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email: tarik.kaced@lif.univ-mrs.fr

Abstract—To split a secret s between several participants, we
generate (for each value of s) shares for all participants. The goal:
authorized groups of participants should be able to reconstruct
the secret but forbidden ones get no information about it. We
introduce several notions of non-perfect secret sharing, where
some small information leak is permitted. We study its relation to
the Kolmogorov complexity version of secret sharing (establishing
some connection in both directions) and the effects of changing
the secret size (showing that we can decrease the size of the secret
and the information leak at the same time).

I. SECRET SHARING : A REMINDER

Assume that we want to share a secret – say, a bit string
x of length n – between two people in such a way that they
can reconstruct it together but none of them can do this in
isolation. This is simple, choose a random string r of length
n and give r and r⊕ x to the participants (r⊕ x is a bitwise
XOR of x and r.) Both r and r⊕ x in isolation are uniformly
distributed among all n-bit strings, so they have no information
about x.

The general setting for secret sharing can be described as
follows. We consider some finite set K whose elements are
called secrets. We also have a finite set P of participants.
An access structure is a non-empty set Γ whose elements
are groups of participants, i.e., a non-empty subset of 2P .
Elements of Γ are called authorized groups of participants
(that should be able to reconstruct the secret). Other subsets of
P are called forbidden groups (that should get no information
about the secret). We always assume that Γ is upward-closed
(it is natural since a bigger group knows more)1.

In our initial example K = Bn (the set of n-bit strings),
P = {1, 2} (we have two participants labeled 1 and 2), and Γ
consists of the set {1, 2} only.

In general, perfect secret sharing can be defined as follows.
For every participant p ∈ P a set Sp is fixed; its elements are
p’s shares. For every k ∈ K we have a tuple of #P dependent
random variables σp ∈ Sp. There are two conditions:
• for every authorized set A ∈ Γ it is possible to reconstruct

uniquely the secret k from the shares given to participants
in A (i.e., for different secrets k and k′ the projections of
the corresponding random tuples onto the A-coordinates
have disjoint ranges);

• for every forbidden set B /∈ Γ the participants in B get
no information about the secret (i.e., for different secrets

1One can also consider a more general setting where some groups are
neither allowed nor forbidden (so there is no restriction on the information
they may get about the secret.) We do not consider this more general setting
here.

k and k′ the projections of the corresponding random
tuples onto B-coordinates are identically distributed).

Various versions of combinatorial schemes were introduced
in [6] and [7]. Note that in this definition we have no
probability distribution on the set of secrets. It is natural for
the setting when somebody gives us the secret (i.e., the user
chooses her password) and we have to share whatever is given
to us.

We consider another setting (as, first in [12] and further
developped in [8]) where secret is also a random variable.
Consider a family of random variables: one (κ) for the secret
and one (σp) for each participant p. This family is a perfect
secret sharing scheme if
• for every authorized set A the projection σA = {σp, p ∈
A} determines κ;

• for every forbidden set B the projection σB is indepen-
dent with κ.

These conditions can be rewritten using Shannon infor-
mation theory: the first condition says that H(κ|σA) = 0,
and the second says that I(σB : κ) = 0. Here H(·|·)
stands for conditional Shannon entropy and I(· : ·) stands for
mutual information. (To be exact, we should ignore events of
probability zero when saying that σA determines κ. To avoid
these technicalities, let us agree that our probability space is
finite and all non-empty events have positive probabilities.)

These definitions are closely related. Namely, it is easy to
see that:
• Assume that a perfect secret sharing scheme in the sense

of the first definition is given. Then for every distribution
on secrets (random variable κ ∈ K) we get a scheme in
the sense of the second definition as follows. For each
secret k ∈ K we have a family of dependent random
variables σp, and we use them as conditional distribution
of participants’ shares if κ = k.

• Assume that a perfect secret sharing scheme in the sense
of the second definition is given, and all secrets have
positive probability according to κ. Then the conditional
distributions of σp with the condition κ = k form a
scheme in the sense of the first definition.

This equivalence shows that in the second version of the
definition the distribution on secrets is irrelevant (as far as
all element in K have positive probability): we can change κ
keeping the conditional distributions, and still have a perfect
secret sharing scheme. The advantage of the second definition
is that we can use standard techniques from Shannon infor-
mation theory (e.g., information inequalities).



The general task of secret sharing can now be described
as follows: given a set of secrets K and an access structure
Γ construct a secret sharing scheme. This is always possible
(see [5], [11]). However, the problem becomes much more
difficult if we limit the size of shares. It is known (see [8])
that in the non-degenerate case shares should be at least of
the same size as the secret: #Sp ≥ #K for every essential
participant p. (A participant is essential if we remove it from
some authorized group and get a forbidden group. Evidently,
non-essential participants can be just ignored.) This motivates
the notion of ideal secret sharing scheme where #Sp = #K
for every essential participant p.

Historically, the motivating example for secret sharing was
Shamir’s scheme (see [18]). It has n participants, authorized
groups are groups of t or more participants (where t is an
arbitrary threshold). Secrets are elements of a finite field F
of size greater than n. To share a secret k, we construct a
polynomial

Pk(x) = k + r1x+ r2x
2 + . . .+ rt−1x

t−1

where the ri are chosen independently and uniformly. The
shares are the values P (x1), . . . , P (xn) for distinct nonzero
field elements x1, . . . , xn (for each participant a non-zero
element of the field is fixed). Any t participants together can
reconstruct the polynomial while for any t − 1 participants
all combinations of shares are equally probable (for every k).
This scheme is ideal.

Not every access structure allows an ideal secret sharing
scheme. For example, no ideal scheme exists for four partic-
ipants a, b, c, d where the authorized groups are {a, b}, {b, c}
and {c, d} and all their supersets (see [5], [13]; it is shown
there that every secret sharing scheme for this access structure
satisfies log #Sb + log #Sc ≥ 3 log #K).

It is therefore natural to weaken the requirements a bit and
to allow non-ideal secret sharing schemes still having shares
of reasonable size. For example, we may fix some ρ ≥ 1 and
ask whether for a given access structure there exists a perfect
secret sharing scheme where maxp∈P log #Sp ≤ ρ log #K.
(The answer may depend on the size of K.)

Unfortunately, not much is known about this. There are quite
intricate lower bounds for different specific access structures
(some proofs are based on non-Shannon inequalities for en-
tropies of tuples of random variables, see [4], [17]). The best
known lower bounds for sharing m-bit secrets (for some fixed
access scheme) are still rather weak, like n

log nm (see [9]). On
the other hand, the known upper bounds for general access
structures are exponential in the number of participants (and
rather simple, see [5], [11]).

II. NONPERFECT SECRET SHARING

The relaxation of the perfectness property is natural when
efficiency is involved (see [2], [14], [19]). Our attempt here
is to encapsulate existing definitions of non-perfect schemes
in the Shannon framework. We consider possible relaxations
of the requirements and introduce several versions of almost-
perfect secret sharing. By this we mean that we allow limited

“leaks” of information to forbidden groups of participants.
We also consider schemes where authorized groups need
some (small) additional information to reconstruct the secret.
Such approximately-perfect schemes are quite natural from
the practical point of view. Also, the gain in flexibility may
help overcome the difficulty of constructing efficient perfect
schemes which seems related to difficult problems of combi-
natorial or algebraic nature.

Let us discuss possible definitions for almost-perfect
schemes. Now we want to measure the leak of information (or
the amount of missing information), and the most natural way
is to replace the equations H(κ|σA) = 0 and I(σB : κ) = 0
by inequalities H(. . .) < ε1 and I(. . .) < ε2, for some
bounds ε1 and ε2 (normally, a small fraction of the amount
of information in the secret itself). The problem here is that
measuring the information leak and missing information in this
way, we need to fix some distribution on secrets, and this looks
unavoidable even from the intuitive point of view. Imagine that
we have 1000-bit secrets, and the sharing scheme works badly
for secrets with 900 trailing zeros (e.g., discloses them to all
participants). If the information leak might not be huge for the
uniform distribution, since 100 leaked bits are multiplied by
2−900 probability to have 900 trailing zeros; it can however
become significant if the secret is not chosen uniformly, e.g.
the user chooses a short password padded with trailing zeros.

An interesting question (that we postpone for now) is how
significant could be this dependence. One may expect that a
good secret sharing scheme remains almost as good if we
change slightly the distribution, but we cannot prove any
natural statement of this kind. So we have to include the
distribution on secrets in all the definitions.

Let Γ be an access structure. Let κ and σp (for all partic-
ipants p) be some random variables (on the same probability
space, so we may consider their joint distribution). Such a
family is called a (not necessarily perfect) secret sharing
scheme, and its parameters are:
• distribution on secrets (in particular, the entropy of κ is

important);
• information rate, H(κ), the entropy of the secret divided

by the maximal entropy of a single share;
• missing information ratio, the maximal value of H(κ|σA)

for all authorized A, divided by H(κ);
• information leak ratio, the maximal value of I(σB : κ)

for all forbidden B, divided by H(κ).
To simplify our statements, we consider asymptotic be-

haviors and give the following template definition of almost-
perfect secret sharing:

Definition 2.1: An access structure Γ on the set P of par-
ticipants can be almost-perfectly implemented with parameters
(ρ, ε1, ε2) if there exists a sequence of secret sharing schemes
for the secret variable κn, such that
• H(κn)→∞;
• the lim sup of the information rates does not exceed ρ;
• the missing information ratio converges to ε1 as n→∞;
• the information leak ratio converges to ε2 as n→∞.



In this article we introduce several definitions of almost-
perfect secret sharing schemes. Two versions in the framework
of Shannon entropy for which we show that the stronger
definition, where we require no missing information, gives the
same notion; one version in the framework of Kolmogorov
complexity. We prove that all these approaches are asymptoti-
cally equivalent (have equivalent asymptotical rates of schemes
for each access structure). Hence, we can combine tools of
Shannon’s information theory and Kolmogorov complexity to
investigate the properties of nonperfect secret sharing schemes.

Rather than providing constructions or stating trivial coun-
terparts of known theorems, we emphasize our study on
the behaviour of such schemes. Simple properties of perfect
schemes provide new natural questions for nonperfect schemes
which are in general not trivial. The main contribution of the
paper is the proof of few of such natural properties, namely and
Proposition 3.5 and Theorem 5.2 for scaling down a nonperfect
scheme while keeping roughly the same information leak ratio.

We believe our modest contribution is a small step towards
a promising path to discover new constructions and theorems
in nonperfect secret sharing.

III. APPROXIMATELY-PERFECT SECRET SHARING
SCHEMES

We consider two versions of approximately-perfect secret
sharing schemes, whether we allow missing information or
not.

Definition 3.1: Let K be a finite set of secrets, a (ε1, ε2)-
nonperfect secret sharing scheme for secrets in K implement-
ing an access structure Γ is a tuple of jointly distributed
discrete random variables (κ, σ1, . . . , σn) such that
• if A ∈ Γ then H(κ|σA) ≤ ε1H(κ)
• if B /∈ Γ then I(κ : σB) ≤ ε2H(κ)
Definition 3.2: An ε-nonperfect secret sharing scheme is a

(0, ε)-nonperfect scheme.
By ε-NPS(Γ, N, S), resp. (ε1, ε2)-NPS(Γ, N, S), we re-

fer to a ε-nonperfect, resp. (ε1, ε2)-nonperfect, secret sharing
scheme implementing access structure Γ for N -bit secrets with
single shares of entropy at most S. We use PS(Γ, N, S) for
perfect schemes, i.e., when it is the case that ε1 and ε2 are
null.

We now introduce the almost-perfect versions of secret
sharing, that denotes an asymptotic sequence of nonperfect
schemes for a fixed access structure where the leak can be
made negligible as the size of the secret grows.

Definition 3.3: We say that an access structure Γ can be
almost-perfectly implemented, with parameters (ρ, ε1, ε2), if
there exists a sequence of nonperfect schemes in the sense
of Definition 3.1 such that parameters converge to (ρ, ε1, ε2).
i.e., if

∃((ε1m, ε2m)-NPS(Γ, Nm, Sm))m∈N s.t.
(ε1m, ε

2
m)→ (ε1, ε2) and Nm/Sm → ρ as m→∞.

Moreover, we say that Γ can be almost-perfectly imple-
mented without missing information when the nonperfect
schemes are in the sense of Definition 3.2.

Proposition 3.4: Let Γ be an access structure, the following
are equivalement
• Γ can be almost-perfectly implemented
• Γ can be almost-perfectly implemented without missing

information
This proposition is a corollary of the following result: one

can transform a scheme with some missing information into
a scheme without missing information by increasing the size
of shares.

The natural idea to prove this is to add the missing in-
formation to authorized groups. This plan is however not
trivial to implement efficiently since the leak must remain
small, hence we can not use a perfect scheme to share the
missing information. The plan is to ”materialize” the missing
information and add it to each participant. This materialized
missing information will only increase the information leak
by a small amount. The following proposition shows we can
indeed achieve a new leak comparable to the previous one.

Proposition 3.5: If Γ is an access structure on n partici-
pants, then

∃(ε1, ε2)-NPS(Γ, N, S)⇒
∃(ε2 +O(ε1N2n))-NPS(Γ, N, S +O(ε1N2n))

Proof: Assume there is a (ε1, ε2)-NPS(Γ, N, S), let us
transform it as follows. Take an authorized set A ∈ Γ, by
definition it holds that H(κ|σA) ≤ ε1N . Informally, it means
that A lacks ε1N bits of information about the secret. We
materialize this information and add it to A. More precisely,
we use the following lemma about conditional descriptions:

Lemma 3.6: Let α and β be two random variables defined
on the same space. Then there exists a variable γ (defined
on the same space) such that H(α|β, γ) = 0 and H(γ) ≤
2H(α|β) +O(1).

We apply lemma 3.6 to encode the secret k conditional to
the shares of A. Since this random variable has entropy at
most ε1N , the encoding can be done by strings of size at
most O(ε1N) + O(1). We add this “conditional description”
to any participant of A. Now the participants of A can
together determine the secret uniquely. We do the same for all
authorized groups in Γ. So, now all authorized groups have
all information about the secret.

We added some additional data to several participants (some
participants can obtain several different “conditional descrip-
tions” since one participant can belong to several authorized
groups). However all additional information given to partici-
pants is of size only O(ε1N2n), hence, the extra information
is given to forbidden groups is at most O(ε1N2n). The size
of the shares in the new schemes is at most S + O(ε1N2n),
and we are done.

An interesting open question about almost-perfect secret
sharing is to settle whether it is equivalent to perfect secret
sharing or not:

Question 3.7: Can we achieve essentially better informa-
tion rates with almost-perfect schemes than with perfect
schemes ?



A weaker form of this question where leaks are exactly
zero has been answered by Beimel et al in [3] (using a
result of Matúš [16]) where they construct a nearly-ideal
access structure, i.e. access structure that can be implemented
perfectly with an information rate as close to 1 as we want
but not equal. In fact, with the same kind of arguments we
can construct an almost-perfect scheme for the same access
structure with small leaks but information rate exactly one.

Proposition 3.8: There is an access structure which can be
implemented by an almost-perfect scheme with parameters
(1, 0, 0) and rate exactly one but has no ideal perfect scheme.

Proof: An access structure Γ is induced by a matroid
M = (Q, C) through s ∈ Q if Γ is defined on the set of
participants P = Q\{s} by the upper closure of the collection
of subsets A ⊆ P such that A ∪ {s} ∈ C (here C is the set of
circuits of the matroidM.) Let F and F− be respectively the
access structures induced by the Fano and by the non-Fano
matroids (through any point). In [16], Matúš proved that there
exist perfect ideal schemes for F , resp. F− if and only if #K
is even, resp. odd.

Consider an access stucture Γ consisting of disjoint copies
of F and F−. From Matúš argument, Γ cannot be imple-
mented ideally by a perfect scheme. Construct a scheme Σ
consisting of the concatenation of two independent schemes:
• a PS(F , N,N), and
• a PS(F−, N,M), constructed from a PS(F−,M,M)

for #K = 2N + 1 (i.e., M = log(2N + 1)) where we
removed one possible value of the secret.

Σ is a perfect scheme for Γ with rate N
log(2N+1)

. Now instead
of using a PS(F−, N,M) as second scheme, we modify it
into a nonperfect scheme by substituting the value of the share
”2N + 1” by any other possible value. Now there are exactly
2N shares. It is not difficult to show that Σ′ is, at most, a
( 3

N , 0)-NPS(Γ, N,N) i.e., with information rate exactly one.

IV. KOLMOGOROV SECRET SHARING

We denote ”the” Kolmogorov complexity function by the
letter K. Since most variants are equal up to a logarithmic term
and our results are asymptotic. For a complete introduction to
Kolmogorov complexity and to some techniques used here,
we refer the reader to the book [15] and to [20].

The problem of secret sharing could be studied also in the
framework of the algorithmic information theory. The idea
is that now a secret sharing scheme is not a distribution
on binary strings but an individual tuple of binary strings
with corresponding properties of “secrecy”. To define these
“secrecy” properties for individual strings, we substitute Shan-
non’s entropy by Kolmogorov complexity and get algorithmic
counterparts of the definition of secret sharing schemes.

As opposed to Shannon entropy, Kolmogorov complexity
provides a framework to talk about hardness of S conditional
on X not only on average but for individual instances of the
secret (see [1]). Kolmogorov complexity is not computable,
but it is a reasonable limit value for all “practical” measures
of algorithmic complexity and a very robust measure of

randomness (it is not sensitive to small variations of S and X).
We believe that the intuition from Kolmogorov’s version of
secret sharing may be quite adequate for practical applications.

For Kolmogorov complexity there is no natural way to de-
fine an ”absolutely” perfect version of secret sharing scheme.
We can deal only with “approximately-perfect” versions of the
definition and make statements in the almost-perfect sense. We
define almost-perfect schemes for Kolmogorov complexity in
the same way as we defined (ε1, ε2)-nonperfect schemes for
Shannon’s entropy.

Definition 4.1: For an access structure Γ we say that a tuple
of binary strings (s, a1, . . . , an) is a Kolmogorov (ε1, ε2)-
perfect secret sharing scheme for secrets of size N if
• K(s) = N
• for A ∈ Γ,K(s|aA) ≤ ε1N
• for B /∈ Γ,K(s)−K(s|aB) = I(s : aB) ≤ ε2N
We reuse the template of almost-perfect secret sharing, this

time in the Kolmogorov setting using the above version of
secret sharing scheme. Thus, it should make sense to talk about
almost-perfect secret sharing in the sense of Kolmogorov.

It turns out the problem of constructing approximately
perfect secret sharing schemes in Shannon’s and Kolmogorov’s
frameworks are closely related. For every access structure, in
both frameworks the asymptotically optimal rates are equal to
each other. More precisely, we have the following equivalence:

Theorem 4.2: Let Γ be an access structure over n partic-
ipants and ρ, ε1, ε2 be positive reals, then the following are
equivalent:
• Γ can be almost-perfectly implemented with parameters

(ρ, ε1, ε2) in the sense of Shannon.
• Γ can be almost-perfectly implemented with parameters

(ρ, ε1, ε2) in the sense of Kolmogorov.
This theorem follows from a more general parallelism,

implicit in [10], between Shannon entropy and Kolmogorov
complexity. It explain that the class of realizable complexity
profiles and the class of entropy profiles are in some sense
very similar.

The Kolmogorov complexity profile of a tuple [a] =
(a1, . . . , an) of a binary string is defined by the vector ~K([a])
of Kolmogorov complexities of all pairs, triples . . . of strings
ai. So, it consists consists of 2n − 1 (integer) complexity
values, one for each non-empty subset of n strings ai. In
the same way we define the entropy profile ~H([s]) of a tuple
[s] = (s1, . . . , sn) of random variables by replacing K(·) by
H(·).

Theorem 4.3: For every ~v ∈ R2n−1
+ the following condi-

tions are equivalent:
• there is a sequence ([sm])m∈N of n-tuple of random

variables s.t. 1
m
~H([sm])→ ~v

• there is a sequence ([am])m∈N of n-tuple of binary strings
s.t. 1

m
~K([am])→ ~v

Note that Theorem 4.2 follows immediately from Theorem 4.3.

V. SCALING OF SECRET SHARING SCHEMES

Here, we attempt to show how to scale up and down any
secret sharing scheme. The problem consist of, given a secret



sharing for N -bit secrets, constructing new secret sharing
schemes for `-bit secrets where ` can be arbitrary large or
small. While this task is easy in the perfect case, it becomes
much more difficult in the non-perfect case when we are
concerned with efficiency and information leak.

Proposition 5.1: Let Γ be an access structure:
(a) [scaling down] if there exists a PS(Γ, N, S) then for

every positive integer ` ≤ N there exists a PS(Γ, `, S).
(b) [scaling up] if there exists a (ε1, ε2)-NPS(Γ, N, S)

then for every positive integer q there exists a
(qε1, qε2)-NPS(Γ, qN, qS).
Proof:

(a) To scale down, we can reuse the same scheme. Simply
restrict the support of the random variable k to 2` values and
equip this support with the uniform distribution. Authorized
groups can determine the secret uniquely since it was the case
in the initial scheme. Forbidden have no information about
the secret otherwise they had some information in the initial
perfect scheme.

(b) For scaling up, the new scheme consists of the concate-
nation of q independent versions of the initial scheme. Since
the new scheme consists of independent copies (a serialization)
of the inital scheme, every new entropy value is q times the
old entropy value.

Scaling down of the size of the secret becomes non-trivial
for non-perfect secret sharing schemes if we want to keep
the same information leak and missing information. If we can
ε-nonperfectly share an N -bit secret, then intuitively it seems
that we should be able to share one single bit with information
leak ratio of about ε. However this statement is quite non-
obvious. We formulate a slightly weaker statement (this is the
main result of the paper):

Theorem 5.2: For all c ∈ (0, 1
4 ) there exists an integer

N0 > 0 such that for every access structure Γ on n partic-
ipants: if for some ε there exist an ε-NPS(Γ, N, S) where
the secret is uniformly distributed, such that

N > N0 and nS < 2cN

then there exists an ε′-NPS(Γ, 1, S) with ε′ = 8ε
2
3 , where

the secret is uniformly distributed
Sketch of the proof: Construct a new scheme for a 1-bit

secret from the initial scheme in the following way. Given an
ε-NPS(Γ, N, S) for a uniformly distributed secret in K =
{1, . . . , 2N}, take a splitting of K into two equal parts, say
K0 and K1. Then define a new scheme as follows: to share
the bit i, take a random element of Ki and share it with the
initial scheme. It is easy to see that this new scheme is indeed
an ε′-NPS(Γ, 1, S) for a uniformly distributed secret bit with
some leak ε′. This leak ε′ depends on the initial choice of the
splitting K0. We can show that there exists such a splitting
with small leak.

Notice that the secret must be uniformly distributed. The
dependency on the probability distribution of the secret is not
trivial in the nonperfect case. The assumption nS = O(2N )
means that the result holds for various kind of access structures

defined by the trade-off between the parameters n, S and N .
Sharing exactly one bit instead of N seems more difficult. We
do not know whether this bound can be improved, in particular,
can we achieve a leak of O(ε)?

VI. CONCLUSION

We introduced a notion of non-perfect secret sharing and
its asymptotic version. The new natural questions in this
setting are sometimes non-trivial and require a careful and
technical analysis. For now, the question of separating perfect
and almost-perfect secret sharing remains open.
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