed explicitly. This tile set is then used to implement substitution rules (cf. Theorem 3 below).
Another example of a self-similar tile set (with many more tiles) is given in [8]. (Note that the definition of self-
similarity used in [8] is a bit stronger.)

We prefer a less specific and more flexible argument based on the fixed-point idea. Our proof works for a vast
class of tile sets (though we cannot provide explicitly an aperiodic tile set of a reasonably small size). The rest of this
section is devoted to our proof of Theorem 2. Before we prove this result, we explain a few techniques used in our
construction and show how to simulate a given tile set by embedding computations.

2.2. Simulating a tile set
Let us start with some informal discussion. Assume that we have a tile set ρ whose colors are k-bit strings

(C = {0,1}k) and the set of tiles ρ ⊂C4 is presented as a predicate R(c1,c2,c3,c4) with four k-bit arguments. Assume
that we have some Turing machine R that computes R. Let us show how to simulate ρ using some other tile set τ .

This construction extends Example 2, but it simulates a tile set ρ that contains not a single tile but many tiles.
We keep the coordinate system modulo N embedded into tiles of τ; these coordinates guarantee that all τ-tilings can
be uniquely split into blocks of size N ×N and every tile “knows” its position in the block (as in Example 2). In
addition to the coordinate system, now each tile in τ carries supplementary colors (from a finite set specified below)
on its sides. These colors form a new “layer” which is superimposed with the old one; i.e., the set of colors is now a
Cartesian product of the old one and the set of colors used in this layer.

On the border of a macro-tile (i.e., when one of the coordinates is zero) only two supplementary colors (say, 0
and 1) are allowed. So the macro-color encodes a string of N bits (where N is the size of macro-tiles). We assume
that N is much bigger than k and let k bits in the middle of macro-tile sides represent colors from C. All other bits on
the sides are zeros. (This is a restriction on tiles: Each tile “knows” its coordinates so it also knows whether nonzero
supplementary colors are allowed.)

Now we need additional restrictions on tiles in τ that guarantee that macro-colors on the sides of each macro-tile
satisfy relation R. To achieve this, we ensure that bits from the macro-tile sides are transferred to the central part of
the tile where the checking computation of R is simulated (Fig. 2).

For that we need to fix which tiles in a macro-tile form “wires” (this can be done in any reasonable way; we assume
that wires do not cross each other) and then require that each of these tiles carries equal bits on two sides (so some bit
propagates along the entire wire); again this is easy to arrange since each tile knows its coordinates.

Then, we check R by a local rule that guarantees that the central part of a macro-tile represents a time-space
diagram of R’s computation (with the tape being horizontal, and time increasing upward). This is done in a standard
way: The time-space diagram (tableau) of a Turing machine computation can be described by local rules, and these
rules can be embedded into a tile set3 (see details in, e.g., [1, 14]). We require that computation terminates in an
accepting state; if not, the tiling cannot be formed.

3Speaking about local rules, we mean that one can check the correctness of the time-space diagram by looking through a O(1)-size window; in
the standard representation width 3 and height 2 is enough. However, our definition of a tile set is even more local: We compare colors on matching
sides only. It is easy to see that we can still simulate any local rules by tiles. Each tile keeps the contents of the corresponding window, and colors
are used to ensure that overlapping windows are consistent.
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Turing
machine

Figure 2: Wires and processing zones; wires appear quite narrow since N� k.

To make this construction work, the size of the macro-tile (N) should be large enough; we need enough space for
k bits to propagate and enough time and space (= height and width) for all accepting computations of R to terminate.

In this construction the number of supplementary colors depends on the machine R (the more states it has, the
more colors are needed in the computation zone). To avoid this dependency, we replace R by a fixed universal Turing
machine U that runs a program simulating R. Let us agree that the tape of the universal Turing machine has an
additional read-only layer. Each cell carries a bit that is not changed during the computation; these bits are used as a

Universal

Turing

machine

program

Figure 3: Checking tiles with a universal Turing machine.

program for the universal machine U . (We may assume that the program bits occupy some part of the reserved read-
only layer, e.g., the leftmost bits on this layer; see Fig. 3.) In terms of our simulation, the columns of the computation
zone carry unchanged bits (considered as a program for U), and the tile set restrictions guarantee that the central zone
represents the record (time-space diagram) of an accepting computation of U (with this program). In this way, we
get a tile set τ that simulates ρ with zoom factor N using O(N2) tiles. (Again we need N to be large enough, but the
constant in O(N2) does not depend on N.)
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2.3. Simulating itself

We know how to simulate a given tile set ρ (represented as a program for the universal Turing machine) by another
tile set τ with a large enough zoom factor N. Now we want τ to be identical to ρ in which case Proposition 1 guarantees
aperiodicity). For this we use a construction that follows the proof of Kleene’s recursion (fixed-point) theorem.

We cannot refer here to the statement of the theorem; we need to recall its proof and adapt it to our framework.
Kleene’s theorem [19] says that for every computable transformation π of programs one can find a program p such
that p and π(p) are equivalent, i.e., produce the same output. (For simplicity we consider programs with no input, but
this restriction does not really matter.) In other words, there is no guaranteed way to transform a given program p into
some other program π(p) that produces different output. As a sketch of the proof, first we note that the statement is
language-independent since we may use translations in both directions before and after π . Therefore, without loss of
generality, we may assume that the programming language has some special properties. First, we assume that it has
a function GetText() that returns the text of the program (or a pointer to a memory address where the program text
is kept). Second, we assume that the language contains an interpreter function Execute(string s) that interprets
the content of its string argument s as a program written in the same language. It is not difficult to develop such a
language and write an interpreter for it. Indeed, the interpreter can access the program text anyway, so it can copy
the text into some string variable. The interpreter also can recursively call itself with another program as an argument
when it sees the Execute call. If our language has these properties, it is easy to construct the fixed point for π: Just
take the program Execute(π(GetText())).

This theorem shows that a kind of self-reference, in which we write the program as if its full text is already given
to us, is still acceptable. A classical example is a program that prints its own text. The proof shows a way how to do
this by using a computation model where the immutable text of the program is accessible to it.

Constructing a self-similar tiling, we have the same kind of problems. We have already seen how to construct a
tile set τ that simulates a given tile set ρ . [Counterpart: It is easy to write a program that prints any given text.] What
we need is to construct a tile set that simulates itself. [Counterpart: What we need is to write a program that prints its
own text.]

Let us look again at our construction that transforms the description of ρ (a Turing machine that computes the
corresponding predicate) into a tile set τ that simulates ρ . Note that most rules of τ do not depend on the program
for R, dealing with information transfer along the wires, the vertical propagation of unchanged program bits, and
the space-time diagram for the universal Turing machine in the computation zone. Making these rules a part of ρ’s
definition (by letting k = 2logN + O(1) and encoding O(N2) colors by 2logN + O(1) bits), we get a program that
checks that macro-tiles behave like τ-tiles in this respect. Macro-tiles of the second level (“macro-macro-tiles”) made
of them would have the correct structure, wires that transmit bits to the computation zone, and even the record of some
computation in this zone, but this computation could have an arbitrary program. Therefore, at the third level all the
structure is lost.

What do we need to add to our construction to close the circle and get self-simulation? The only remaining part
of the rules for τ (not implemented yet at the level of macro-tiles) is the hard-wired program. We need to ensure that
macro-tiles carry the same program as τ-tiles do. For that our program (for the universal Turing machine) needs to
access the bits of its own text. As we have discussed, this self-referential action is in fact quite legal: The program is
written on the tape, and the machine can read it. The program checks that if a macro-tile belongs to the first line of the
computation zone, this macro-tile carries the correct bit of the program.

How should we choose N (hard-wired in the program)? We need it to be large enough so the computation described
above (which deals with O(logN) bits) can fit in the computation zone. Note that the computation never deals with
the list of tiles in τ or a truth table of the corresponding 4-ary relation on bit strings; all these objects are represented
by programs that describe them. The computation needs to check simple things only: that numbers in the 0, . . . ,N−
1 range on four sides are consistent with each other, that rules for wires and computation time-space diagram are
observed, that program bits on the next level coincide with actual program bits, etc. All these computations are rather
simple. They are polynomial in the input size, which is O(logN)), so for large N they easily fit in Ω(N) available time
and space.

This finishes the construction of a self-similar aperiodic tile set.
Remark. Let us also make a remark that will be useful later. We defined a tile set as a subset of C4, where C is

a set of colors. Using this definition, we do not allow different tiles to have the same colors on their sides. The only
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information carried by the tile is kept on its sides. However, sometimes a more general definition is preferable. We
can define a tile set as a finite set T together with a mapping of T into C4. Elements of T are tiles, and the mapping
tells us for each tile which colors it has on its four sides.

One can easily extend the notions of macro-tiles and simulation to this case. In fact, macro-tiles are well suited to
this definition since they already may carry information that is not reflected in the side macro-colors. The construction
of a self-similar tile set also can be adapted. For example, we can construct a self-similar tile set where each tile
carries an auxiliary bit, i.e., exists in two copies having the same side colors. Since the tile set is self-similar, every
macro-tile at every level of the hierarchy also carries one auxiliary bit, and the bits at different levels and in different
macro-tiles are unrelated to each other. Note that the total density of information contained in a tiling is still finite,
since the density of information contained in auxiliary bits assigned to high-level macro-tiles decreases with level as a
geometric sequence.

3. Implementing substitution rules

The construction of a self-similar tiling is rather flexible and can be easily augmented to get a self-similar tiling
with additional properties. Our first illustration is the simulation of substitution rules.

Let A be some finite alphabet and m > 1 be an integer. A substitution rule is a mapping s : A→ Am×m. This
mapping can be naturally extended to A-configurations. By A-configuration we mean an integer lattice filled with
A-letters, i.e., a mapping Z2 → A considered modulo translations. A substitution rule s applied to a configuration X
produces another configuration s(X) where each letter a ∈ A is replaced by an m×m matrix s(a).

We say that a configuration X is compatible with substitution rule s if there exists an infinite sequence

· · · s→ X3
s→ X2

s→ X1
s→ X ,

where Xi are some configurations. This definition was proposed in [26]. The classical definition (used, in particular,
in [23]) is slightly different: Configuration X : Z2→ A is said to be compatible with a substitution rule s if every finite
part of X occurs inside of some s(n)(a) (for some n ∈ N and some a ∈ A). We prefer the first approach since it looks
more natural in the context of tilings. However, all our results can be reformulated and proven (with some technical
efforts) for the other version of the definition; we do not go into details here.

Example 3. Let A = {0,1},
s(0) = (0 1

1 0), s(1) = (0 1
1 0).

It is easy to see that the only configuration compatible with s is the chess-board coloring where zeros and ones alternate
horizontally and vertically.

Example 4 (Fig. 4). Let A = {0,1},

s(0) = (0 1
1 0), s(1) = (1 0

0 1).

One can check that all configurations that are compatible with this substitution rule (called Thue–Morse configurations
in the following) are aperiodic. (In Section 4 we will prove a stronger version of this fact.) One may note, for example,
that every configuration compatible with this substitution rule can be uniquely decomposed into disjoint 2×2 blocks
(0 1

1 0) and (1 0
0 1) by vertical and horizontal lines; since neighbor cells of the same color should be separated by one of

those lines, the position of the lines is unique. Then, we can apply the argument from Proposition 1 (with N = 2).
The following theorem goes back to Mozes [23]. It says that every substitution rule can be enforced by a tile set.

Theorem 3. Let A be an alphabet and let s be a substitution rule over A. Then, there exist a tile set τ and a mapping
e : τ → A such that

(a) the e-image of any τ-tiling is an A-configuration compatible with s;
(b) every A-configuration compatible with s can be obtained in this way.

A nice proof of this result for 2×2 substitutions is given in [26], where an explicit construction of a tile set τ for
every substitution rule s is provided. We prove this theorem using our fixed-point argument. In this way we avoid the
boring technical details; but the tile sets that can be extracted from our proof contain a huge number of tiles.
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→ → →

Figure 4: Three steps of Thue–Morse substitution.

Proof. . Let us modify the construction of the tile set τ (with zoom factor N) by taking s into account. First consider
a very special case when

• the substitution rule maps each A-letter into an N×N matrix (i.e., m = N) and

• the substitution rule is easy to compute: Given a letter u ∈ A and (i, j), we can compute the (i, j)-th letter of s(u)
in a time much less than N.

In this case we proceed as follows. In our basic construction every tile knows its coordinates in the macro-tile and
some additional information needed to arrange “wires” and simulate calculations of the universal Turing machine.4

Now, in addition to this basic structure, each tile keeps two letters of A. The first is the label of a tile itself, and the
second is the label of the N×N macro-tile it belongs to. This means that we keep additional 2 log |A| bits in each tile,
i.e., multiply the number of tiles by |A|2. It remains to explain how the local rules work. We add two requirements:

(i) The second letter is the same for neighbor tiles (unless they are separated by a border of some N×N macro-tile).
This constraint can be easily enforced by colors on sides of tiles. We multiply the number of colors in our basic
construction by |A|; now each color of the new construction is a pair: its first component is a color from the
basic construction and its second component is a letter of A. The second component of the new color guarantees
that every two neighbor tiles keep the same “father” letter (unless these tiles are separated by a border and do
not belong to the same father macro-tile, in which case we do not exhibit the letter to those borders).

(ii) The first letter in a tile is determined by the second letter and the coordinates of the tile inside the macro-tile,
according to the substitution rule. Indeed, each tile “knows” its coordinates in a macro-tile. Therefore, its first
letter must appear in s(second letter) at the corresponding position. We do not need to extend the set of colors
to enforce this property. This requirement is only a restriction on tiles. It explains which combinations

〈coordinates in the father macro-tile,first letter,second letter〉

can be combined in one tile of our tile set.5

4We use this anthropomorphic terminology in the hope it makes the proof more intuitive. By saying “each tile knows its coordinates,” we
mean that the tile set is split into N2 disjoint groups; each group corresponds to tiles that appear in one of N2 positions in the macro-tiles. The
correct positioning of the tiles is ensured (as we have seen) by side colors. The self-similarity guarantees that the same is true for macro-tiles,
where the group (i.e., the coordinates in a macro-tile of the next level) is determined by the content of the computation zone and corresponding bits
(macro-colors) on the sides.

5A natural question arises: What does it mean to add a letter that is determined by other information? Adding a letter means that we create |A|
copies of the same tile (with different letters); but then, the restriction prohibits all of them except one, so is there any change at all? In fact, the
actual change is occurring on higher levels: We want the macro-tiles to have both letters written on the tape as binary strings (in some prearranged
places). This is important for checking consistency between levels.
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We want the new tile set to be self-similar. Therefore, we should guarantee that the requirements (i) and (ii) hold
also for macro-tiles. Fortunately, both requirements are easy to integrate in our basic self-referential construction. In
each macro-tile, two letters of A are encoded by strings of bits in some specially reserved locations on the tape of the
Turing machine (simulated in the computation zone of this macro-tile). Requirement (i) is enforced by adding extra
log |A| bits to macro-colors; to achieve (ii), a macro-tile should check that its first letter appears in s(second letter) at
the required position. This is possible when s is easy to compute. (Knowing the coordinates and the second letter, the
program computes the required value of the first letter and then compares it with the actual value.)

Requirements (i) and (ii) ensure that if we take first letters from A assigned to each tile, we get an A-configuration
that is an s-image of some other configuration. Also (because of self-similarity) we have the same property on the
level of macro-tiles. But this is not enough. We need to guarantee that the first letter on the level of macro-tiles is
identical to the second letter on the level of tiles. This is also achievable. The first letter of a macro-tile is encoded
by bits in its computation zone, and we can require that those bits match the second letter of the tiles at that place.
(Recall that the second letter is the same across the tiles that constitute one macro-tile; note also that each tile “knows”
its coordinates and can determine whether it is in the zone for the first letter in the macro-tile and which bit should be
there.) By self-similarity, the same arguments work for macro-tiles of all levels. It is easy to see that now the tile set τ

has the required properties (each tiling projects into a configuration compatible with s and vice versa).
However, this construction assumes that N (the zoom factor) is equal to the matrix size in the substitution rule,

which is usually not the case. In fact, usually the value of m (a parameter of the substitution rule) is fixed in advance,
and we have to choose N, which needs to be large enough. To overcome this difficulty, we let N be equal to mk for
some k, and we use the substitution rule sk, i.e., the kth iteration of s (a configuration is compatible with sk if and
only if it is compatible with s). Now we do not need s to be easily computable: For every s, if k is large enough, the
computation of sk will fit into the available space (exponential in k).

4. The Thue–Morse lemma and strongly aperiodic tile sets

Let α > 0 be a real number. We say that a configuration U : Z2→ A is α-aperiodic if for every nonzero vector T ∈
Z2 there exists N such that in every square whose side is at least N the fraction of points x such that U(x) 6= U(x+T )
exceeds α .

Remark. If U is α-aperiodic, then the Besicovitch distance between U and any periodic pattern is at least α/2.
(The Besicovitch distance between two configurations is defined as limsupN dN , where dN is the fraction of points
where two configurations differ in the N×N centered square. It is easy to see that the distance does not depend on the
choice of the center point.)

Theorem 4. There exists a tile set τ such that τ-tilings exist and every τ-tiling is α-aperiodic for every α < 1/4.

Proof. The proof is obtained by applying Theorem 3 to the Thue–Morse substitution rule T (Example 4). Let C be a
configuration compatible with T . We have to show that C is α-aperiodic for every α < 1/4. It is enough to prove that
every configuration compatible with the Thue–Morse substitution rule is α-aperiodic.

Informally, we can reduce the statement to the one-dimensional case, since Thue–Morse substitution is an xor-
combination of two one-dimensional substitutions. Here are the details.

Consider a one-dimensional substitution system with two rules, 0→ 01 and 1→ 10. Applying these rules to 0 and
1, we get

0→ 01→ 0110→ 01101001→ . . . ,

1→ 10→ 1001→ 10010110→ . . .

Let an and bn be the nth terms in these sequences (a0 = 0, a1 = 01, . . . , b0 = 1, b1 = 10, etc.); it is easy to see that
an+1 = anbn and bn+1 = bnan.

For some n we consider the xor-combination of these strings, where the (i, j)-th bit is xor of the ith bit in the first
string and the jth bit in the second string. Since bn is a bitwise negation of an, we get only two different combinations
(one obtained from two copies of an or two copies of bn, and the other obtained from different strings), which are
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bitwise opposite. It is easy to see (e.g., by induction) that these two square patterns are images of 0 and 1 after n steps
of two-dimensional Thue–Morse substitution.

To prove the statement for aperiodicity of the Thue–Morse configuration, we start with an estimate for (one-
dimensional) aperiodicity of an and bn:

Lemma 1 (folklore). For any integer u > 0 and for any n such that u≤ |an|/4 the shift by u steps to the right changes
at least |an|/4 positions in an and leaves unchanged at least |an|/4 positions. (Formally, in the range 1, . . . ,(2n− u)
there exist at least (1/4) · 2n positions i such that the ith and the (i + u)-th bits in an coincide and at least (1/4)2n

positions where these bits differ.)

Proof. String an can be represented as abbabaab, where a = an−3 and b = bn−3. One may assume without loss of
generality that u≥ |a| (or otherwise we apply Lemma 1 separately to the two halves of an). Note that ba appears in the
sequence twice: once preceded by a copy of a and once preceded by a copy of b. Since these copies have opposite bits,
the shifted bits match in one of the cases and do not match in the other one. The same is true for ab, which appears
preceded both by a and b.

Now consider a large N ×N square in a two-dimensional Thue–Morse configuration and some shift vector T .
We assume that N is much bigger than components of T (since we are interested in the limit behavior as N → ∞).
Moreover, we may assume that some power of 2 (let us call it m) is small compared to N and large compared to T .
Then, the N×N square consists of a large number of m×m Thue–Morse blocks and some boundary part (which can
be ignored by changing α slightly). Then, we can consider each m×m block separately to estimate the fraction of
positions that are changed by the T -shift. If T is horizontal or vertical, we can use the statement of the lemma directly:
At least 1/4 of all positions are changed. If not (i.e., if the shift has two nonzero components), we are interested in
the probability of some event that is an xor combination of two independent events with probabilities in the interval
(1/4,3/4). It is easy to check that such an event also has probability in (1/4,3/4) (in fact, even in (3/8,5/8), but we
do not need this stronger bound).

Theorem 4 is proved.

In fact, the bound 1/4 can be replaced by 1/3 if we use a more professional analysis of the Thue–Morse sequence
(see, e.g., [32]). However, if we want to get the strongest result of this form and make the bound close to 1, this
substitution rule does not work. We can use some other rule (in a bigger alphabet) as Pritykin and Ulyashkina have
shown [27], but we prefer to give another construction with variable zoom factors (see Section 6).

5. Variable zoom factor

The fixed-point construction of an aperiodic tile set is flexible enough and can be used in other contexts. For
example, the “zoom factor” N could depend on the level. This means that instead of one tile set τ we have a sequence
of tile sets τ0,τ1,τ2, . . ., and instead of one zoom factor N we have a sequence of zoom factors N0,N1, . . .. The tile set
τ0 simulates τ1 with zoom factor N0, the tile set τ1 simulates τ2 with zoom factor N1, etc.

In other words, τ0-tilings can be uniquely split (by horizontal and vertical lines) into N0×N0 macro-tiles from
some list, and the macro-tiles in this list are in one-to-one correspondence (which respects matching rules) with τ1. So
τ0-tilings are obtained from τ1-tilings by replacing each τ1-tile by the corresponding τ0-macro-tile, and each τ0-tiling
has a unique reconstruction.

Further, every τ1-tiling can be split into macro-tiles of size N1×N1 that correspond to τ2-tiles. So after two steps
of zooming out, every τ0-tiling looks like a τ2-tiling; only a closer look reveals that each τ2-tile is in fact a τ1-macro-
tile of size N1×N1, and an even closer look is needed to realize that every τ1-tile in these macro-tiles is in fact a
τ0-macro-tile of size N0×N0.

For such a τ0-tiling we can say that it consists of level 1 macro-tiles of size N0×N0 (isomorphic to τ1); at the same
time it consists of level 2 macro-tiles of size N0N1×N0N1 (isomorphic to τ2), etc.

This is what we want to achieve (together with other things needed to get the tile set with desired properties). How
do we achieve this? Each macro-tile should “know” its level: A macro-tile that simulates a τk-tile and is made of
τk−1-tiles, should have k in some place on the tape of the Turing machine simulated in this macro-tile. To make this
information consistent between neighbors, k is exhibited as a part of the macro-colors at all four sides. The value of
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k is used for the computations. Macro-colors on the sides of a macro-tile encode the coordinates of this macro-tile
inside its father, and the computation should check that they are consistent modulo Nk (i.e., the x coordinate on the
right side should be equal to the x coordinate on the left side plus 1 modulo Nk, etc.). This means that Nk should be
computable from k; moreover, it should be computable fast enough to fit into the computation zone (which carries
only Θ(Nk−1) steps of computation). After Nk is computed, there should be enough time to perform the arithmetic
operations modulo Nk, and so on.

Let us look at these restrictions more closely. We need to keep both k and the coordinates (modulo Nk) on the tape
of level k macro-tiles, and logk +O(logNk) bits are required for that. Both logk and logNk should be much less than
Nk−1, so all the computations could fit in the available time frame. This means that Nk should not increase too fast
or too slowly. Say, Nk = logk is too slow (in this case k occupies almost all available space in macro-tiles of level
k−1, and we do not have enough time even for simple computations), and Nk = 2Nk−1 is too fast (in this case logNk
is too large compared to time and space available on the computation zone of a macro-tile of level k). Also we need
to compute Nk when k is known, so we assume that not only the size of Nk (i.e., logNk) but also the time needed to
compute it (given k) is small compared to Nk−1. These restrictions still allow many possibilities: Say, Nk could be
proportional to

√
k, k, 2k, 2(2k), or k! Note that we say “proportional” since Nk needs to be reasonably large even for

small k (we need some space in the macro-tile for wires and all our estimates for computation time are not precise but
only asymptotic, so we need some reserve for small k).

There is one more problem: It is not enough to ensure that the value of k is the same for neighbor macro-tiles.
We also need to ensure that this value is correct, i.e., is 1 for level 1 macro-tiles made of τ0-tiles, is 2 for level 2
macro-tiles made of τ1-tiles, etc. To guarantee this, we need to compare somehow the level information that is present
in a macro-tile and its sons. Using the anthropomorphic terminology, we say that each macro-tile “knows” its level,
since it is explicitly written on its tape, and this is, so to say, “conscious” information processed by a computation in
the computation region of the macro-tile. One may say also that a macro-tile of any level contains “subconscious”
information (“existing in the mind but not immediately available to consciousness” [33]). This is the information
that is conscious for its sons, grandsons, and so on (all the way down to the ground level). The problem is that the
macro-tile cannot check consistency between conscious and subconscious information since the latter is unavailable
(the problem studied by psychoanalysis in a different context).

The solution is to check consistency in the son, not in the father. Every tile knows its level and also knows its
position in its father. So it knows whether it is in the place where its father should keep level bits, and it can check
whether indeed the level bit that its father keeps in this place is consistent with the level information the tile has. (In
fact we used the same trick when we simulated a substitution rule: A check that the father letter of a tile coincides
with the letter of the father tile is done in the same way.) The careful reader will also note here that now the neighbor
tiles will automatically have the same level information, so there is no need to check consistency between neighbors.

This kind of “self-similar” structure with variable zoom factors can be useful in some cases. Though it is not self-
similar according to our definition, one can still easily prove that any tiling is aperiodic. Note that now the computation
time for the Turing machine simulated in the central part increases with level, and this can be used for a simple proof
of undecidability of the domino problem. The problem in the standard proof (based on the self-similar construction
with fixed zoom factor) is that we need to place computations of unbounded size into this self-similar structure, and
for that we need special geometric tricks (see [1, 3]). With our new construction, if we want to reduce an instance of
the halting problem (some machine M) to the domino problem, we add to the program embedded in our construction
the parallel computation of M on the empty tape; if it terminates, this destroys the tiling.

In a similar way we can show that the existence of a periodic tiling is an undecidable property of a tile set, and,
moreover, the tile sets that admit periodic tilings and tile sets that have no tilings form two inseparable sets (another
classical result; see [15]). Recall that two sets A and B are called (computably) inseparable if there is no computable
set C such that A⊂C and B∩C = /0.

Here is an example of a more exotic version of the latter result (which probably is of no interest in itself but just
serves as an illustration of the technique). We say that a tile set τ is m-periodic if τ-tilings exist and for each of them
the set of periods is the set of all multiples of m, in other words, if the group of periods is generated by (0,m) and
(m,0). Let E [respectively O] be all m-periodic tile sets for all even m [respectively odd m].

Theorem 5. The sets E and O are inseparable enumerable sets.

13



Proof. It is easy to see that the property “to be an m-periodic tile set” is enumerable (both the existence of an m-
periodic tiling and enforcing periods (m,0) and (0,m) are enumerable properties).

It remains to reduce some standard pair of inseparable sets (say, machines that terminate with output 0 and 1) to
(E,O). It is easy to achieve this by using the technique explained above. Assume that the numbers Nk increase, being
odd integers as long as the computation of a given machine does not terminate. When and if it terminates with output
0 [respectively 1], we require periodicity with odd [respectively even] period at the next level.

Another application of a variable zoom factor is the proof of the following result obtained by Lafitte and Weiss
(see [20]) using a Turing machine simulation inside a Berger–Robinson construction.

Theorem 6. Let f be a total computable function whose arguments and values are tile sets. Then, there exists a tile
set τ that simulates a tile set f (τ).

Here we assume that some computable encoding for tile sets is fixed. Since there are no restrictions on the
computation complexity of f , the choice of the encoding is not important.

Proof. Note that for identity function f this result provides the self-simulating tile set of Section 2.3. To prove it in
the general case, we may use the same kind of fixed-point technique. However, there is a problem: The computation
resources inside a tile are limited (by its size) while time needed to compute f can be large (and, moreover, depends
on the tile size).

The solution is to postpone the simulation to large levels. If a tile set τ0 simulates τ1, which simulates τ2, which
simulates, etc., up to τn, then τ0 simulates τn, too. Therefore we may proceed as follows.

We use the construction explained above with a variable zoom factor. Additionally, at each level the computation
starts with a preliminary step that may occupy up to (say) half of the available time. On this step we read the program
that is on the tape and convert it into the tile set. (Recall that each program determines some tile set τ0 such that
τ0-tilings can be uniquely split into macro-tiles, and this program is written on a read-only part of the tape simulated
in the computation zone of all macro-tiles, as was explained in Section 2.2.) Then, we apply f to the obtained tile set.

This part of the computation checks also that it does not use more than half of the available time and that the
output is small enough compared to the macro-tile size. If this time turns out to be insufficient or the output is too big,
this part is dropped and we start a normal computation for the variable zoom factor, as explained above. In this case,
the zoom factor on the next level should be greater than the zoom factor on the current level (e.g., we may assume
Nk = Ck for some large enough constant C). However, if the time is large enough and the result (the list of tiles that
corresponds to f ’s output) is small compared to the macro-tile size, we check that the macro-tile (of the current level)
belongs to the tile set computed. The hierarchy of macro-tiles stops at this level. The behavior of macro-tiles at this
level depends on f : They are isomorphic to f (τ0)-tiles. Since the program is the same at all levels and the computation
of f should be finite (though may be very long), at some (big enough) level the second possibility is activated, and we
get a macro-tile set isomorphic to f (τ), where τ is the tile set on the ground level.

Another application of the variable zoom factor technique is the construction of tile sets with any given computable
density. Assume that a tile set is given and, moreover, that all tiles are divided into two classes, say, A-tiles and B-tiles.
We are interested in a fraction of A-tiles in a tiling of an entire plane or its large region. If the tile set is flexible
enough, this fraction can vary. However, for some tile sets this ratio tends to a limit value when the size of a tiled
region increases. This phenomenon is captured in the following definition: We say that tile set τ divided into A- and
B-tiles has a limit density α if for every ε > 0 there exists N such that for any n > N the fraction of A-tiles in any tiling
of the n×n square is between α− ε and α + ε .

Theorem 7. (i) If a tile set has a density α , then α is a computable real number in [0,1]. (ii) Any computable real
number α ∈ [0,1] is a density of some tile set.

Proof. The first part of the proof is a direct corollary of the definitions. For each n we can consider all tilings of
the n× n square and look for the minimal and maximal fractions of A-tiles in them. Let us denote the minimal and
maximal fractions by mn and Mn respectively. These rational numbers are computable given n. It is easy to see that
the limit frequency (if it exists) is in the interval [mn,Mn]. Indeed, in a large square split into squares of size n×n the
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fraction of A-tiles is between mn and Mn, being at the same time arbitrarily close to α . Therefore, α is computable (to
get its value with precision ε , we increase n until the difference between Mn and mn becomes smaller than ε).

It remains to prove (ii). Since α is computable, there exist two computable sequences of rational numbers li and ri
that converge to α in such a way that

[l1,r1]⊃ [l2,r2]⊃ [l3,r3]⊃ ·· · .
Our goal will be achieved if macro-tiles of the first level have density of either l1 or r1, macro-macro-tiles of the second
level have density of either l2 or r2, and so on. Indeed, each large square can be split into macro-tiles (and the border
that does not change the density much), so in any large square the fraction of A-tiles is (almost) in [l1,r1]. The same
argument works for macro-macro-tiles, etc.

However, this plan cannot be implemented directly. The main difficulty is that the computation of li and ri may
require a lot of time whereas the computation abilities of macro-tiles of level i are limited. (We use variable zoom
factors, e.g., we may let Nk = Ck, but they cannot grow too fast.)

The solution is to postpone the switch from densities li and ri to densities li+1 and ri+1 to the higher level of the
hierarchy where the computation has enough time to compute all these four rational numbers and find out in which
proportion li- and ri-tiles should be mixed in li+1- and ri+1-tiles. (We need the denominators in both fractions li+1 and
ri+1 to be equal to the number of i-level macro-tiles in the (i + 1)-level macro-tile, but this restriction can always be
satisfied by a slight change in the sequences lk and rk, which leaves α unchanged.) So, we allocate, say, the first half
of the available time for a controlled computation of all these values; if the computation does not finish in time, the
densities for the next level are the same as for the current level. (We require that all macro-tiles in the same father
tile have the same density, either li or ri). If the computation terminates in time, we use the result of the computation
to have two types of the next level tiles: one with density li+1 and one with density ri+1. They are made by using
prescribed amounts of li- and ri-tiles. (Since each tile knows its coordinates, it can find out whether it should be of the
first or second type.) This finishes the construction.

6. Strongly aperiodic tile sets revisited

In Section 4 we constructed a tile set such that every tiling is α-aperiodic for every α < 1/4. Now we want to
improve this result and construct a tile set such that every tiling is, say, 0.99-aperiodic (here 0.99 can be replaced
by any constant less than 1). It is easy to see that this cannot be achieved by the same argument, with Thue–Morse
substitutions, nor with any substitutions in a two-letter alphabet; we need a large alphabet to make the constant close
to 1.

It is possible to achieve 0.99-aperiodicity with a carefully chosen substitution rule (in a bigger alphabet), as recently
proposed by Pritykin and Ulyashkina [27], by just applying Theorem 3 (similarly to the argument for the Thue–Morse
substitution presented in Section 4). In this section we present an alternative proof of this result. We exploit substitution
rules with variable zoom factors (and different substitutions on each level) and use the idea of an error-correcting code.

Instead of one single alphabet, A, we now consider an infinite sequence of finite alphabets, A0,A1,A2, . . .; the
cardinality of Ak will grow as k grows. Then, we consider a sequence of mappings:

s1 : A1→ AN0×N0
0 , s2 : A2→ AN1×N1

1 , s3 : A3→ AN2×N2
2 , . . . ,

where N0,N1,N2, . . . are some positive integers (zoom factors); Nk will increase as k increases.
Then, we can compose these mappings. For example, a letter z in A2 can be first replaced by an N1×N1 square

s2(z) filled by A1-letters. Then, each of these letters can be replaced by an N0×N0 square filled by A0-letters according
to s1, and we get an N0N1×N0N1 square filled by A0-letters; we denote this square by s1(s2(z)) (slightly abusing the
notation).

We call all this (i.e., the sequence of Ak, Nk, sk) a substitution family. Such a family defines a class of A0-
configurations compatible with it (in the same way as in Section 3). Our plan is to construct a substitution family such
that

• every configuration compatible with this family is 0.99-aperiodic, and

• there exists a tile set and projection of it onto A0 such that only compatible configurations (and all compatible
configurations) are projections of tilings.
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In other words, we use the same argument as before (proving Theorem 4) but use a substitution family instead of
one substitution rule. This substitution family will have two special properties:

A. Symbols used in different locations are different. This means that Ak-letters that appear in a given position of the
squares sk+1(z) for some z ∈ Ak+1 never appear in any other places of these squares (for any z); thus, set Ak is
split into Nk×Nk disjoint subsets used for different positions in Nk×Nk squares.

B. Different letters are mapped to squares that are far away in terms of Hamming distance. This means that if
z,w ∈ Ak+1 are different, then the Hamming distance between images sk+1(z) and sk+1(w) is large: The fraction
of positions in the Nk×Nk square, where si+1(z) and si+1(w) have equal letters does not exceed εk.

Here εi will be a sequence of positive reals such that ∑i≥0 εi < 0.01.

This implies that composite images of different letters are also far apart. For example, the fraction of positions in
the N0N1×N0N1 square where s1(s2(z)) and s1(s2(w)) coincide does not exceed ε0 + ε1 < 0.01. Indeed, in s2(z) and
s2(w) we have at most ε1-fraction of matching letters; these letters generate ε1-fraction of matching A0-letters on the
ground level; all other (nonmatching) pairs add ε0-fraction. In fact, we get even a stronger bound 1− (1−ε0)(1−ε1).

For the same reasons, if we take two different letters in Ak and then drop to the ground level and obtain two squares
of size N0N1 · · ·Nk−1×N0N1 · · ·Nk−1 filled by A0-letters, the fraction of coincidences is at most ε0 + · · ·+εk−1 < 0.01.

This property of the substitution family implies the desired property:

Lemma 2. If an A0-configuration U is compatible with a substitution family having properties (A) and (B), then U is
0.99-aperiodic.

Proof. Consider a shift vector T . If T is not a multiple of N0 (one of the coordinates is not a multiple of N0), then
property (A) guarantees that the original configuration and its T shift differ everywhere. Now assume that T is a
multiple of N0. Then, T induces a (T/N0)-shift of an A1-configuration U1 that is an s1-preimage of U . If T is not a
multiple of N0N1, then T/N0 is not a multiple of N1 and for the same reason this (T/N0)-shift changes all the letters
in U1. Different letters in A1 are mapped to N0×N0 squares that coincide in at most ε0-fraction of positions.

If T is a multiple of N0N1 but not N0N1N2, we get a T/(N0N1) shift of A2-configuration U2 that changes all
its letters, and different letters give squares that are 1− (ε0 + ε1) apart. The same argument works for the higher
levels.

It remains to construct a substitution family that has properties (A) and (B) and can be enforced by a tile set.
Property (B) (large Hamming distance) is standard for coding theory, and the classical tool is the Reed–Solomon code.

Let us recall the idea of the Reed–Solomon code (for details see, e.g., [4]). The codewords of the Reed–Solomon
code are tables of (values of) polynomials of bounded degree. More precisely, we fix some finite field Fq of size q
and an integer d > 0. Let p(x) = a0 + a1x + · · ·+ ad−1xd−1 be a polynomial over Fq of degree less than d. Then the
codeword corresponding to p(x) (i.e., the encoding of the sequence a0, . . . ,ad−1) is a vector in (Fq)q (i.e., a sequence
of q elements of the field), which consists of the values of this polynomial computed at all points x ∈ Fq. Thus, for
given parameters d and q, the code consists of qd codewords. Since two polynomials of degree less than d can coincide
in at most (d− 1) points, the distance between any two codewords is at least q− d + 1. Of course, this construction
can be used even if the desired length of the codewords is not a size of any finite field; we can choose a slightly larger
field and use only part of its elements.

Now we embed these codes in a family of substitution rules. First, let Bk be a finite field (the size of which is
specified below) and let Ak be equal to Bk ×{0,1, . . . ,Nk − 1}× {0,1, . . . ,Nk − 1}; let us agree that we use letters
〈b, i, j〉 only in the (i, j)-position of an sk+1-image. This trivially implies requirement (A).

Then, we construct a code that encodes each Ak+1-letter w by a string of length N2
k made of Bk-letters (arranged in
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a square); adding the coordinates, we get the sk+1-image of w. Thus, we need a sequence of codes:

s1 : A1→ BN0×N0
0 , such that s1(w) and s1(w′) coincide at most in ε0 fraction

of all positions (if w 6= w′),

s2 : A2→ BN1×N1
1 , such that s2(w) and s2(w′) coincide at most in ε1 fraction

of all positions (if w 6= w′),
. . . .

To satisfy requirement (B), we need a code with the Hamming distance (between every two codewords) at least
(1−εk)N2

k . The Reed–Solomon code works well here. The size of the field can be equal to the length of the codeword,
i.e., N2

k . Let us decide that Nk is a power of 2 and the size of the field Bk is exactly N2
k . (There are fields of size 2t

for every t = 1,2,3, . . .; we could also use Z/pZ for prime p of an appropriate size.) To achieve the required code
distance, we use polynomials of degree less than εkN2

k . The number of codewords (polynomials of degree less than
εkN2

k ) is at least 2εkN2
k (even if we use only polynomials with coefficients 0 and 1). This is enough if

|Ak+1| ≤ 2εkN2
k .

Recalling that |Ak+1|= |Bk+1| ·N2
k+1 and that Bk+1 is a field of size N2

k+1, we get the inequality

N4
k+1 ≤ 2εkN2

k , or 4 logNk+1 ≤ εkN2
k .

Now let Nk = 2k+c for some constant c; we see that for large enough c this inequality is satisfied for εk with sum less
than 0.01 (or any other constant), since the left-hand side is linear in k while the right-hand side is exponential.

Now it remains to implement all this scheme using tiling rules. As we have discussed, the zoom factor Nk = 2k+c

is acceptable for the construction. This factor leaves enough space to keep on the tape two substitution letters (for the
tile itself and its father tile), since these letters require linear size (in k). Moreover, we have enough time to perform the
computations in the finite fields needed to construct the error-correction code mappings. Indeed, in a k-level macro-tile
we are allowed to use exponential (in the bit size of the field element) time. Recall that one can operate with elements
in the field of size 2r using polynomial (in r) time; to this end, we need to construct some irreducible polynomial p of
degree r over the field of two elements and then perform arithmetic operations (on polynomials) modulo p. All these
operations can be done by deterministic algorithms in polynomial time (see, e.g., [22]). Thus, we can reuse here the
construction of the proof of Theorem 3.

The construction above works with every constant α < 1 instead of 0.99. So, we get a stronger version of Theo-
rem 4:

Theorem 8. For every α < 1 there exists a tile set τ such that τ-tilings exist and every τ-tiling is α-aperiodic.

Remark. We can also get an α-aperiodic tile set (for every α < 1) as a corollary of the result of the next section;
indeed, we construct there a tile set such that any tiling embeds a horizontal sequence with high-complexity substrings,
and such a sequence cannot match itself well after a shift (in fact, to get α-aperiodicity we would need to replace a
binary alphabet by a larger finite alphabet in this argument). We can superimpose this with a similar 90◦-rotated
construction; then, any nonzero translation will shift either a vertical or a horizontal sequence and therefore change
most of the positions. Note that in this way we can also get a tile set that is α-far from every periodic pattern (a slightly
different approach to defining “strong aperiodicity”). However, the arguments used in Section 7 are more complicated
than the proof of this section. So we preferred to present here a simpler and more direct proof of Theorem 8.

7. Tile sets with only complex tilings

In this section we provide a new proof of the following result from [7]:

Theorem 9. There exist a tile set τ and constants c1 > 0 and c2 such that τ-tilings exist and in every τ-tiling T every
N×N square has Kolmogorov complexity at least c1N− c2.
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Here Kolmogorov complexity of a tiled square is the length of the shortest program that describes this square. We
assume that programs are bit strings. Formally speaking, Kolmogorov complexity of an object depends on the choice
of programming language. (Consult [30] for the definition and properties of Kolmogorov complexity.) However, in
our case the choice of programming language does not matter, and you may think of Kolmogorov complexity of an
object as the length of the shortest program in your favorite programming language that prints out this object. We
need to keep in mind only two important properties of Kolmogorov complexity. First, the Kolmogorov complexity
function is not computable, but it is upper semicomputable. This means that there is an algorithm that for a given n
enumerates all objects that have complexity less than n. The enumeration can be done by a brute force search over all
short descriptions. We cannot say in advance which programs stop with some output and which do not, but we can
run all programs of length less than n in parallel, and enumerate the list of their outputs, as some programs terminate.
Second, any computable transformation (e.g., the change of encoding) changes Kolmogorov complexity at most by
O(1). We refer to [7] for a discussion of Theorem 9 (why it is optimal, why the exact value of c1 does not matter, etc.)
and other related results.

7.1. A biinfinite bit sequence

Proof. We start the proof in the same way as in [7]: We assume that each tile keeps a bit that propagates (unchanged)
in the vertical direction. Then, any tiling contains a biinfinite sequence of bits ωi (where i ∈ Z). Any N×N square
contains an N-bit substring of this string, so if (for large enough N) every N-bit substring of ω has complexity at least
c1N for some fixed c1, we are done.

We say that a sequence ω has Levin’s property if every N-bit substring x of ω has complexity Ω(N). Such a
biinfinite sequence indeed exists (see [7]; another proof can be obtained by using the Lovasz local lemma; see [29]). So
our goal is to formulate tiling rules in such a way that a correct tiling “ensures” that the biinfinite sequence embedded
in it indeed has this property.

The set of all “forbidden” binary strings, i.e., strings x such that K(x) < c1|x|− c2 (where K(x) denotes the Kol-
mogorov complexity of x, and |x| denotes the length of x) is enumerable: There is an algorithm that generates the
list of all forbidden substrings. It would be nice to embed into the tiling a computation that runs this algorithm and
compares its output strings with the substrings of ω; such a computation blows up (creates a tiling error) if a forbidden
substring is found.

However, there are several difficulties.

• Our self-similar tiling contains only finite computations. The higher is rank k, the bigger are the k-level macro-
tiles, and the longer computations they can contain. But at any level the computation remain finite. This is a
problem since for a given string x we do not know a priori how much time the shortest program for x uses, so we
never can be sure that the Kolmogorov complexity of x is large. Hence, each substring of ω should be examined
in computations somehow distributed over infinitely many macro-tiles.

• The computation at some level deals with bits encoded in the cells of that level, i.e., written on the computation
tape. So the computation cannot access the bits of the sequence (that are “deep in the subconscious”) directly
and some mechanism to dig them out is needed.

Let us explain how to overcome these difficulties.

7.2. Delegation of bits

A macro-tile of level k is a square whose side is Lk = N0 ·N1 · · ·Nk−1, so there are Lk bits of the sequence that
intersect this macro-tile. Let us delegate each of these bits to one of the macro-tiles of level k it intersects. (We do it
for every k.) Note that the macro-tile of the next level is made of Nk×Nk macro-tiles of level k. We assume that Nk
is much bigger than Lk (see the end of this subsection for more details on the choice of Nk); this guarantees that there
are enough macro-tiles of level k (in the next level macro-tile) to serve all bits that intersect them. Let us decide that
the ith (from bottom to top) macro-tile of level k in a (k+1)-level macro-tile serves (consciously knows, so to say) the
ith bit (from the left) in its zone (see Fig. 5). Since Nk � Lk, we have many more macro-tiles of level k (inside some
macro-tile of level k +1) than needed to serve all bits. So some k-level macro-tiles remain unused.
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Figure 5: Bit delegation.

Thus, each bit (each vertical line) has a representative on every level—a macro-tile that consciously knows this bit.
However, we need some mechanisms that guarantee that this information is indeed true (i.e., consistent on different
levels). On the bottom level this is easy to achieve, since the bits are available directly.

To guarantee the consistency we use the same trick as in Section 3: At each level a macro-tile keeps not only its
own bit but also its father’s bit, and makes necessary consistency checks. Namely, each macro-tile knows (has on its
computation tape):

• the bit delegated to this macro-tile;

• the coordinates of this macro-tile in its father macro-tile (which are already used in the fixed-point construction);
note that the y-coordinate is at the same time the position of the bit delegated to this macro-tile (relative to the
left boundary of the macro-tile);

• the bit delegated to the father of this macro-tile; and

• the coordinates of the father macro-tile in the grandfather macro-tile.

This information is subject to consistency checks:

• The information about the father macro-tile should coincide with the same information in the neighbor tiles
(unless they have a different father, i.e., one of the coordinates is zero).

• If the bit delegated to the father macro-tile is from the same vertical column as the bit delegated for this macro-
tile, these two bits should match.

• If the macro-tile occupies a place in its father macro-tile where the bit delegated to the father or some bits of the
father’s coordinates (inside the grandfather macro-tile) are kept, then this partial information on the father level
should be should be consistent with the information about father coordinates and bit.

These tests guarantee that the information about the father is the same in all brothers, and some of these brothers
(which are located on the father tape) can check it against actual father information; at the same time some other
brother (that has the same delegated bit as the father) checks the consistency of the delegated bits information.

Note that this scheme requires that not only logNk but also logNk+1 is much less than Nk−1. This requirement,
together with the inequality Lk = N0N1 · · ·Nk−1 ≤ Nk (discussed earlier), is satisfied if Nk = Qck

, where Q is a large
enough constant (which is needed also to make macro-tiles of the first level large enough) and c > 2 (so 1 + c + c2 +
· · ·+ ck−1 < ck).
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Later, in Section 13, the choice of c has to be reconsidered: We need 2 < c < 3 to achieve error correction, but for
our current purposes this does not matter.

7.3. Checking bit blocks

We explained how macro-tile of any level can have true information about one bit (delegated to it). However, we
need to check not bits but substrings (and artificially introduce a tiling error if a forbidden string appears). Note that it
is acceptable to test only very short substrings compared to the macro-tile size (Nk). If this test is done on all levels,
this restriction does not prevent us from detecting any violation. (Recall that short forbidden substrings can appear
very late in the generation process, so we need computation at arbitrary high levels for this reason, too.)

So we need to provide more information to macro-tiles. This can be done in the following way. Let us require that
a macro-tile contains not one bit but a group of bits to check: a group of bits that starts at the delegated bit and has
length depending on the level k (and growing very slowly with k; e.g., log loglogk is slow enough). If this group is not
completely inside a macro-tile (i.e., it extends out of the region occupied by the macro-tile), we ignore the outstanding
part.

Similarly, a macro-tile should have this information for the father macro-tile (even if the bits are outside its own
region). This information about the father macro-tile should be the same for brothers (which is checked by matching
macro-colors of neighboring brothers). Also each macro-tile checks (on its computational zone) that the value of its
own delegated bit is coherent with its father’s string of bits to check: A macro-tile knows its coordinate in the father
macro-tile and the coordinates of the father tile in the grandfather, so it knows whether its delegated bit makes a part
of the father’s bits to check.

The computation in the computation zone generates the list of all forbidden strings (strings that have too small
Kolmogorov complexity) and checks the generated forbidden strings against all the substrings of the group of bits
available to this macro-tile. This process is bounded in time and space, but this does not matter since every string is
considered on a high enough level.

Our construction has a kind of duplication: We first guarantee the consistency of information for individual bits,
and then, we do the same for substrings. The first part of the construction is still needed, since we need arbitrarily
long substrings to be checked by macro-tiles (of high enough level); thus delegation of substrings cannot start from
the ground level where the tile size is limited, so we need to deal with bits separately.

7.4. Last correction

The argument just explained still needs some correction. We claim that every forbidden string will be detected at
some level where it is short enough compared to the level parameters. However, some strings may never become a
part of one macro-tile. Imagine that there is some vertical line that is a boundary between macro-tiles of all levels (so
we have bigger and bigger tiles on both sides, and this line is still the boundary between them; see Fig. 6). Then, a
substring that crosses this line will never be checked and therefore we cannot guarantee that it is not forbidden.

There are several ways to get around this problem. One can decide that each macro-tile contains information not
only about blocks inside its father macro-tile but in a wider region (say, three times wider, including “uncle” macro-
tiles); this information should be checked for consistency between “cousins”, too. This trick (extending zones of
responsibility for macro-tiles) will be used later in Section 8.

But to prove Theorem 9 a simpler solution is enough. Note that even if a string on the boundary is never checked,
its parts (on both sides of the boundary) are, so their complexity is proportional to their length. One of the parts
has length at least half of the original length, so we still have a complexity bound, though the constant will be twice
smaller.

This finishes the proof of Theorem 9.

8. Subshifts

The analysis of the proof in the previous section shows that it can be divided into two parts. We defined forbidden
strings as bit strings that are sufficiently long and have complexity at most α · (length). We started by showing that
biinfinite strings without forbidden factors (substrings) exist. Then, we constructed a tile set that embeds such a
biinfinite string in every tiling.
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Figure 6: Degenerate case: An infinite vertical line is a boundary between macro-tiles of all levels.

The second part can be separated from the first one, and in this way we get new proofs for some results of
Simpson [31] and Hochman [17] about effectively closed subshifts.

Fix some alphabet A. Let F be a set of A-strings. Consider a set SF of all biinfinite A-sequences that have no
factors (substrings) in F . This set is a closed one-dimensional subshift over A, i.e., a closed shift-invariant subset of
the space of all biinfinite A-sequences. If the set F is (computably) enumerable, SF is called an effectively closed
one-dimensional subshift over A. If F is finite, SF is called a subshift of finite type.

We can define two-dimensional subshifts in a similar way. More precisely, let F be a set of two-dimensional
patterns (squares filled with A-letters). Then, we can consider a set SF of all A-configurations (= mappings Z2→ A)
that do not contain any pattern from F . This is a closed shift-invariant set of A-configurations (= two-dimensional
closed subshift over A). If F is (computably) enumerable, SF is called a two-dimensional effectively closed subshift
over A. If F is finite, SF is called a two-dimensional subshift of finite type.

As we have mentioned, subshifts of finite type (interpreted as local rules) are closely related to tilings. Each tile
set determines a subshift where A is the set of tiles and forbidden patterns are pairs of neighbor nonmatching tiles.
Going in the other direction, we should be more careful. A tile set in our definition cannot contain two different tiles
with exactly the same colors. This leads to some problems. For example, the full shift over a two-letter alphabet (i.e.,
the set of all biinfinite sequences over a two-letter alphabet) cannot be represented by a set of two tiles. However, any
subshift of finite type can be represented by some tile set. More precisely, for any subshift S of finite type over alphabet
A there is a tile set τ and some mapping E : τ → A such that E induces a bijection between the set of all τ-tilings and
the set of all configurations of the subshift S: we apply E pointwise to a τ-tiling and get some A-configuration from the
subshift; for each configuration in the subshift there exists exactly one τ-tiling in the E-preimage of this configuration.
Such a tile set can be constructed as follows: Tiles are squares of large enough size filled by A-letters (a square with no
patterns forbidden for this subshift); each tile represents a part of the configuration, and side colors are used to ensure
that neighbor tiles overlap correctly. The mapping extracts (say) the central letter from a square.

Thus, subshifts of finite type and tilings are essentially the same kind of objects. On the other hand, the effectively
closed subshifts of dimension make a more general class of objects than subshifts of finite type. E.g., every nonempty
one-dimensional subshift of finite type must contain a periodic configuration; for one-dimensional effectively closed
subshifts this is not the case. However, the following theorem shows that two-dimensional subshifts of finite type are
powerful enough to simulate any effectively closed one-dimensional subshift in the following sense (i.e., to simulate
an effectively closed subshift, we need a subshift of finite type of dimension higher by 1):

Theorem 10. Let A be some alphabet and let S be a one-dimensional effectively closed subshift over A. Then, there
exist an alphabet B, a mapping r : B→ A, and a two-dimensional subshift S′ of finite type over B such that r-images of
configurations in S′ are (exactly) elements of S extended vertically (vertically aligned cells contain the same A-letter).
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(As we have mentioned, this result was independently obtained by Aubrun and Sablik using Robinson-style aperi-
odic tilings [2].)

Proof. The proof uses the same argument as in Theorem 9. Each cell now contains an A-letter that propagates ver-
tically. Computation zones in macro-tiles generate (in available space and time) elements of the enumerable set of
forbidden A-substrings and compare them with A-substrings that are made available to them. It remains to note that
tiling requirements (matching colors) are local; that is, they define a finite type two-dimensional subshift.

Note that now the remark of Section 7.4 (the trick of extension of zones of responsibility for macro-tiles) becomes
crucial, since otherwise the image of a configuration from S′ may be a concatenation of two sequences (a left-infinite
one and a right-infinite one); neither sequence contains forbidden patterns but forbidden patterns may appear at the
point of concatenation.

A similar argument shows that every two-dimensional effectively closed subshift can be represented as an image of
a three-dimensional subshift of finite type (after a natural extension along the third dimension), any three-dimensional
effectively closed subshift is an image of a four-dimensional subshift of finite type, etc.

This result is an improvement of a similar one proved by Hochman (Theorem 1.4 in [17], where the dimension
increases by 2), thus providing a solution of Problem 9.1 from [17]. Note also that it implies the result of Simpson [31]
where one-dimensional sequences are embedded into two-dimensional tilings but in some weaker sense (defined in
terms of Medvedev degrees).

One can ask whether a dimension reduction is essential here. For example, is it true that every two-dimensional
effectively closed subshift is an image of some two-dimensional subshift of finite type? The answer to this question (as
well as related questions in higher dimensions) is negative. This follows from an upper bound in [7] saying that every
tile set (unless it has no tilings at all) has a tiling such that all n× n squares in it have complexity O(n) (a result that
immediately translates for subshifts of finite type) and a result from [29] that shows that some nonempty effectively
closed two-dimensional subshift has n× n squares of complexity Ω(n2). Therefore the latter cannot be an image of
the first one (complexity can only decrease when we apply an alphabet mapping).

9. Random errors

9.1. Motivation and discussion

In what follows we discuss tilings with faults. This means that there are some places (faults) where colors of
neighbor tiles do not match. We are interested in “robust” tile sets: those that maintain some structure (for example,
can be converted into an error-free tiling by changing a small fraction of tiles) if faults are sparse.

There are two almost equivalent ways to define faulty tilings. We can speak about errors (places where two
neighbor tiles do not match) or holes (places without tiles). Indeed, we can convert a tiling error into a hole (by
deleting one of two nonmatching tiles) or convert a one-tile hole (one missing tile) into a small number of errors (at
most 4) by placing an arbitrary tile there. Holes look more natural if we start with a set of holes and then try to
tile the rest; however, if we imagine some process similar to crystallization when a tiling tries to become correct by
some trial-and-error procedure, it is more natural to consider tiling errors. Since it makes little difference from the
mathematical point of view, we use both metaphors.

We use a hierarchical approach to hole patching that can be traced back to Gács, who used it in a much more
complicated situation [12]. This means that first we try to patch small holes that are not too close to each other (by
changing small neighborhoods around them). This (if we are lucky enough) makes larger (and still unpatched) holes
more isolated since there are fewer small holes around. Some of these larger holes (which are not too large and not
too close to each other) can be patched again. Then, the same procedure can be repeated again for the next level. Of
course, we need some conditions (that guarantee that holes are not too dense) to make this procedure successful. These
conditions are described later in full detail, but the important question is the following: How do we ensure that these
conditions are reasonable (i.e., general enough)? Our answer is as follows: We prove that if holes are generated at
random (with each position becoming a hole independently of other positions with small enough probability ε), then
the generated set satisfies these conditions with probability 1.

22



From the physics viewpoint, this argument sounds rather weak. If we imagine some crystallization process, errors
in different positions are not independent at all. However, this approach could be a first approximation until a more
adequate one is found.

Note that patching holes in a tiling could be considered as a generalization of percolation theory. Indeed, let us
consider a simple tile set made of two tiles: one with all black sides and the other with all white sides. Then, the tiling
conditions reduce to the following simple condition: Each connected component of the complement to the set of holes
is either completely black or completely white. We want to make small corrections in the tiling that patch the holes
(and therefore make the entire plane black or white). This means that initially either we have small black “islands”
in a white ocean or vice versa, which is exactly what percolation theory says (it guarantees that if holes are generated
at random independently with small probability, the rest consists of one large connected component and many small
islands.)

This example shows also that simple conditions such as low density (in the Besicovitch sense) of the hole set are
not enough. A regular grid of thin lines can have low density but still splits the plane into nonconnected squares; if
half of these squares are black and the others are white, no small correction can patch the holes.

One can define an appropriate notion of a sparse set in the framework of algorithmic randomness (Martin-Löf
definition of randomness) by considering individual random sets (with respect to the Bernoulli distribution Bε ) and
their subsets as “sparse.” Then, we can prove that any sparse set (in this sense) satisfies the conditions that are needed
to make the iterative patching procedure work. This algorithmic notion of “sparseness” is discussed in [5]. However,
in the current paper we do not assume that the reader is familiar with algorithmic randomness and restrict ourselves to
classical probability theory.

So our statements become quite lengthy and use probabilistic quantifiers “for almost all” (= with probability 1).
The order of quantifiers (existential, universal, and probabilistic) is important here. For example, the statement “a
tile set τ is robust” means that there exists some ε > 0 such that for almost all E (with probability 1 with respect
to the distribution where each point independently belongs to E with probability ε) the following is true: For every
(τ,E)-tiling U there exists a τ-tiling U ′ (of the entire plane) that is “close” to U . Here by (τ,E)-tiling we mean a tiling
of Z2 \E (where existing pairs of neighbor tiles match).

9.2. Islands of errors

In this section we develop the notion of “sparsity” based on the iterative grouping of errors (or holes) and prove its
properties.

Let E ⊂ Z2 be a set of points; points in E are called dirty; other points are clean. Let β ≥ α > 0 be integers. A
nonempty set X ⊂ E is an (α,β )-island in E if

(1) the diameter of X does not exceed α and
(2) in the β -neighborhood of X there is no other point from E.
(The diameter of a set is a maximal distance between its elements; the distance d is defined as l∞, i.e., the maximum

of distances along both coordinates; the β -neighborhood of X is a set of all points y such that d(y,x) ≤ β for some
x ∈ X .)

It is easy to see that two (different) islands are disjoint (and the distance between their points is greater than β ).
Let (α1,β1),(α2,β2), . . . be a sequence of pairs of integers and αi ≤ βi for all i. Consider the following iterative

“cleaning” procedure. At the first step we find all (α1,β1)-islands (rank 1 islands) and remove all their elements from
E (thus getting a smaller set E1). Then, we find all (α2,β2)-islands in E1 (rank 2 islands); removing them, we get
E2 ⊂ E1, etc. The cleaning process is successful if every dirty point is removed at some stage.

At the ith step we also keep track of the βi-neighborhoods of islands deleted during this step. A point x ∈ Z2 is
affected during the ith step if x belongs to one of these neighborhoods.

The set E is called sparse (for a given sequence αi,βi) if the cleaning process is successful, and, moreover, every
point x ∈ Z2 is affected at finitely many steps only (i.e., x is far from islands of sufficiently large ranks).

The values of αi and βi should be chosen in such a way that for sufficiently small ε > 0 a Bε -random set is sparse
with probability 1. (As we have said, this justifies that our notion of sparsity is not unreasonably restrictive.) The
sufficient conditions are provided by the following statement:
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Figure 7: Explanation tree; vertical lines connect different names for the same points.

Lemma 3. Assume that

8 ∑
k<n

βk < αn ≤ βn for every n and ∑
i

logβi

2i < ∞.

Then, for all sufficiently small ε > 0 a Bε -random set is sparse with probability 1.

Proof. Let us estimate the probability of the event “x is not cleaned after n steps” for a given point x (the probability
of this event does not depend on x). If x ∈ En, then x belongs to En−1 and is not cleaned during the nth step (when
(αn,βn)-islands in En−1 are removed; by definition we let E0 = E). Then, x ∈ En−1 and, moreover, there exists some
other point x1 ∈ En−1 such that d(x,x1) is greater than αn/2 but not greater than βn +αn/2 (note that βn +αn/2 < 2βn).
Indeed, if there were no such x1 in En−1, then the (αn/2)-neighborhood of x in En−1 would be an (αn,βn)-island in
En−1 and x would be removed.

Further, we apply the same argument on level (n− 1). Each of the points x1 and x (we use notation x0 for x, to
make the notation more uniform) belongs to En−1; therefore it belongs to En−2 together with some other point (at a
distance greater than αn−1/2 but not exceeding 2βn−1). Denote these two other points in En−2 by x01 (which exists
because x0 ∈ En−1) and x11 (which exists because x1 ∈ En−1) respectively. Thus, we have at least four points denoted
by x00 = x0 = x, x01, x10 = x1, and x11 in En−2. Then, we repeat the same argument for levels (n−2),(n−3), etc. In
this way we get a tree (Fig. 7) that “explains” why x belongs to En.

The distance between x0 and x1 in this tree is at least αn/2 whereas the diameter of the subtrees starting at x0 and
x1 does not exceed ∑i<n 2βi. Therefore, the lemma’s assumption guarantees that these subtrees cannot intersect. Since
it is true on all levels, all the leaves of the tree are different. Note that all 2n leaves of the tree belong to E = E0. As
every point appears in E independently of other points, each “explanation tree” is valid with probability ε2n

. It remains
to estimate the number of possible explanation trees for a given point x.

To specify x1 we need to specify the difference (vertical and horizontal distances) between x0 and x1. Neither
distance exceeds 2βn; therefore we need about 2 log(4βn) bits to specify them (including the sign bits). Then, we
need to specify the difference between x00 and x01 as well as the difference between x10 and x11; this requires at most
4 log(4βn−1) bits. To specify the entire tree we therefore need

2log(4βn)+4log(4βn−1)+8log(4βn−2)+ · · ·+2n log(4β1)

bits. Reversing the sum and taking out the factor 2n, we can rewrite this expression as

2n(log(4β1)+ log(4β2)/2+ · · ·).

Since the series ∑ logβn/2n converges by assumption, the total number of explanation trees for a given point (and
given n) does not exceed 2O(2n), so the probability for a given point x to be in En for a Bε -random E does not exceed
ε2n

2O(2n), which tends to 0 (even super-exponentially fast) as n→ ∞, assuming that ε is small enough.
We conclude that the event “x is not cleaned” (for a given point x) has zero probability; the countable additivity

guarantees that with probability 1 all points in Z2 are cleaned.
It remains to show that every point with probability 1 is affected at finitely many steps only. Indeed, if x is affected

at step n, then some point in its βn-neighborhood belongs to En, and the probability of this event is at most

O(β 2
n )ε2n

2O(2n) = 22logβn+O(2n)−log(1/ε)2n
;
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the convergence conditions guarantees that logβn = o(2n), so the first term is negligible compared to the others, the
probability series converges (for small enough ε) and the Borel–Cantelli lemma gives the desired result.

For our next step, we note that by definition a sparse set is split into a union of islands of different ranks. Now we
prove that these islands together occupy only a small part of the plane. To formalize this statement, we use the notion
of Besicovitch size (density) of a set E ⊂ Z2. Let us recall the definition. Fix some point O of the plane and consider
squares of increasing size centered at O. For each square consider the fraction of points in this square that belong to
E. The limsup of these frequencies is called the Besicovitch density of E. (Note that the choice of the center point O
does not matter, since for any two points O1 and O2 large squares of the same size centered at O1 and O2 share most
of their points.)

By definition the distance between two rank k islands is at least βk. Therefore the (βk/2)-neighborhoods of these
islands are disjoint. Each of the islands contains at most α2

k points (it can be placed in a rectangle that has sides at
most αk). Each neighborhood has at least β 2

k points (since it contains a βk×βk square centered at any point of the
island). Therefore the union of all rank k islands has Besicovitch density at most (αk/βk)2. Indeed, for a large square
the islands near its border can be ignored, and all other islands are surrounded by disjoint neighborhoods where their
density is bounded by (αk/βk)2, see Fig. 8.

βk/2

βk/2

Figure 8: Rank k islands form a set of low density. (In this picture each island is shown as a rectangle, which is not always the case.)

One would like to conclude that the overall density of all islands (of all ranks) does not exceed ∑k(αk/βk)2.
However, the Besicovitch density is in general not countably semiadditive (for example, the union of finite sets having
density 0 may have density 1), but in our case we are helped by the second requirement of the definition of a sparse
set (each point is covered by only finitely many neighborhoods of islands).

Lemma 4. Let E be a sparse set for a given family of αk and βk. Then, the Besicovitch density of E is O(∑(αk/βk)2).

Proof. Let O be a center point used in the definition of Besicovitch density. By definition of sparsity, this point is not
covered by βk-neighborhoods of rank k islands if k is greater than some K. Now we split the set E into two parts:
one (E≤) formed by islands of rank at most K and the other (E>) formed by all islands of bigger ranks. As we have
just seen, in a large square the share of E≤ is bounded by ∑k≤K(αk/βk)2 up to negligible (as the size goes to infinity)
boundary effects (where we consider each k≤ K separately and then sum over all k≤ K). A similar bound is valid for
rank k islands with k > K, though the argument is different and a constant factor appears. Indeed, the βk-neighborhood
of every island I does not contain the center point O. Therefore, any square S centered at O that intersects the island
also contains a significant part of its (βk/2)-neighborhood N: The intersection of N and S contains at least (βk/2)2

elements, see Fig. 9. Therefore, the share of E> in S is bounded by 4∑k>K(αk/βk)2.

Remark. It is easy to choose αk and βk satisfying the conditions of Lemma 3 and having arbitrarily small
∑(αk/βk)2 (by taking geometric sequences that grow fast enough). Therefore we get the following well-known result
as a corollary of Lemmas 3 and 4: For every α > 0 there exists ε > 0 such that with probability 1 a Bε -random set has
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of the island that is guaranteed
to be inside S

Figure 9: Together with a point in a rank k island, every square S contains at least (βk/2)2 points of its (βk/2)-neighborhood.

Besicovitch density less than α . (In fact, a much stronger result is well known: By the strong law of large numbers a
Bε -random set has Besicovitch density ε with probability 1.)

In fact we will need a slightly more complicated version of Lemma 4. We are interested not only in the Besicovitch
density of a sparse set E but also in the Besicovitch density of a larger set: the union of γk-neighborhoods of rank k
islands in E. Here γk are some parameters; in most applications we set γk = cαk for some constant c. The same
argument gives the bound 4∑((αk + 2γk)/βk)2. Assuming that γk ≥ αk, we can rewrite this bound as O(∑(γk/βk)2).
So we arrive at the following statement:

Lemma 5. Let E be a sparse set for a given family of αk and βk and let γk ≥ αk be some integers. Then, the union of
γk-neighborhoods of level k islands (over all k and all islands) has Besicovitch density O(∑(γk/βk)2).

9.3. Islands as a tool in percolation theory
Let us show how some basic results of percolation theory can be proved using the island technique.

Theorem 11. For some αk and βk satisfying the requirements of Lemma 3 the complement of any sparse set E contains
exactly one infinite connected component C; the complement of C has Besicovitch density O(∑αk/βk)2.

Proof. Let γk = 2αk. (The choice of αk and βk will be discussed later.) For every k and for every rank k island fix a
point in this island and consider the γk-neighborhood of this point. It is a square containing the entire island plus an
additional “security zone” of width αk, contained in the γk-neighborhood of the island, see Fig. 10.

αk

γk γk

Figure 10: A point in a rank k island, its γk-neighborhood, and the security zone of width αk .

It is enough to prove the following three statements:

• The union U of all these squares (for all ranks) contains the set E and has Besicovitch density O(∑(αk/βk)2).
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• The complement of U is connected.

• There are no other infinite connected component in the complements of E.

The first statement is a direct corollary of Lemma 5 above.
To prove the second statement, consider two points x and y outside U . We need to prove that x and y can be

connected by a path that is entirely outside U . Let us connect x and y by some path (say, one of the shortest paths) and
then push this path out of U . Consider squares of maximal rank that intersect this path. For each of them, consider the
first moment when the path gets into the square and the last moment when the path goes out, and connect these two
points by a path outside the square, see Fig. 11.

αk

γk γk

Figure 11: Pushing a path out of the square.

Now the new path is αk-separated from this island of rank k. Provided βk− γk > αk, the path after the correction
is αk-separated from all other islands of rank greater than k−1. Indeed, the “modified” part of the corrected path (the
points of the path involved into the correction procedure) remains at a distance of at most γk from the given k level
island; hence, it must remain at a distance at least αk from all other islands of rank k and higher. Note also that the
shift (the distance between the original path and the corrected one) does not exceed 2γk.

Then, we can do the same for islands of rank k−1 (pushing the path out of surrounding squares). Note that since
at each step the drift is bounded by 2γk−1, we will not bump into islands of rank k.

Repeating this process for decreasing k, we finally get a path that connects x and y and goes entirely outside U .
For this we need only the total drift on the smaller levels (which is bounded by 2∑i<k γi) to be less than αk. This is
easy to achieve if αk, βk, and γk are suitable geometric sequences.

It remains to show that every infinite connected set intersects the complement of U . To show this, let us take a
big circular path centered at the origin and then push it out of U as described above. Since the center is outside the
βk-neighborhoods of islands for large enough k, we may assume that the sizes of islands that intersect this circle are
small compared to its radius (say, less than 1% of it, which can be guaranteed if the geometric sequences αk, βk, and
γk grow fast enough). Then, after the change the circle will still encircle a large neighborhood of the origin, so any
infinite connected component should cross such a circle.

9.4. Bi-islands of errors
In the proof of our main result (Section 13) we need a more delicate version of the definition of islands. In fact

we need such a definition that some counterpart of Lemma 3 could be applied even if the sequence logβn grows much
faster than 2n (e.g., for βn = c(2.5)n

). In this section we define bi-islands (a generalization of the notion of islands from
Section 9.2) and prove bi-island versions of Lemmas 3, 4, and 5. The reader can safely skip this section for now and
return here before reading Section 13.

Let E ⊂Z2 be a set of points. As in Section 9.2, we call points in E dirty, and the other points clean. Let β ≥α > 0
be integers. A nonempty set X ⊂ E is an (α,β )-bi-island in E if X can be represented as the union of some sets X0,
X1 such that

(1) in the β -neighborhood of X = X0∪X1 there are no points from E \X ;
(2) the diameters of X0 and X1 do not exceed α; and
(3) the distance between X0 and X1 does not exceed β .

(See Fig. 12.) In particular, an (α,β )-island is a special case of an (α,β )-bi-island (by letting X1 be empty).
Note that one may split the same bi-island into X0 and X1 in different ways.
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Figure 12: A bi-island, a union of two “islands” that are close to each other.

Obviously, every two different bi-islands are disjoint. Moreover, the distance between them is greater than β . The
diameter of a bi-island is at most (2α +β ).

Let (α1,β1),(α2,β2), . . . be a sequence of pairs of integers and αi ≤ βi for all i. We define an iterative cleaning
procedure for bi-islands. At the first step we find all (α1,β1)-bi-islands and remove all their elements from E (getting a
smaller set E1). Then, we find in E1 all (α2,β2)-bi-islands; removing them, we get E2 ⊂ E1, etc. The cleaning process
is successful if every dirty point is removed at some stage.

Similarly to the case of islands, we say that a point x ∈ Z2 is affected during step i if x belongs to the βi-
neighborhood of one of the bi-islands of rank i.

The set E is called bi-sparse (for a given sequence αi,βi) if the cleaning process defined above is successful, and,
moreover, every point x ∈ Z2 is affected at finitely many steps only (which means that x is far from bi-islands of
sufficiently large ranks).

We choose the values of αi and βi in such a way that for sufficiently small ε > 0 a Bε -random set is bi-sparse with
probability 1. The main achievement here is that the convergence condition is now weaker than in the corresponding
statement for islands (Lemma 3):

Lemma 6. Assume that

12 ∑
k<n

βk < αn ≤ βn for every n, and ∑
i

logβi

3i < ∞.

Then, for all sufficiently small ε > 0, a Bε -random set is bi-sparse with probability 1.

Proof. The proof of Lemma 6 is very similar to the proof of Lemma 3. At first we estimate the probability of the
event “x is not cleaned after n steps” for a given point x. If x ∈ En, then x belongs to En−1 and is not cleaned during
the nth step (when (αn,βn)-bi-islands in En−1 are removed). Then, x ∈ En−1. Moreover, we show that there exist two
other points x1,x2 ∈ En−1 such that the three distances d(x,x1), d(x,x2), and d(x1,x2) are all greater than αn/2 but not
greater than 2βn +2(αn/2) < 3βn.

Let X0 be the (αn/2)-neighborhood of x in E. If X0 were an island, it would be removed. Since this does not occur,
there is a point x1 outside X0 but in the βn-neighborhood of X0.

Let X1 be the (αn/2)-neighborhood of x1 in E. Again X0 and X1 do not form a bi-island. Both sets X0 and X1 have
diameter at most αn, and the distance between them is at most βn. So the only reason why they are not a bi-island is
that there exists a point x2 ∈ E outside X0∪X1 but in the βn-neighborhood of it. The points x1 and x2 have the required
properties (the distances d(x,x1), d(x,x2), and d(x1,x2) are greater than αn/2 but not greater than 3βn).

To make the notation uniform, we denote x by x0. Each of the points x0,x1,x2 belongs to En−1. This means that
each of them belongs to En−2 together with a pair of other points (at a distance greater than αn−1/2 but not exceeding
3βn−1). In this way we get a ternary tree that “explains” why x belongs to En.
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The distance between every two points among x0, x1, and x2 in this tree is at least αn/2 whereas the diameters
of the subtrees starting at x0, x1, and x2 do not exceed ∑i<n 3βi. Thus, the lemma’s assumption guarantees that these
subtrees cannot intersect and that all the leaves of the tree are different. The number of leaves in this ternary tree is 3n,
and they all belong to E = E0. Every point appears in E independently of other points; hence, one such “explanation
tree” is valid with probability ε3n

. It remains to count the number of all explanation trees for a given point x.
To specify x1 and x2 we need to specify horizontal and vertical distances between x0 and x1,x2. These distances

do not exceed 3βn; therefore we need about 4 log(6βn) bits to specify them (including the sign bits). Then, we need
to specify the distances between x00 and x01,x02 as well as the distances between x10 and x11,x12 and between x20 and
x21,x22. This requires at most 12log(6βn−1) bits. To specify the entire tree we therefore need

4log(6βn)+12log(6βn−1)+36log(6βn−2)+ · · ·+4 ·3n−1 log(6β1),

which is equal to 4 ·3n−1(log(6β1)+ log(6β2)/3+ · · ·). The series ∑ logβn/3n converges by assumption; so, the total
number of explanation trees for a given point (and given n) does not exceed 2O(3n). Hence, the probability for a given
point x to be in En for a Bε -random E does not exceed ε3n

2O(3n), which tends to 0 as n→ ∞ (assuming that ε is small
enough).

We conclude that the event “x is not cleaned” (for a given point x) has zero probability; hence, with probability 1
all points in Z2 are cleaned.

It remains to show that every point with probability 1 is affected by finitely many steps only. Indeed, if x is affected
by step n, then some point in its βn-neighborhood belongs to En, and the probability of this event is at most

O(β 2
n )ε3n

2O(3n) = 22logβn+O(3n)−log(1/ε)3n
.

From the convergence conditions we have logβn = o(3n), so the first term is negligible compared to others. The
probability series converges (for small enough ε) and the Borel–Cantelli lemma gives the result.

By definition, a bi-sparse set is split into a union of bi-islands of different ranks. Such bi-islands occupy only a
small part of the plane:

Lemma 7. Let E be a bi-sparse set for a given family of αk and βk. Then, the Besicovitch density of E is O(∑(αk/βk)2).

Proof. The proof of Lemma 7 repeats the proofs of Lemma 4.

Recalling Lemma 5, we may consider a sequence of numbers γk such that γk ≥ αk. Then, the Besicovitch density
of the union of γk-neighborhoods of rank k bi-islands (for all k and for all islands) is bounded by O(∑(γk/βk)2).

However, this statement is not enough for us. In Section 13 we will need a kind of “closure” of the γk-neighborhood
of a bi-island:

Definition. Let S be a k-level bi-island. We say that (x,y) ∈ Z2 belongs to the extended γ-neighborhood of S if there
exist two points (x,y′),(x,y′′) ∈ Z2 (with the same first coordinate) such that dist(S,(x,y′)) ≤ γ , dist(S,(x,y′′)) ≤ γ ,
and y′ ≤ y≤ y′′ (see Fig. 13).

The meaning of the last definition is quite simple: We take not only the points that are close to S but also those
points that are placed somehow between the neighborhoods of S0 and S1.

Lemma 8. Let E be a bi-sparse set for a given family of αk and βk satisfying the conditions of Lemma 6. Let γk be a
sequence of numbers such that αk < γk, and the series ∑(γk/βk) converges. Then, the Besicovitch density of the union
of extended γk-neighborhoods of rank k bi-islands in E is bounded by O(∑(γk/βk)).

Proof. The arguments are similar to the proof of Lemma 5. An extended γk-neighborhood of a k-level island can be
covered by a rectangle of width O(γk) and height O(βk + γk); so its area is O(γkβk) (since γk ≤ βk). The distance
between any two bi-islands of rank k is at least βk. Hence, the fraction of extended γk-neighborhoods of islands is
O(∑γk/βk) (this is similar to the bound O(∑(γk/βk)2), which holds for simple γn-neighborhoods).
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Figure 13: An extended neighborhood of a bi-island consists of the neighborhoods of its two parts and a zone between them.

Lemmas 6–8 will be used in Section 13. (The arguments of Sections 10–12 do not refer to bi-islands.) These
lemmas will be used for αk,βk such that logαk ∼ qk for q > 2, βk ∼ αk+1, and γk = O(αk) or γk = O(α2

k ). Note that
we cannot apply Lemmas 3 and 4 (about islands) for these parameters because logβk grows faster than 2k. So we need
to deal with bi-islands.

In the definition of sparse sets in Section 9.2 each single island of rank k must be isolated from other islands of
rank k. In this section we modified this definition and allowed an island to be close to at most one other island of
the same rank. In a similar way, we could define s-islands for any s ≥ 2, assuming that clusters of s islands of rank
k (rather close to each other) are authorized. A set that can be represented as a union of s-islands of different ranks
can be called s-sparse. A generalization of Lemmas 6 can be proven: A random set is s-sparse with probability 1 if
∑(logβi)/(s + 1)i converges. However, we do not develop here the general theory of s-sparse sets. The concept of
bi-islands and bi-sparsity (i.e., the case s = 2) is enough for all our applications in Section 13.

10. Robust tile sets

In this section we construct an aperiodic tile set where isolated defects can be healed.

∆

c1∆c2∆

Figure 14: Patching holes.

Let c1 < c2 be positive integers. We say that a tile set τ is (c1,c2)-robust if the following holds: For every ∆

and for every τ-tiling U of the (c2∆)-neighborhood of a square ∆×∆ excluding the square itself there exists a tiling
V of the entire (c2∆)-neighborhood of the square (including the square itself) that coincides with U outside of the
(c1∆)-neighborhood of the square (see Fig. 14).

Theorem 12. There exists a self-similar tile set that is (c1,c2)-robust for some c1 and c2.
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Proof. For every tile set µ it is easy to construct a “robustified” version µ ′ of µ , i.e., a tile set µ ′ and a mapping
δ : µ ′→ µ such that (a) δ -images of µ ′-tilings are exactly µ-tilings and (b) µ ′ is “5-robust”: Every µ ′-tiling of a 5×5
square minus 3×3 hole (see Fig. 15) can be uniquely extended to the tiling of the entire 5×5 square.

Figure 15: Filling a 3×3 hole.

Indeed, it is enough to keep in one µ ′-tile the information about the 5×5 square in µ-tiling. Matching rules will
guarantee that the information about the intersection (4×5 rectangle) is consistent in neighbor tiles. Then, a 3×3 hole
(as shown in the picture) is not fatal. It is easy to see that the tiles at its border (gray) are consistent and contain all the
information the missing tiles should have. (In fact, using more careful estimates one can replace in our argument the
5×5 squares by 4×4 squares; but we do not care much about constants.)

This robustification can be easily combined with the fixed-point construction. In this way we can get a “5-robust”
self-similar tile set τ if the zoom factor N (which is considered to be fixed in this argument) is large enough. It remains
to explain that “5-robustness” (in the sense described above) implies also (c1,c2)-robust for some c1 and c2. (The
values of c1 and c2 depend on N, but N is fixed.)

Indeed, assume that a tiling of a large enough neighborhood around a ∆×∆ hole is given. Denote by k the minimal
integer such that Nk ≥ ∆ (so the k-level macro-tiles are greater than the hole under consideration). Note that the size
of the k-level macro-tiles is linear in O(∆) since Nk ≤ N ·∆.

In the tiling around the hole, an N ×N block structure is correct except for the N-neighborhood of the central
∆×∆ hole. Indeed, the colors encode coordinates, so in every connected tiled region the coordinates are consistent.
For similar reasons an N2×N2 structure is correct except for the (N +N2)-neighborhood of the hole, etc. Hence, for
the chosen k we get a k-level structure that is correct except for (at most) 9 = 3×3 squares of level k, so we can delete
everything in these squares and use 5-robustness to replace them with macro-tiles that correspond to replacement tiles.

To start this procedure (and fill the hole), we need a correct tiling only in the O(Nk) neighborhood of the hole.
(Technically, we need to have a correct tiling in the (3Nk)-neighborhood of the hole; as 3Nk ≤ 3N∆, we let c2 = 3N.)
The correction procedure involves changes in another O(Nk)-neighborhood of the hole. (Technically, the changes
touch (2Nk)-neighborhood of the hole; 2Nk ≤ 2N∆, so we let c1 = 2N.)

11. Robust tile sets with variable zoom factors

The construction from the previous section works only for self-similar tilings with a fixed zoom factor. It is enough
for simple applications, as we will see in Section 12. However, in the proof of our main result in Section 13 we need
a variable zoom factor. So here we develop a technique suitable for this case. This section can be skipped now but it
should be read before Section 13.

Now we explain how to get “robust” fixed-point tilings with variable zoom factors N1,N2, . . .. As well as in the
case of a fixed zoom factor, the idea is that k-level macro-tiles are “responsible” for healing holes of size comparable
with these macro-tiles.

Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be a sequence of integers. Let c1 < c2 be positive integers. We say that a tile set τ is
(c1,c2)-robust against holes of size ∆0,∆1, . . . if the following holds: For every n and for every τ-tiling U of the c2∆k
neighborhood of a square ∆k×∆k excluding the square itself there exists a tiling V of the entire c2∆k neighborhood
of the square (including the square itself) that coincides with U outside of the c1∆k neighborhood of the square. The
difference from the definition of Section 10 is that we take only values ∆ ∈ {∆0,∆1, . . .} instead of holes of arbitrary
size.
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Lemma 9. Assume a sequence of zoom factors Nk grows not too fast and not too slow (it is enough to assume that
Nk ≥C logk and C logNk+1 < Nk for a large enough C; cf. the discussion in Section 5). Then, there exists a tile set
with variable zoom factors Nk (k-level macro-tiles of size Lk = N0 · · ·Nk−1) that is (c1,c2)-robust (for some c1 and c2)
against holes of size L0,L1, . . ..

Proof. First, we apply the fixed-point construction from Section 5 and get a tile set that is “self-similar” with variable
zoom factors N1,N2, . . .. Denote by µk the family of k-level macro-tiles corresponding to this tile set.

Further we make a “robustified” version of this tile set. To this end we basically repeat the arguments from
Section 10 (the proof of Theorem 12). The difference in the argument is that now we deal with variable zoom factors,
and sizes of holes are taken from the sequence L0,L1, . . ..

Denote by µ ′k the family of k-level macro-tiles for the new tiling. We need that there exists a mapping δ : µ ′k→ µk
such that (a) δ -images of µ ′k-tilings are exactly µk-tilings and (b) µ ′k is “5-robust”: Every µ ′k-tiling of a 5× 5 square
minus a 3×3 hole (see again Fig. 15) can be uniquely extended to the tiling of the entire 5×5 square.

To get such a robustification, it is enough to keep in every µ ′k-macro-tile the information about the 5×5 square in
the µk-tiling and use the colors on the borders to ensure that this information is coherent in neighbor macro-tiles.

As usual, this robustification can be combined with the fixed-point construction. We get 5-robust macro-tiles for
all levels of our construction. “Self-similarity” guarantees that the same property holds for macro-tiles of all levels,
which implies the required property of generalized robustness.

Indeed, assume that a tiling of a large enough neighborhood around a ∆×∆ hole is given, and ∆≤ Lk for some k.
In the tiling around the hole, an (L1×L1) block structure, is correct except for only the L1 neighborhood of the hole.
For similar reasons an (L2×L2) structure is correct except for the (L1 + L2) neighborhood, etc. So we get a k-level
structure that is correct except for (at most) 9 = 3×3 squares of size Lk×Lk. Because of 5-robustness, this hole can
be filled with k-level macro-tiles. Note that reconstruction of ground-level tiles inside a high-level macro-tile is unique
after we know its “conscious known” information, i.e., the content of the tape of the Turing machine simulated on
the computation zone of this macro-tile. (This information is reconstructed from the consciously known information
of the neighbor macro-tiles.) [For the maximal complexity tile set (Section 7) it is not the case, and the absence of
this property will become a problem in Section 13 where we robustify it. To solve this problem, we will need to use
error-correcting codes.]

To implement the patching procedure (and fill the hole) we need to have a correct tiling in the O(Lk) neighborhood
of the hole. The correction procedure involves changes in another O(Lk) neighborhood of the hole. More technically,
we need to have a correct tiling in the (3Lk)-neighborhood of a hole of size Lk, so we let c2 = 3. Since the correction
procedure involves changes in the (2Lk)-neighborhood of the hole, we let c1 = 2.

We can robustify tiling not only against holes but against pairs of holes. To this end we slightly modify our
definition of robustness. Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be an increasing sequence of integers, and let c1 < c2 be positive
integers. We say that a tile set τ is (c1,c2)-robust against pairs of holes of size ∆0,∆1, . . . if the following holds: Let
us have two sets H1,H2 ⊂ Z2, each of them of diameter at most ∆k (for some k > 0). For every τ-tiling U of the
c2∆k neighborhood of the union (H1 ∪H2) excluding H1 and H2 themselves there exists a tiling V of the entire c2∆k
neighborhood of (H1∪H2) (including H1 and H2 themselves) that coincides with U outside of the c1∆k neighborhood
of (H1∪H2).

A robustification against pairs of holes can be done in the same way as the robustification against a single isolated
hole. Indeed, if these two holes are far apart from each other, we can “correct” them independently; if they are rather
close to each other, we correct them as one hole of (roughly) doubled size. So we can employ the same robustification
technique as before; we need only to take a large enough “radius of multiplication” D (and use D-robustness instead
of 5-robustness). So we get the following generalization of Lemma 9:

Lemma 10. Assume a sequence of zoom factors Nk grows not too fast and not too slow (e.g., Nk ≥ C logk and
C logNk+1 < Nk for a large enough C). Then, there exists a tile set with zoom factors Nk (i.e., with k-level macro-tiles
of size Lk = N0 · · ·Nk−1) that is (c1,c2)-robust (for some c1 and c2) against pairs of holes of size L0,L1, . . . for some c1
and c2.

Of course, similar propositions can be also proven for triplets, quadruplets, and any other sets of holes of bounded
cardinality. However, in this paper we consider only pairs of holes; this is enough for our argument in Section 13.
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12. Strongly aperiodic robust tile sets

Now we are ready to apply the islands technique to construct a robust strongly aperiodic tile set. We start with a
formal definition of a tiling with errors (see the motivation and discussion in Section 9.1).

Definition. For a subset E ⊂ Z2 and a tile set τ we call by a (τ,E)-tiling any mapping

T : (Z2 \E)→ τ

such that for every two neighbor cells x,y∈Z2 \E, tiles T (x) and T (y) satisfy the tiling rules (colors on adjacent sides
match). We may say that T is a τ-tiling of the plane with holes at points of E.

Theorem 13. There exists a tile set τ with the following properties: (1) τ-tilings of Z2 exist and (2) for all sufficiently
small ε for almost every (with respect to Bε ) subset E ⊂ Z2 every (τ,E)-tiling is at least 1/10 Besicovitch apart from
every periodic mapping F : Z2→ τ .

Remark 1. Since the tiling contains holes, we need to specify how we treat the holes when defining the Besicovitch
distance. We do not count points in E as points where two mappings differ; this makes our statement stronger.

Remark 2. The constant 1/10 is not optimal and can be replaced by any other constant α < 1.

Proof. Consider a tile set τ such that (a) all τ-tilings are α-aperiodic for every α < 1/4 and (b) τ is (c1,c2)-robust
for some c1 and c2. Such a tile set can be constructed by combining the arguments used for Theorems 12 and 4.
More precisely, we take as the “basic” construction the tile set from the proof of Theorem 4 (which simulates the
Thue–Morse substitution). Then, we “robustify” it by the procedure from the proof of Theorem 12. For the robustified
tile set we know that each macro-tile in a tiling keeps the conscious information that was given (in the “basic” tile
set) to all macro-tiles in its 5× 5-neighborhood; so the new tiling is not only strongly aperiodic but also 5-robust. It
remains to show that this construction implies claim (2) of the theorem.

We want to apply our probabilistic lemmas concerning “island of errors”. We need to choose αk and βk such that

• the conditions of Lemma 3 (p. 23) are satisfied, and therefore a random error set with probability 1 is sparse
with respect to these αk and βk;

• for every sparse set E ⊂ Z2, every (τ,E)-tiling can be iteratively corrected (by changing it in the neighborhoods
of islands of all ranks) into a τ-tiling of the entire plane; and

• the Besicovitch distance between the tilings before and after correction is small.

Then, we conclude that the original (τ,E)-tiling is strongly aperiodic since the corrected tiling is strongly aperiodic
and close to the original one.

To implement this plan, we use the following lemma that describes the error-correction process.

Lemma 11. Assume that a tile set τ is (c1,c2)-robust, βk > 4c2αk for every k, and a set E ⊂ Z2 is sparse (with
parameters αk, βk). Then, every (τ,E)-tiling can be transformed into a τ-tiling of the entire plane by changing it in
the union of (2c1αk)-neighborhoods of rank k islands (for all islands of all ranks).

Proof. Note that (βk/2)-neighborhoods of rank k islands are disjoint and large enough to perform the error correction
of rank k islands, since βk > 4c2αk. The definition of a sparse set guarantees also that every point is changed only
finitely many times (so the limit tiling is well defined) and that the limit tiling has no errors.

The Besicovitch density of the changed part of a tiling can be estimated using Lemma 4. Here γk = 2c1αk is propor-
tional to αk, so the Besicovitch distance between the original and corrected tilings (in Lemma 11) is O(∑k(αk/βk)2).
(Note that the constant in O notation depends on c1.)

It remains to choose αk and βk. We have to satisfy all the inequalities in Lemmas 3, 4, and 11. To satisfy Lemmas 4
and 11, we may let βk = ckαk for large enough c. To satisfy Lemma 3, we may let αk+1 = 8(β1 + · · ·+βk)+1. Then,
αk and βk grow faster than any geometric sequence (like k! multiplied by some exponent in k), but still logβk is
bounded by a polynomial in k and the series in Lemma 3 converges.
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With these parameters (and taking c large enough) we guarantee that the Besicovitch distance between the original
(τ,E)-tiling and the corrected τ-tiling does not exceed, say, 1/100.

Now assume that some (τ,E)-tiling V is at a distance less than 1/10 from some periodic configuration W (with
a period v). As we just explained, the original (τ,E)-tiling V must be at a distance at most 1/100 from some correct
τ-tiling V ′. Let us consider the v-shift of both configurations V and V ′ (W is shifted to itself). It is easy to see that
the distance between the initial and the shifted copies of configuration V ′ is not greater than the sum dist(V ′,V ) +
dist(V,W ) taken twice. Since the corrected tiling V ′ must be 1/4-aperiodic, and 1/4 > 2(1/10 + 1/100), we get a
contradiction.

13. Robust tile sets that enforce complex tilings

In this section we prove the main result of the paper. We construct a tile set that guarantees large Kolmogorov
complexity of every tiling and that is robust with respect to random errors.

Theorem 14. There exists a tile set τ and constants c1,c2 > 0 with the following properties:
(1) a τ-tiling of Z2 exists;
(2) for every τ-tiling T of the plane, every N×N square of T has Kolmogorov complexity at least c1N−C2;
(3) for all sufficiently small ε for almost every (with respect to the Bernoulli distribution Bε ) subset E ⊂ Z2, every

(τ,E)-tiling is at most 1/10 Besicovitch apart from some τ-tiling of the entire plane Z2;
(4) for all sufficiently small ε for almost every Bε -random subset E ⊂ Z2, for every (τ,E)-tiling T the Kolmogorov

complexity of centered squares of T of size N×N is Ω(N).

The rest of the section is devoted to the proof of this theorem. It combines almost all technique developed in this
paper: self-similar tile sets with variable zoom factors, embedding a sequence with Levin’s property (i.e., with linear
Kolmogorov complexity of all factors) into tilings, bi-sparse sets, incremental error correcting, and robustness against
doubled holes.

In this section the basic idea of incremental error correcting is applied in a slightly modified form. Here we cannot
apply directly the technique of (c1,c2)-robustness from Section 10. Instead we use the idea of robustness against holes
of some sequence of sizes ∆0,∆1,∆2, . . ., as explained in Section 11. More precisely, we do it as follows: We split the
set of random errors into bi-islands of different ranks. Then, we eliminate them one by one, starting from lower ranks.
When we correct an isolated bi-island of rank k, we need a precondition (similarly to the argument in Section 10):
In a large enough neighborhood of this bi-island there are no other errors. Elimination of a k-level bi-island involves
corrections in its extended O(∆k)-neighborhood (with all parameters as specified below).

13.1. The main difficulties and ways to circumvent them

We want to combine the construction from Section 7 with error-correcting methods based on the idea of “islands”
of errors. There are two main difficulties in this plan: fast growing zoom factors and gaps in vertical columns. Let us
discuss these two problems in some detail.

The first problem is that our construction of tiling with high Kolmogorov complexity from Section 7 requires
variable zoom factors. What is even worse is that zoom factors Nk must increase very fast (with logarithms growing
faster than 2k). Hence, we cannot directly apply the technique of islands from Section 9.2 since it works only when
∑

logβk
2k < ∞ (where βk is the parameter from the definition of islands, which, in our construction, must be of the same

order as the size of k-level macro-tiles). To overcome this obstacle, we replace islands by bi-islands (the technique
developed in Section 9.4).

The second problem is that now we cannot reconstruct a macro-tile from the information “consciously known” to
this macro-tile. The missing information is the sequence of bits assigned to the vertical columns (with each vertical
column of tiles carrying one bit of a high-complexity sequence ω). Random errors make gaps in vertical columns, so
now the columns are split into parts, which a priori can carry different bits. To overcome this problem we organize
additional information flows between macro-tiles to guarantee that each infinite vertical column carries in most of its
tiles one and the same bit value.
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13.2. General scheme
Here we explain the general ideas of our proof. First, we use macro-tiles with variable zoom factors Nk = Qb2.5kc

for a large enough integer Q > 0. This means that every k-level macro-tile is an (Nk−1×Nk−1) array of (k−1)-level
macro-tiles. So the size (the number of columns and the number of rows) of a k-level macro-tile is Lk = N0 · · ·Nk−1,
and Lk < Nk. (The constant 2.5 in our construction can be replaced by any rational number between 2 and 3.)

To get tilings with high Kolmogorov complexity, we reuse the construction from Section 7 with the zoom factors
defined above. Let us recall the idea of that construction (proof of Theorem 9). In a correct tiling, in the ith column
all tiles keep some bit ωi, and we want every N-bit substring in the corresponding biinfinite sequence ω to have
Kolmogorov complexity Ω(N). To enforce this property we organize our computation on macro-tiles of all levels. The
crucial point of the construction is propagation of bits ωi to the computation zones of macro-tiles of high levels. Let
us recall the main points of this construction (following the argument from Section 7):

• We say that for each (infinite) column of tiles in a tiling there is an assigned bit ωi, which is “known” to each tile
in the column. (In other words, there is a mapping that attributes to each tile the corresponding bit ωi; vertically
neighboring tiles must keep the same value of the bit.)

• For a k-level macro-tile (of size Lk×Lk) its zone of responsibility is the sequence of Lk bits ωi assigned to all
columns of this macro-tile. Vertically aligned macro-tiles of the same level have the same zone of responsibility.

• For some k-level macro-tile M there is one delegated bit; this is a bit ωi from the zone of responsibility of
this macro-tile. This bit must be known to the “consciousness” of the macro-tile; that is, it must be presented
explicitly on the tape in the computation zone of this macro-tile. For technical reasons, we decide that the
position of the delegated bit ωi in the zone of responsibility of M (this position is an integer between 0 and
Lk− 1) is equal to the position (vertical coordinate) of M in its father macro-tile (see Fig. 5). The father is a
macro-tile of level k + 1, which consists of Nk ×Nk macro-tiles of level k (thus, the vertical coordinate of a
k-level macro-tile in its father ranges over 0, . . . ,Nk− 1). In our settings, Nk > Lk−1. If a k-level macro-tile M
has a vertical coordinate in its father greater than Nk, then M does not have a delegated bit.

• If a k-level macro-tile M has a delegated bit in its computation zone, it also contains a group of bits to check
that starts at the delegated bit and has rather small length (say, log loglogk). If this group of bits leaves the
responsibility zone, we truncate it. The Turing machine simulated in the computation zone of M enumerates
the forbidden strings of “too small Kolmogorov complexity” and verifies that the checked group of bits does not
contain any of them. This process is bounded by time and space allocated to the computation zone of a k-level
macro-tile.

The last item requires additional comments. Technically, we fix constants α ∈ (0,1) and c and check that for every
string x in zones of responsibility of all macro-tiles K(x)≥ α|x|− c. To check this property, a macro-tile enumerates
all strings x of complexity less than α|x| − c. This enumeration requires infinite time, though computations in each
macro-tile are time-bounded. However, this is not a problem since every such x is checked in macro-tiles of arbitrarily
high levels (i.e., if x is covered by a macro-tile of level k, then it is also covered by macro-tiles of all levels greater
than k). Thus, we guarantee the following property:

For every k-level macro-tile M (k = 1,2, . . .), and for every substring x of ω that
is contained in M’s zone of responsibility (its horizontal projection), it holds that
K(x)≥ α|x|− c.

(∗)

Notice that K(x) ≥ α|x| − c holds only for strings x covered by some macro-tile (i.e., strings that belong to some
macro-tile’s zone of responsibility). In “degenerate” tilings there can exist an infinite vertical line that is a border line
for macro-tiles of all levels (see Fig. 6). A string x that intersects this line is not covered by any macro-tile of any level.
Hence, (∗) does not guarantee for such a string x that its Kolmogorov complexity is greater than α|x|− c. However,
as we noticed in Section 7.4, the parts of x on both sides of the boundary are covered by some macro-tile. Hence, it
follows from (∗) that K(x)≥ α

2 |x|−O(1) = Ω(|x|) for all factors x of the biinfinite string ω .
Thus, we reuse the argument from Section 7, and it works well if there are no errors, but when we introduce

random errors, the old construction is broken. Indeed, vertical columns can be damaged by islands of errors. Now we
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need to make an effort to enforce that copies of ωi consciously kept by different macro-tiles are coherent (at least for
macro-tiles that are not seriously damaged by local errors). To this end we will use some checksums, which guarantee
that neighbor macro-tiles keep coherent conscious and subconscious information. We discuss this topic in the next
section.

To deal with random errors we use the technique of bi-islands (see Section 9.4). Our arguments work if diameters
of k-level bi-islands are comparable with the size of k-level macro-tiles. Technically, we set αk = 26Lk−1 and βk = 2Lk.
(In the following we will see that this choice of βk is important for the error-correcting procedure; αk is set to 13βk−1,
so that lemmas on bi-islands can be applied.) Recall that Nk = Qb2.5kc and Lk = N0 · · ·Nk−1. Note that Lemmas 6 and 7
can be used with these values of parameters α,β . We will also employ Lemma 8 with γk = O(αk).

13.3. The new construction of the tile set

We take the construction from Section 7 as the starting point and superimpose some new structures on k-level
macro-tiles. We introduce these supplementary structures in several steps.

First step (introducing checksums): Every k-level macro-tile M (in a correct tiling) consists of an Nk−1×Nk−1
array of (k−1)-level macro-tiles; each of these (k−1)-level macro-tiles may keep one delegated bit. Let us take one
horizontal row (bits assigned to Nk−1 macro-tiles of level k− 1) in this two-dimensional array of size Nk−1×Nk−1.
Denote the corresponding sequence of bits by η1, . . . ,ηNk−1 . We introduce a sort of erasure code for this string of
bits. In other words, we will calculate some checksums for this sequence. These checksums should be suitable to
reconstruct all bits η1, . . . ,ηNk−1 if at most D of these bits are erased (i.e., if we know values ηi for only Nk−1−D
positions); here D > 0 is a constant (to be fixed later). We want the checksums to be easily computable. Here we use
again the checksums of the Reed–Solomon code (discussed in Section 6).

Let us explain this technique in more detail. We take a finite field Fk of large enough size (greater than Nk−1 +D).
Then, we calculate a polynomial of degree less than Nk−1 that takes values η1, . . . ,ηNk−1 at some Nk−1 points of
the field. Further, we take as checksums the values of this polynomial at some other D points from Fk (where all
(Nk−1 +D) points of the field are fixed in advance). Two polynomials of degree less than Nk−1 can coincide in at most
(Nk−1− 1) points. Hence, if D bits from the sequence η1, . . . ,ηNk−1 are erased, we can reconstruct them given the
other (nonerased) bits η j and the checksums defined above.

These checksums contain O(logNk−1) bits of information. We next discuss how to compute them.
Second step (calculating checksums): First, we explain how to compute the checksums, going from left to right

along the sequence η1, . . . ,ηNk−1 . This can be done in a rather standard way as follows.
Let η1, . . . ,ηNk−1 be the values of a polynomial p(x) (of degree less than Nk−1) at points x1, . . . ,xNk−1 . Assume

we want to reconstruct all coefficients of this polynomial. We can do this by the following iterative procedure. For
i = 1, . . . ,Nk−1 we calculate polynomials pi(x) and qi(x) (of degree ≤ (i−1) and i, respectively) such that

pi(x j) = η j for j = 1, . . . , i

and
qi(x) = (x− x1) · · ·(x− xi).

It is easy to see that for each i, polynomials pi+1 and qi+1 can be computed from polynomials pi and qi and the values
xi+1 and ηi+1.

If we do not need to know the resulting polynomial p = pNk−1(x) but want to get only the value p(a) at some
particular point a, then we can perform all these calculations modulo (x− a). Thus, to obtain the value of p(x) at
D different points, we run in parallel D copies of this process. At each step of the computation we need to keep in
memory only O(1) elements of Fk, which is O(logNk−1) bits of temporary data (with the multiplicative constant in
this O(·) notation depending on the value of D).

This calculation can be simulated by a tiling. We embed the procedure just explained into the computation zones
of (k−1)-level macro-tiles. The partial results of the calculation are transferred from one (k−1)-level macro-tile to
another one, from the left to the right (in each row of length Nk−1 in a k-level macro-tile). The final result (for each
row) is embedded into the conscious information (bits on the tape of the Turing machine in the computation zone) of
the rightmost (k−1)-level macro-tile of the row.
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To organize these computations, we need to include into conscious information kept by (k− 1)-level macro-tiles
additional O(logNk−1) bits and add the same number of bits to their macro-colors. This fits well our fixed-point
construction since zoom factors Nk grow fast, and we have enough room in the computation zone.

Third step (consistency of checksums between macro-tiles): So far, every k-level macro-tile contains O(Nk−1 logNk−1)
bits of checksums and O(logNk−1) bits for every row. We want these checksums to be the same for every two vertical
neighbor macro-tiles. It is inconvenient to keep the checksums for all rows only in the rightmost column (since it
would create too much traffic in this column if we try to transmit the checksums to the neighbor macro-tiles of level k).
So we propagate the checksums of the ith row in a k-level macro-tile M (i = 1, . . . ,Nk−1) along the entire ith row and
along the entire ith column of M. In other words, these checksums must be “consciously” known to all (k−1)-level
macro-tiles in the ith row and in the ith column of M. In Fig. 16 we show the area of propagation of checksums for
two rows (the ith and the jth rows).

i j

i

j

Figure 16: Propagation of checksums inside of a macro-tile.

On the border of two neighbor k-level macro-tiles (one above another) we check that in each column i = 1, . . . ,Nk−1
all the corresponding checksums computed in both macro-tiles coincide. This check is redundant if there are no errors
in the tiling: The checksums are computed from the delegated bits (which come from the sequence of bits ω encoded
into tiles of the ground level), so the corresponding values for all vertically aligned macro-tiles must be equal to each
other. However, this redundancy is useful to resist errors, as we show in the following.

Fourth step (robustification): The features just explained organized in every k-level macro-tile (bit delegation,
computing and propagating checksums, and all the computations simulated in the computation zone of a macro-tile)
are simulated by means of bits kept in the “consciousness” (i.e., in the computation zone) of (k−1)-level macro-tiles.
Now we fix some constant C and “robustify” this construction in the following sense: Each (k− 1)-level macro-tile
M keeps in its consciousness not only “its own” data but also the bits previously assigned to (k−1)-level macro-tiles
from its (C ·Lk−1)-neighborhood (i.e., the (2C + 1)× (2C + 1) array of (k− 1)-level macro-tiles centered at M). So,
the content of the consciousness of each macro-tile is multiplied by some constant factor. Neighbor macro-tiles check
that the data in their consciousness are coherent.

We choose the constant C so that every k-level bi-island (which consist of two parts of size αk) and even the
γk = O(αk)-neighborhood of every k-level bi-island (where we specify γk below) can involve only a small part of
the (CLk−1)-neighborhood of any (k− 1)-level macro-tile. (Note that here we talk about neighborhoods, not about
extended neighborhoods of bi-islands defined in Section 9.4.)

This robustification allows us to reconstruct the conscious information of a k-level macro-tile and of its (k−1)-level
sons when this macro-tile is damaged by one k-level bi-island (assuming there are no other errors).

The last remark (the number of bits in the consciousness of a macro-tile): The construction explained above
requires that we put into the computation zones of all (k−1)-level macro-tiles additional poly(logNk−1) bits of data.
(The most substantial part of the data is the information used to compute the checksums.) Again, this fits our fixed-
point construction because poly(logNk−1) is much less than Nk−2, so we have enough room to keep and process all
these data.
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The tile set τ is thus defined. Since there exists an ω with Levin’s property, it follows that τ-tiling exists, and every
N×N square of such a tiling has Kolmogorov complexity Ω(N). Further, we prove that this τ satisfies also statement
(3) of Theorem 14.

13.4. Error-correcting procedure

Denote by τ the tile set described in Section 13.3. Let ε > 0 be small enough. Lemma 12 says that a Bε -random
set with probability 1 is bi-sparse. Now we assume that E ⊂ Z2 is a bi-sparse set (for the chosen values of αi and βi),
and T is a τ-tiling of Z2 \E. Further, we explain how to correct errors and convert T into a tiling T ′ of the entire plane
(where T ′ should be close to T ).

We follow the usual strategy. The set E is bi-sparse; that is, it can be represented as a union of isolated bi-islands
of different ranks. We correct them one by one, starting from bi-islands of low ranks. To prove that the correction
procedure converges, we need to explain one step of this process: how to correct one bi-island S of rank k assuming
that it is well isolated, i.e., in the βk-neighborhood of this bi-island there are no other (still noncorrected) errors.

Let us recall that a k-level bi-island S is a union of two “clusters” S0,S1; the diameters of both S0 and S1 are at most
αk = O(Lk−1). Hence the clusters S0 and S1 touch only O(1) macro-tiles of level (k−1). The distance between S0 and
S1 is at most βk, and the βk-neighborhood of S is free of other bi-islands of rank k and higher (so we can assume that
the βk-neighborhood of S is already cleaned of errors). Our correction procedure around S will involve only points in
the extended γk-neighborhood of S, where γk = 2αk.

Let M be one of k-level macro-tiles intersecting the extended γk-neighborhood of the k-level bi-island S. Basically,
we need to reconstruct all (k− 1)-level macro-tiles in M destroyed by S. First, we will reconstruct the conscious
information in all (k−1)-level macro-tiles in M. This is enough to get all bits of ω from the “zone of responsibility”
of M. Then, we will reconstruct in a consistent way all n-level macro-tiles inside M for all n < k.

Thus, we start with reconstructing the consciousness of all (k−1)-level macro-tiles M′ in M. First, we recall that
the consciousness (the content of the computation zone) of every (k−1)-level macro-tile M′ consists of several groups
of bits (cf. the outline of the construction in Section 13.2, p. 35):

[A] the binary representation of the number (k−1) and coordinates (integers from the range 0, . . . ,Nk−1−1) of M′

in the father macro-tile M;
[B] the bits used to simulate a Turing machine on the computation zone of M and the bits used to implement “wires”

of M;
[C] the bit (from the sequence ω) delegated to M′;
[D] the bit (from ω) delegated to M;
[E] the bits used to calculate and communicate the checksums for the corresponding row of (k−1)-level macro-tiles

in M; and
[F] a group of bits to check from the zone of responsibility of M′; these bits are checked by the macro-tile: M′

checks on its computation zone that this “group of bits to check” does not contain any factor of low Kolmogorov
complexity.

Bits of field [A] in a small isolated group of (k−1)-level macro-tiles are trivially reconstructed from the surrounding
macro-tiles of the same level. Fields [B], [C], [D], and [E] can be reconstructed because of the robustification on the
level of (k−1)-level macro-tiles. (We organized the robustification on the level of (k−1)-level macro-tiles in such a
way that we are able to reconstruct these fields for any C×C group of missing or corrupt (k− 1)-level macro-tiles.)
So far the correcting procedure follows the exactly the same steps as in Section 11.

To reconstruct fields [F] of (k− 1)-level macro-tiles in M, we need to reconstruct all bits of ω from the zone of
responsibility of M. We can extract these bits from the neighbor k-level tiles above or below M. (Recall that bi-island
S touches only O(1) k-level macro-tiles, and there is a “healthy” zone of k-level macro-tiles around them.) However, a
problem remains since we are not sure that the ω bits above M, below M, and inside M are consistent. Now we show
that this consistency is guaranteed by checksums.

Denote by Mu and Md the k-level macro-tiles just above and below S. Since the distance between S and other
k-level bi-islands is greater than βk = 2Lk, we know that Mu and Md must be free of errors (where we assume that
errors of ranks less than k are already corrected). See Fig. 17. In what follows, our explanations refer to Fig. 17,
where bi-island S touches only one k-level macro-tile; if S touches several k-level macro-tiles, substantially the same
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arguments work. It is enough to prove that the bits ωi assigned to corresponding columns of Mu and in Md are equal
to each other.

macro-tile Mu without errors

macro-tile Md without errors

macro-tile M with an error bi-island

Figure 17: Bi-island of errors in a macro-tile.

The macro-tiles Mu and Md are error free; therefore, the sequences of Lk bits ωi corresponding to the vertical lines
intersecting these k-level macro-tiles are well defined. Since there are no errors, the conscious information (including
checksums) in all macro-tiles of all levels inside Mu and Md is consistent with these bit sequences. So, the Lk bits
assigned to the vertical columns are correctly delegated to the corresponding (k− 1)-level macro-tiles inside Mu and
Md . However, it is not evident that the sequences of Lk bits embedded in Mu and Md are equal to each other.

In fact, it is easy to see that bit sequences for Mu and Md coincide with each other at most positions. They must
be equal for all columns (from the range 0, . . . ,Lk−1) that do not intersect bi-island S (i.e., in nondamaged columns
of tiles on the ground level, the assigned bits ωi correctly spread though macro-tiles Mu, M, and Md). Hence, the bits
delegated to the corresponding (k−1)-level macro-tiles in Mu and Md are equal to each other, except for only (k−1)-
level macro-tiles in the “gray zone” of Fig. 17, which contains the (k−1)-level macro-tiles involved in the correction
of S and all vertical stripes touching the involved sites. (The width of this gray stripe is only O(1) macro-tiles of level
(k−1).) Hence, for i = 0, . . . ,(Nk−1−1), in the ith rows of (k−1)-level macro-tiles in Mu and Md , the sequences of
delegated bits are equal to each other except possibly for only O(1) bits (delegated to (k−1)-level macro-tiles in the
“gray zone”).

The robustness property guarantees that all checksums are correctly transmitted through M. Hence, checksums for
corresponding rows in Mu and in Md must be equal to each other.

Thus, for every two corresponding rows of (k−1)-level macro-tiles in Mu and in Md we know that (a) all except
O(1) delegated bits in the corresponding positions are equal to each other and (b) the checksums are equal to each
other. From the property of our erasure code it follows that in fact all delegated bits in these rows are equal to each
other (with every ith bit in Mu being equal to the ith bit in Md). Therefore, all bits ωi in Mu and Md are the same (on
the ground level). We can use these bits to reconstruct subconsciousness of M and get a consistent tiling in M.

We are almost done. Bi-island S is corrected; we reconstructed conscious information for the k-level macro-tile M
and for all its (k− 1)-level sons. Now we can reconstruct fields [F] in the damaged (k− 1)-level macro-tiles inside
M. This is simple to do. We just take the corresponding bits ωi from the zone of responsibility (shared by M, Mu, and
Md). It remains only to explain why the checking procedure does not fail for these groups of bits (i.e., (k− 1)-level
macro-tiles do not discover in these bit strings any factors of low Kolmogorov complexity). But this is true because
macro-tiles of levels (k−1) (and also below (k−1)) inside M apply exactly all the same checks to exactly the same
groups of bits ωi as the macro-tiles in the corresponding positions in Mu and Md . Since there is no errors in Mu and
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Md , these computations do not lead to a contradiction.
Let us inspect again the correction procedure just explained; we should notice which tiles are involved in the

error-correcting process around bi-island S. In the (k−1)-level macro-tiles outside the “gray zone” we change noth-
ing. Moreover, not all the gray zone needs to be changed—only the part between two clusters of S (and their small
neighborhoods) is affected. Indeed, in all tiles of M that are above S the assigned bits ωi are the same as in the corre-
sponding columns of Mu; in the tiles of M that are below S the assigned bits ωi are the same as in the corresponding
columns of Md . Hence, there is no need to correct “subconscious information” of (k− 1)-level macro-tiles that are
above or below S. Only the area between two clusters of S requires corrections. More precisely, the area involved
in the correcting procedure is inside the extended neighborhood of S. (In fact, this argument is the motivation of our
definition of extended neighborhood.)

Thus, we have proven that this step-by-step correcting procedure eliminates all bi-islands of errors and only ex-
tended γk-neighborhoods of k-level bi-islands are involved in this process. Now Theorem 14 (part 3) follows from
Lemma 8. It remains only to prove part 4 of the theorem. We do this in the next section.

13.5. Levin’s property for ω embedded into a (τ,E)-tiling

It remains to prove part (4) of Theorem 14. In the previous section we proved that if the set of errors E is bi-sparse,
then a (τ,E)-tiling T can be converted into a τ-tiling T ′ of the entire plane, and the difference between T and T ′ is
covered by extended γk neighbors of k-level bi-islands from E (k = 0,1, . . .). Now we want to show that, in the initial
tiling T , the Kolmogorov complexity of centered squares of size N×N was Ω(N).

Fix a point O. Since E is bi-sparse, O is covered by βk-neighborhoods of only finitely many bi-islands. Hence,
for large enough ∆, the ∆×∆ square Q∆ centered at O intersects extended γk-neighborhoods of k-level bi-islands only
if βk < ∆. (If the extended γk-neighborhood of some bi-island intersects Q∆ and βk ≥ ∆, then βk− γk > ∆/2 and O is
covered by the βk-neighborhood of this bi-island.) Therefore, to reconstruct T ′ in Q∆ it is enough to correct there all
bi-islands of bounded levels (such that βk < ∆).

To reconstruct T ′ in Q∆ we need to know the original tiling T in Q∆ and some neighborhood around it (i.e., in
some centered O(∆)×O(∆) square Q∆′ , which is only greater than Q∆ by a constant factor). Indeed, given the tiling T
restricted on Q∆′ , we can locally correct there bi-islands of levels 1,2, . . . ,k (such that βk < ∆) one by one. Correcting
a bi-island of errors in Q∆′ we obtain the same results as in the error-correcting procedure on the entire plane Z2 unless
this bi-island is too close to the border of Q∆′ (and the local correction procedure should involve information outside
Q∆′ ). Thus, we can reconstruct T ′-tiling not in the entire Q∆′ but in points that are far enough from the border of this
square. If ∆′ = c∆ for large enough c, then Q∆′ provides enough information to reconstruct T ′ in Q∆.

We know that Kolmogorov complexity of error-free tiling T ′ in Q∆ is Ω(∆). Therefore, the Kolmogorov complexity
of the original T -tiling in the greater square Q∆′ is also Ω(∆). Since ∆′ is only greater than ∆ by a constant factor, we
get that the Kolmogorov complexity of the (τ,E)-tiling T restricted to the centered (∆′×∆′) square is Ω(∆′).

Theorem 14 is proven.
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