Variations on Muchnik's Conditional Complexity Theorem
Abstract
Muchnik's theorem about simple conditional descriptions states that for all strings a and b there exists a program p transforming a to b that has the least possible length and is simple conditional on b. In this paper we present two new proofs of this theorem. The first one is based on the on-line matching algorithm for bipartite graphs. The second one, based on extractors, can be generalized to prove a version of Muchnik's theorem for space-bounded Kolmogorov complexity. Another version of Muchnik's theorem is proven for a resource-bounded variant of Kolmogorov complexity based on Arthur-Merlin protocols.
Domains
Computational Complexity [cs.CC]Origin | Files produced by the author(s) |
---|
Loading...