N. Aubrun and M. Sablik, Simulation of recursively enumerable subshifts by two-dimensional SFT and a generalization, preprint available at the home page of M. Sablik, 2010.

R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, vol.0, issue.66, pp.1-72, 1966.
DOI : 10.1090/memo/0066

E. R. Berlekamp, Algebraic Coding Theory, 1984.
DOI : 10.1142/9407

L. Bienvenu, A. Romashchenko, and A. Shen, Sparse Sets, Journées Automates Cellulaires, vol.274010, pp.18-2818, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274010

K. Culik, An Aperiodic Set of 13 Wang Tiles, Discrete Math, pp.245-251, 1996.

B. Durand, L. Levin, and A. Shen, Abstract, Proc. 33rd Ann. ACM Symp. Theory Computing, pp.593-613, 2001.
DOI : 10.1016/0022-0000(91)90007-R

URL : https://hal.archives-ouvertes.fr/hal-00079709

B. Durand, L. Levin, and A. Shen, Local rules and global order, or aperiodic tilings, The Mathematical Intelligencer, vol.12, issue.1, pp.64-68, 2004.
DOI : 10.1007/BF02984815

B. Durand and A. Romashchenko, On Stability of Computations by Cellular Automata, Proc. European Conf. Compl. Syst, 2005.

B. Durand, A. Romashchenko, and A. Shen, Fixed Point and Aperiodic Tilings, in Developments in Language Theory, 12th International Conference Proceedings , Lecture Notes in Computer Science, pp.276-288, 2008.

B. Durand, A. Romashchenko, and A. Shen, High Complexity Tilings with Sparse Errors, Proceedings, Part I, pp.403-414, 2009.
DOI : 10.1007/978-3-642-02927-1_34

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Gács, Reliable cellular automata with self-organization, Proceedings 38th Annual Symposium on Foundations of Computer Science, pp.90-97, 1997.
DOI : 10.1109/SFCS.1997.646097

P. Gács, Reliable cellular automata with self-organization, Proceedings 38th Annual Symposium on Foundations of Computer Science, pp.45-267, 2001.
DOI : 10.1109/SFCS.1997.646097

L. Gray, A Reader's Guide to Gács' Positive Rates Paper, Journal of Statistical Physics, vol.103, issue.1/2, pp.1-44, 2001.
DOI : 10.1023/A:1004824203467

. Yu, I. Gurevich, and . Koryakov, Remarks of Berger's paper on the domino problem, Siberian Math. J, vol.13, pp.319-321, 1972.

W. Hanf, Nonrecursive Tilings of the Plane, I, J. Symbolic Logic, pp.283-285, 1974.

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Inventiones mathematicae, vol.47, issue.1, pp.131-167, 2009.
DOI : 10.1007/s00222-008-0161-7

J. Kari, A Small Aperiodic Set of Wang tiles, Discrete Math, pp.259-264, 1996.

H. Rogers, The Theory of Recursive Functions and Effective Computability, 1987.

G. Lafitte and M. Weiss, Computability of Tilings, Proc. International Federation for Information Processing, Fifth IFIP International Conference on Theoretical Computer Science (IFIP-TCS 2008), pp.187-201, 2008.
DOI : 10.1007/978-0-387-09680-3_13

S. Mozes and T. , Tilings, substitution systems and dynamical systems generated by them, Journal d'Analyse Math??matique, vol.53, issue.1, pp.139-186, 1989.
DOI : 10.1007/BF02793412

D. Myers, Nonrecursive Tilings of the Plane, II, J. Symbolic Logic, pp.286-294, 1974.

J. Neumann, Theory of Self-reproducing Automata, 1966.

N. Ollinger, Two-by-Two Substitution Systems and the Undecidability of the Domino Problem, Proc. Computability in Europe, pp.476-485, 2008.
DOI : 10.1007/978-3-540-69407-6_51

URL : https://hal.archives-ouvertes.fr/hal-00204625

. Yu, J. Pritykin, and . Ulyashkina, Aperiodicity Measure for Infinite Sequences, Computer Science?Theory and Applications, in Fourth International Computer Science Symposium in Russia, Lecture Notes in Computer Science, vol.5675, pp.274-285, 2009.

R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae, vol.40, issue.3, pp.177-209, 1971.
DOI : 10.1007/BF01418780

. An, M. Rumyantsev, and . Ushakov, Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences, STACS 2006 Proceedings, 2006.

A. Shen, Algorithmic Information Theory and Kolmogorov Complexity, lecture notes of a course taught at Uppsala University, pp.2000-2034

S. G. Simpson, Medvedev degrees of 2-dimensional subshifts of finite type, Ergodic Theory and Dynamical Systems, pp.665-674, 2014.

M. Zaks, A. S. Pikovsky, and J. Kurths, On the correlation dimension of the spectral measure for the thue-morse sequence, Journal of Statistical Physics, vol.74, issue.5-6, pp.1387-1392, 1997.
DOI : 10.1007/BF02732440

. Merriam-webster, s Medical Dictionary, 2010.