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Abstract—In 1997, Z. Zhang and R.W. Yeung found the
first example of a conditional information inequality in four
variables that is not “Shannon-type”. This linear inequality for
entropies is called conditional (or constraint) since it holds only
under condition that some linear equations are satisfied for the
involved entropies. Later, the same authors and other researchers
discovered several unconditional information inequalities that do
not follow from Shannon’s inequalities for entropy.

In this paper we show that some non Shannon-type condi-
tional inequalities are “essentially” conditional, i.e., they cannot
be extended to any unconditional inequality. We prove one
new essentially conditional information inequality for Shannon’s
entropy and discuss conditional information inequalities for
Kolmogorov complexity.

I. INTRODUCTION

Let (X1, . . . , Xn) be jointly distributed random variables

on a finite domain. For this collection of random variables

there are 2n − 1 non-empty subsets and for each subset we

have a value of Shannon’s entropy. We call this family of

entropies the entropy profile of the distribution (X1, . . . , Xn).
Thus, to every n-tuple of jointly distributed random variables

there corresponds its entropy profile which is a vector of values

in R
2n−1. We say that a point in R

2n−1 is constructible if it

is a vector of entropies for some distribution.

All constructible points satisfy different information in-

equalities that characterize the range of all entropies for Xi.

The most known and understood are so-called Shannon-type

inequalities, i.e., linear combinations of basic inequalities of

type I(U : V |W ) ≥ 0, where U, V,W are any (possibly

empty) subsets of the given family of random variables.

In 1998 Z. Zhang and R.W. Yeung proved the first ex-

ample of an unconditional non Shannon-type information

inequality, which was a linear inequality for entropies of

(X1, X2, X3, X4) that cannot be represented as a combination

of basic inequalities [5]. Since this seminal paper of Zhang

and Yeung was published, many (in fact, infinitely many) non

Shannon-type linear information inequalities were proven, see,

e.g., [7], [8], [9], [12], [13]. Another very curious piecewise

linear information inequality was proven in [15]. These new

inequalities were applied in problems of network coding [14],

secret sharing [16], etc. However, these inequalities and their

‘physical meaning’ are still not very well understood.

In this paper we discuss conditional (constraint) information

inequalities. That is, we are interested in linear information

inequalities that are true only given some linear constraint

for entropies. Trivial examples of conditional inequalities can

be easily derived from (unconditional) basic inequalities, e.g.,

if H(X1) = 0 then H(X1, X2) ≤ H(X2). However, some

conditional inequalities cannot be obtained as a corollary of

Shannon-type inequalities. The first example of a nontrivial

conditional inequality was proven in [4] (even before the first

example of an unconditional non Shannon-type inequality):

if I(A : B) = I(A : B|C) = 0, then

I(C : D) ≤ I(C : D|A) + I(C : D|B)
(1)

Another conditional inequality

if I(A : B|C) = I(B : D|C) = 0, then

I(C : D) ≤ I(C : D|A) + I(C : D|B) + I(A : B)
(2)

was proven by F. Matúš in [6].

In [7] it was conjectured that (1) can be extended to some

unconditional inequality

I(C : D) ≤ I(C : D|A) + I(C : D|B)+

+ κ(I(A : B) + I(A : B|C))
(3)

(for some constant κ > 0). In this paper we prove that this

conjecture is wrong: for any coefficient κ, inequality (3) is not

true for some distributions. So, inequality (1) is “essentially

conditional”; it cannot be extended to an unconditional infor-

mation inequality. A similar statement can be proven for (2).

In this paper we also prove one new conditional linear

inequality that cannot be extended to any unconditional in-

equality. So, now we have three examples of essentially

conditional information inequality.

It is known that the class of unconditional linear infor-

mation inequalities are the same for Shannon’s entropy and

for Kolmogorov complexity. The situation with conditional

inequalities is more complicated: the known technique used

to prove constraint information inequalities for Shannon’s en-

tropy cannot be directly adapted for Kolmogorov complexity.

In fact, it is not even clear how to formulate Kolmogorov’s

version of constraint inequalities. However, we prove for

Kolmogorov complexities some counterpart of inequality (1);

this inequality holds only for some special tuples of words.

The paper is organized as follows. In Section II we use the

technique from [4] and prove one new conditional information

inequality. In Section III we prove that this new inequality as

well as (1) and (2) cannot be extended to any unconditional in-

equalities. In Section IV we prove some version of conditional

inequality for Kolmogorov complexities.



II. NONTRIVIAL CONDITIONAL INFORMATION

INEQUALITIES

The very first example of an inequality that does not follow

from basic (Shannon type) inequalities was the following result

of Z. Zhang and R. W. Yeung:

Theorem 1 (Zhang–Yeung, [4]). For all random variables

A,B,C,D, if I(A : B|C) = I(A : B) = 0 then

I(C : D) ≤ I(C : D|A) + I(C : D|B).

With the same technique F. Matúš proved another condi-

tional inequality (2), see [6]. Using a similar method, we prove

one new conditional inequality:

Theorem 2. For all random variables A,B,C,D if

H(C|A,B) = I(A : B|C) = 0,

then I(C : D) ≤ I(C : D|A) + I(C : D|B) + I(A : B).

Proof: The argument consists of two steps: enforcing

conditional independence and elimination of conditional en-

tropy. Let us have a joint distribution of random variables

A,B,C,D. The first trick of the argument is a special trans-

formation of this distribution: we keep the same distribution

of the triples (A,C,D) and (B,C,D) but make A and B
independent conditional on (C,D). Intuitively it means that

we first choose at random (using the old distribution) values

of C and D; then given fixed values of C,D we independently

choose at random A and B (the conditional distributions of

A given (C,D) and B given (C,D) are the same as in the

original distribution).

More formally, we construct a new distribution

(Ã, B̃, C̃, D̃). If Prob[A = a,B = b, C = c,D = d]
is the original distribution, then the new distribution is

defined as follows:

Prob[Ã = a, B̃ = b, C̃ = c, D̃ = d] =

Prob[A = a, C = c,D = d] · Prob[B = b, C = c,D = d]

Prob[C = c,D = d]

(with the convention 0
0 = 0 for all values a, b, c, d of the

four random variables). From the construction (Ã and B̃ are

independent given C̃, D̃) it follows that

H(Ã, B̃, C̃, D̃) = H(C̃, D̃) +H(Ã|C̃, D̃) +H(B̃|C̃, D̃)

Since (Ã, C̃, D̃) and (B̃, C̃, D̃) have exactly the same distri-

butions as the original (A,C,D) and (B,C,D) respectively,

we have

H(Ã, B̃, C̃, D̃) = H(C,D) +H(A|C,D) +H(B|C,D)

The same entropy can be bounded in another way:

H(Ã, B̃, C̃, D̃) ≤ H(D̃)+H(Ã|D̃)+H(B̃|D̃)+H(C̃|Ã, B̃)

Notice that the entropies H(D̃), H(Ã|D̃) and H(B̃|D̃) are

equal to H(D), H(A|D) and H(B|D) respectively (we again

use the fact that Ã, D̃ and B̃, D̃ have the same distributions as

A,D and B,D respectively in the original distribution). Thus,

we get

H(C,D) +H(A|C,D) +H(B|C,D) ≤
H(D) +H(A|D) +H(B|D) +H(C̃|Ã, B̃)

It remains to estimate the value H(C̃|Ã, B̃). We will show that

it is zero (and this is the second trick used in the argument).

Here we will use the two conditions of the theorem. We say

that some values a, c (respectively, b, c or a, b) are compatible

if in the original distribution these values can appear together,

i.e., Prob[A = a, C = c] > 0 (respectively, Prob[B = b, C =
c] > 0 or Prob[A = a,B = b] > 0). Since A and B are

independent given C, if some values a and b (of A and B)

are compatible with the same value c of C, then these a and

b are compatible with each other.

In the new distribution (Ã, B̃, C̃, D̃) values of Ã and B̃ are

compatible with each other only if they are compatible with

one and the same value of C̃; hence, these values must be also

compatible with each other in the original distribution (A,B).
Further, since H(C|A,B) = 0, for each pair of compatible

values of A,B there exists only one value of C. Thus, for each

pair of values (Ã, B̃) with probability 1 there exists only one

value of C̃. In a word, in the new distribution H(C̃|Ã, B̃) = 0.

Summarizing our arguments, we get

H(C,D) +H(A|C,D) +H(B|C,D) ≤
H(D) +H(A|D) +H(B|D),

which is equivalent to

I(C : D) ≤ I(C : D|A) + I(C : D|B) + I(A : B).

III. CONDITIONAL INEQUALITIES THAT CANNOT BE

EXTENDED TO ANY UNCONDITIONAL INEQUALITIES

In [7] it was conjectured that the conditional inequality from

Theorem 1 is a corollary of some unconditional information

inequality (which was not discovered yet):

Conjecture 1 ([7]). For some constant κ > 0 inequality (3)

is true for all random variables A,B,C,D.

Obviously, if such an inequality could be proven, it would

imply the statement of Theorem 1. Similar conjectures could

be formulated for (2) and the conditional inequality from

Theorem 2. We prove that these conjectures are false, i.e.,

these three conditional inequalities cannot be converted into

unconditional inequalities:

Theorem 3. (a) For any κ the inequality (3) is not true for

some distributions (A,B,C,D).
(b) For any κ the inequality

I(C : D) ≤ I(C : D|A) + I(C : D|B) + I(A : B)+

+ κ(I(A : B|C) +H(C|A,B))
(4)

is not true for some distributions (A,B,C,D).



(c) For any κ the inequality

I(C : D) ≤ I(C : D|A) + I(C : D|B) + I(A : B)+

+ κ(I(A : B|C) +H(B : D|C))
(5)

is not true for some distributions (A,B,C,D). Thus, (2)

cannot be extended to an unconditional inequality.

Proof: (a) For all ε ∈ [0, 1] we us consider the following

joint distribution of binary variables (A,B,C,D):

Prob[A = 0, B = 0, C = 0, D = 1] = (1− ε)/4,
Prob[A = 0, B = 1, C = 0, D = 0] = (1− ε)/4,
Prob[A = 1, B = 0, C = 0, D = 1] = (1− ε)/4,
Prob[A = 1, B = 1, C = 0, D = 1] = (1− ε)/4,
Prob[A = 1, B = 0, C = 1, D = 1] = ε.

For each value of A and for each values of B, the value of at

least one of variables C,D is uniquely determined: if A = 0
then C = 0; if A = 1 then D = 1; if B = 0 then D = 1; and

if B = 1 then C = 0. Hence, I(C : D|A) = I(C : D|B) = 0.

Also it is easy to see that I(A : B|C) = 0. Thus, if (3) is

true, then I(C : D) ≤ κI(A : B).
Denote the right-hand and left-hand sides of this inequality

by L(ε) = I(C : D) and R(ε) = κI(A : B). Both functions

L(ε) and R(ε) are continuous, and L(0) = R(0) = 0 (for

ε = 0 both sides of the inequality are equal to 0). However

the asymptotics of L(ε) and R(ε) as ε → 0 are different: it

is not hard to check that L(ε) = Θ(ε), but R(ε) = O(ε2).
From (3) we have Θ(ε) ≤ O(ε2), which is a contradiction.

(b) For every value of ε ∈ [0, 1] we consider the following

joint distribution of binary variables (A,B,C,D):

Prob[A = 1, B = 1, C = 0, D = 0] = 1/2− ε,
Prob[A = 0, B = 1, C = 1, D = 0] = ε,
Prob[A = 1, B = 0, C = 1, D = 0] = ε,
Prob[A = 0, B = 0, C = 1, D = 1] = 1/2− ε.

The argument is similar to the proof if (a). First, it is not hard

to check that I(C : D|A) = I(C : D|B) = H(C|AB) = 0
for every ε. Second,

I(A : B) = 1 + (2− 2/ ln 2)ε+ 2ε log ε+O(ε2),
I(C : D) = 1 + (4− 2/ ln 2)ε+ 2ε log ε+O(ε2),

so I(A : B) and I(C : D) both tend to 1 as ε → 0, but their

asymptotics are different. Similarly,

I(A : B|C) = O(ε2).

It follows from (4) that

2ε+O(ε2) ≤ O(ε2) +O(κε2),

and with any κ we get a contradiction for small enough ε.

(c) For the sake of contradiction we consider the following

joint distribution of binary variables (A,B,C,D) for every

value of ε ∈ [0, 1]:

Prob[A = 0, B = 0, C = 0, D = 0] = 3ε,
Prob[A = 1, B = 1, C = 0, D = 0] = 1/3− ε,
Prob[A = 1, B = 0, C = 1, D = 0] = 1/3− ε,
Prob[A = 0, B = 1, C = 0, D = 1] = 1/3− ε.

We substitute this distribution in (5) and obtain

I0 +O(ε) ≤ I0 + 3ε log ε+O(ε) +O(κε),

where I0 is the mutual information between C and D for

ε = 0 (which is equal to the mutual information between A
and B for ε = 0). We get a contradiction as ε → 0 .

The theorem above implies that the set of all linear infor-

mation inequalities for 4-tuples must have rather complicated

structure. Let us remind that a point ~a ∈ R
15 is called

constructible if there exists a joint distribution (A,B,C,D)
such that

~a = (H(A), H(B), . . . , H(A,B,C,D))

(~a consists of entropies of all non-empty tuples of random

variables A,B,C,D). Further, a point ~a is called asymptot-

ically constructible if for every ε > 0 in ε-neighborhood of

~a there exists an constructible point ~a′. In a similar way the

set of (asymptotically) constructible points is defined for any

number of random variables (in R
2n−1 for n-tuples of random

variables). It is known (see, e.g., [5], [18]) that for every n
the set of asymptotically constructible points representable by

n-tuples of random variables make a closed convex cone in

R
2n−1. The dual representation of this cone is the set of all

linear information inequalities. We will show that for n ≥ 4
the structure of this cone is not trivial.

From Theorem 3 we get a new proof of the result by

F. Matúš [9]: the set of linear information inequalities for 4
random variables is not finitely generated.

Theorem 4 ([9]). The cone of asymptotically constructible

points for 4 random variables is not polyhedral (equivalently,

the set of linear information inequalities for 4-tuples of ran-

dom variables is not finitely generated).

Proof: For the sake of contradiction we assume that the

cone in R
15 that consist of all asymptotically constructible

points for 4 random variables (A,B,C,D) is polyhedral. The

constraints I(A : B) = I(A : B|C) = 0 specify some face (of

co-dimension 2) on the boundary of this polyhedron. The cor-

responding conditional inequality (from Theorem 1) specifies

a non-degenerate linear functionals, which is non-negative on

the corresponding faces. Technically, this functional is defined

by the linear form g = I(C : D|A)+I(C : D|B)−I(C : D),
which is non-negative on this face of the cone. With the

standard linear programming technique it can be proven that

this functional g can be extended to a linear functional

g′ such that (a) g′ is non-negative on the entire cone of

asymptotically constructible points, and (b) g′ coincides with

g on the subspace of co-dimension 2 defined by the condition

I(A : B) = I(A : B|C) = 0 (see Proposition 17 in [1]). In

coordinates such a functional g′ must have form

g′ = I(C : D|A) + I(C : D|B)− I(C : D)

+d1I(A : B) + d2I(A : B|C).

(with some reals d1 and d2). It follows that g′ ≥ 0 for

all constructible points, so we get (3) (where κ is equal to



maximum of d1 and d2). This contradicts Theorem 3, and we

are done.

IV. CONSTRAINT INEQUALITY FOR KOLMOGOROV

COMPLEXITY

Kolmogorov complexity of a finite binary string X is

defined as the length of the shortest program that generates X ;

similarly, Kolmogorov complexity of a string X given another

string Y is defined as the length of the shortest program that

generates X given Y as an input. More formally, for any

programming language L, Kolmogorov complexity KL(X |Y )
is defined as

KL(X |Y ) = min{|p| : program p prints X on input Y },
and unconditional complexity KL(X) is defined as complexity

of X given the empty Y . The basic fact of Kolmogorov

complexity theory is the invariance theorem: there exists a

universal programming language U such that for any other

language L we have KU (X |Y ) ≤ KL(X |Y ) + O(1) (the

O(1) depends on L but not on X and Y ). We fix such a

universal language U ; in what follows we omit the subscript

U and denote Kolmogorov complexity by K(X), K(X |Y ).
We refer the reader to an excellent book [10] for a survey of

properties of Kolmogorov complexity.

Kolmogorov complexity was introduced in [2] as an algo-

rithmic version of measure of information in an individual

object. In some sense, properties of Kolmogorov complexity

are quite similar to properties Shannon’s entropy. For example,

for the property of Shannon’s entropy H(A,B) = H(A) +
H(B|A) there is a Kolmogorov’s counterpart

K(A,B) = K(A) +K(B|A) +O(logK(A,B)) (6)

(the Kolmogorov–Levin theorem, [3]). This result justifies the

definition of the mutual information, which is an algorithmic

version of the standard Shannon’s definition: the mutual infor-

mation is defined as I(A : B) := K(A) +K(B)−K(A,B),
and the conditional mutual information is defined as

I(A : B|C) := K(A,C) +K(B,C)−K(A,B,C)−K(C).

From the Kolmogorov–Levin theorem it follows that I(A :
B) is equal to K(A) −K(A|B), and the conditional mutual

information I(A : B|C) is equal to K(A|C) − K(A|B,C)
(all these equations hold only up to logarithmic terms).

In fact, we have a much more deep and general parallel

between Shannon’s and Kolmogorov’s information theories;

for every linear inequality for Shannon’s entropy there exists

a Kolmogorov’s counterpart:

Theorem 5 ([11]). For each family of coefficients {λW } the

inequality
∑

i

λiH(αi) +
∑

i<j

λijH(αi, αj) + . . . ≥ 0

is true for every distribution {αi} if and only if for some

constant C the inequality
∑

i

λiK(ai) +
∑

i<j

λijK(ai, aj) + . . . C logN ≥ 0

is true for all tuples of strings {ai}, N = K(a1, a2, . . .) (C
does not depend on ai).

Thus, the class of unconditional inequalities valid for Shan-

non’s entropy coincides with the class of (unconditional)

inequalities valid for Kolmogorov complexity. What about

conditional inequalities?

In the framework of Kolmogorov complexity we cannot say

that some information quantity exactly equals zero. Indeed,

even the definition of Kolmogorov complexity makes sense

only up to an additive term that depends on the choice of

the universal programming language. Moreover, such a natural

basic statement as the Kolmogorov–Levin theorem (6) holds

only up to a logarithmic term. So, if we want to prove a

sensible conditional inequality for Kolmogorov complexity,

the linear constraints must be formulated with some reasonable

precision. A natural version of Theorem 1 is the following

conjecture:

Conjecture 2. There exist functions f(n) and g(n) such that

f(n) = o(n) and g(n) = o(n), and for all strings A,B,C,D
satisfying I(A : B|C) ≤ f(N), I(A : B) ≤ f(N) it holds

I(C : D) ≤ I(C : D|A) + I(C : D|B) + g(N) (where

N = K(A,B,C,D)).

There is no hope to prove Conjecture 2 with f(n) and

g(n) of order Θ(logn). Indeed, using a counterexample from

the proof of Theorem 3(a), we can construct binary strings

A,B,C,D such that the quantities I(A : B|C), I(A : B),
I(C : D|A), and I(C : D|B) are bounded by O(logN), but

I(C : D) = Ω(
√
N logN). However, even if Conjecture 2

is false in general, similar conditional inequalities (even with

logarithmic precision) can be true for some special tuples

A,B,C,D. In what follows we show how to prove such an

inequality for one natural example of strings A,B,C (and any

D).

Let Fn be the finite field of 2n elements. We consider the

affine plane over Fn. Let C be random line in this plane, and A
and B be two points incident to this line. To specify the triple

〈A,B,C〉 we need at most 4n+ O(1) bits of information: a

line in a plane can be specified by two parameters in Fn; to

specify each point in a given line we need additional n bits

of information.

We take a triple of strings 〈A,B,C〉 as specified above

with maximal possible Kolmogorov complexity, i.e., such that

K(A,B,C) = 4n+O(1) (it follows from a simple counting

argument that such a triple exists; moreover, there are about

24n+O(1) such triples). For these A, B and C we can easily

estimate all their Kolmogorov complexities:

K(A), K(B), and K(C) are equal to 2n+O(1),
K(A,C) = 3n+O(1), K(B,C) = 3n+O(1),
H(A,B) = 4n+O(1).

For this triple of strings the quantities I(A : B) and

I(A : B|C) are negligible (logarithmic). This condition is

very similar to the condition on random variables A,B,C in

Theorem 1. So, it is not very surprising that Kolmogorov’s

counterpart of Theorem 1 holds for these strings:



Proposition 1. For the strings A,B,C defined above and for

all strings D we have

I(C : D) ≤ I(C : D|A) + I(C : D|B) +O(logN),

where N = K(A,B,C,D).

This statement can be proven by an argument similar to the

proof of Theorem 2. Let us explain this argument in full detail.

Proof: We may identify C with a linear function c1x+c2
over Fn, where c1 and c2 are elements of the field (since

Kolmogorov complexity of C is large, it cannot be a vertical

line on the plane). Further, the points A and B in this line can

be represented as pairs 〈a1, a2〉 and 〈b1, b2〉 such that

c1 · a1 + c2 = a2 and c1 · b1 + c2 = b2

(here ai and bi are also elements of Fn). By assumption,

complexity of the pair (A,B) is close to 4n. It means that

A 6= B; hence, a1 6= b1. Let i be one of indexes such that the

ith bits of a1 and b1 are different. W.l.o.g. we assume that the

ith bit in a1 is equal to 0 and the ith bit in b1 is equal to 1.

Now we split the affine plane over Fn into two halves: P0

will consist of all points (x, y) such that the ith bit of x is 0,

and P1 will consist of the points (x, y) such that the ith bit of

x is 1. So, point A = (a1, a2) belongs to P0, and B = (b1, b2)
belongs to P1.

Now we are going to variate the points A and B: we

will substitute A and B by their ‘clones’ A′ and B′ so

that the triples 〈A′, B′, C〉 remain “similar” to the initial one

〈A,B,C〉. More precisely, we say that A′ is a clone of A if

• A′ = (a′1, a
′
2) is a point in line C, and A′ ∈ P0 (i.e.,

c1 · a′1 + c2 = a′2, and the ith bit of a′1 is equal to 0);

• complexities K(A′), K(A′, C), K(A′, D), and

K(A′, C,D) are equal (up to an additive term O(logN))
to the corresponding complexities K(A), K(A,C),
K(A,D), and K(A,C,D).

Similarly, we say that B′ is a clone of B if

• B′ = (b′1, b
′
2) is a point in line C, and B′ ∈ P1, and

• complexities K(B′), K(B′, C), K(B′, D), and

K(B′, C,D) are equal (up to an additive term O(logN))
to the corresponding complexities K(B), K(B,C),
K(B,D), and K(B,C,D).

From a simple counting argument it follows that there

exist 2K(A|C,D)−O(logN) different clones of A and

2K(B|C,D)−O(logN) clones of B (see, e.g., [11, Lemma 2] or

[17, Lemmas 1–2]).

Let us take a pair of clones A′ and B′ with maximal

complexity given (C,D). Then

K(A′, B′, C,D) =

K(C,D) +K(A′|CD) +K(B′|CD) +O(logN) =

K(C,D) +K(A|C,D) +K(B|C,D) +O(logN)

On the other hand,

K(A′, B′, C,D) ≤ K(D)+

K(A′|D) +K(B′|D) +K(C|A′, B′) +O(logN)

By definition of clones, complexities K(A′|D) and K(B′|D)
are equal (up to O(logN) term) to K(A|D) and K(B|D)
respectively. Since A′ and B′ belong to P0 and P1 respectively,

they cannot be equal to each other. Hence, A′ and B′ uniquely

determine line C. So, we get

K(C,D) +K(A|CD) +K(B|CD) ≤
K(D) +K(A|D) +K(B|D) +O(logN),

which is equivalent (by the Kolmogorov–Levin theorem) to

I(C : D) ≤ I(C : D|A) + I(C : D|B) +O(logN).
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