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Abstract—We show that two essentially conditional linear
inequalities for Shannon’s entropies (including the Zhang–
Yeung’97 conditional inequality) do not hold for asymptotically
entropic points. This means that these inequalities are non-robust
in a very strong sense. This result raises the question of the
meaning of these inequalities and the validity of their use in
practice-oriented applications.

I. INTRODUCTION

Following Pippenger [15] we can say that the most basic

and general “laws of information theory” can be expressed in

the language of information inequalities (inequalities which

hold for the Shannon entropies of jointly distributed tuples

of random variables for every distribution). The very first

examples of information inequalities were proven (and used)

in Shannon’s seminal papers in the 1940s. Some of these

inequalities have a clear intuitive meaning. For instance, the

entropy of a pair of jointly distributed random variables a, b
is not greater than the sum of the entropies of the marginal

distributions, i.e., H(a, b) ≤ H(a) + H(b). In standard

notations, this inequality means that the mutual information

between a and b is non-negative, I(a:b) ≥ 0; this inequality

becomes an equality if and only if a and b are independent in

the usual sense of probability theory. These properties have a

very natural meaning: a pair cannot contain more “uncertainty”

than the sum of “uncertainties” in both components. This

basic statement can be easily explained, e.g., in term of

standard coding theorems: the average length of an optimal

code for a distribution (a, b) is not greater than the sum of the

average lengths for two separate codes for a and b. Another

classic information inequality I(a:b|c) ≥ 0 is slightly more

complicated from the mathematical point of view, but is also

very natural and intuitive. Inequalities of this type are called

basic Shannon’s inequality, [19].

We believe that the success of Shannon’s information theory

in a myriad of applications (in engineering and natural sciences

as well as in mathematics and computer science) is due to the

intuitive simplicity and natural interpretations of the very basic

properties of Shannon’s entropy.

Formally, information inequalities are just a dual description

of the set of all entropy profiles. That is, for every joint

distribution of an n-tuple of random variables we have a

vector of 2n − 1 ordered entropies (entropies of all random

variables involved, entropies of all pairs, triples, of quadru-

ples, etc. in some fixed order). A vector in R
2n−1 is called

entropic if it represents entropy values of some distribution.

The fundamental (and probably very difficult) problem is to

describe the set of entropic vectors for all n. It is known,

see [20], that for every n the closure of the set of all

entropic vectors is a convex cone in R
2
n−1. The points that

belong to this closure are called asymptotically entropic or

asymptotically constructible vectors, [12], say a.e. vectors for

short. The class of all linear information inequalities is exactly

the dual cone to the set of a.e. vectors. In [15] and [5] a

natural question was raised: What is the class of all universal

information inequalities? (Equivalently, how to describe the

cone of a.e. vectors?) More specifically, does there exist any

linear information inequality that cannot be represented as a

convex combination of Shannon’s basic inequality?

In 1998 Z. Zhang and R.W. Yeung came up with the first

example of a non-Shannon-type information inequality [21]:

I(c:d) ≤ 2I(c:d|a)+ I(c:d|b)+ I(a:b)+ I(a:c|d)+ I(a:d|c).

This unexpected result raised other challenging questions:

What does this inequality mean? How to understand it in-

tuitively? Although we still do not know a complete and

comprehensive answer to the last questions, we have sev-

eral interpretations and explanations of this inequality. Some

information-theoretic interpretations were discussed, e.g., in

[17], [22]. This inequality is closely related to Ingleton’s

inequality for ranks of linear spaces, [3], [6], [12]. This con-

nection was explained by F. Matúš in his paper [11], where the

connection between information inequalities and polymatroids

was established. Matúš proved that a polymatroid with the

ground set of cardinality 4 is selfadhesive if and only if it

satisfies the Zhang–Yeung inequality formulated above (more

precisely, a polymatroid must satisfy all possible instances of

this inequality for different permutations of variables).

Thus, the inequality from [21] has some explanations and

intuitive interpretations. However, another type of inequalities

is still much less understood. We mean other “universal

laws of information theory”, those that can be expressed as

conditional linear information inequalities (linear inequalities

for entropies which are true for distributions whose entropies

satisfy some linear constraints; they are also called in the

literature constrained information inequalities, see [19]). We

do not give a general definition of a “conditional linear

information inequality” since the entire list of all known



nontrivial inequalities in this class is very short. Here are three

of them:

(1) [20]: if I(a:b|c) = I(a:b) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b),

(2) [9]: if I(a:b|c) = I(b:d|c) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b),

(3) [7]: if I(a:b|c) = H(c|a, b) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b).

It is known that (1-3) are “essentially conditional”, i.e., they

cannot be extended to any unconditional inequalities, [7], e.g.,

for (1) this means that for any values of “Lagrange multipliers”

λ1, λ2 the corresponding unconditional extension

I(c:d) ≤ I(c:d|a) + I(c:d|b) + λ1I(a:b) + λ2I(a:b|c)

does not hold for some distributions (a, b, c, d). In other words,

(1-3) make some very special kind of “information laws”:

they cannot be represented as “shades” of any unconditional

inequalities on the subspace corresponding to their linear

constraints.

A few other nontrivial conditional information inequalities

can be obtained from the results of F. Matúš in [9]. For

example, Matúš proved that for every integer k > 0 and for

all (a, b, c, d)

(∗)
I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b) +

1

k
I(c:d|a)

+
k + 1

2
(I(a:c|d) + I(a:d|c))

(this is a special case of theorem 2 in [9]). Assume that

I(a:c|b) = I(b:c|a) = 0. Then, as k → ∞ we get from (*)

another conditional inequality:

(4) if I(a:c|d) = I(a:d|c) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b).

It can be proven that (4) is also an essentially conditional

inequality, i.e., whatever are the coefficients λ1, λ2,

I(c:d) ≤ I(c:d|a)+I(c:d|b)+I(a:b)+λ1I(a:c|d)+λ2I(a:d|c)

does not hold for some distribution (a, b, c, d).
Since (*) holds for a.e. vectors, (4) is also true for a.e.

vectors. Inequality (4) is robust in the following sense. Assume

that entropies of all variables involved are bounded by some

h. Then for every ε > 0 there exists a δ = δ(h, ε) such that

if I(a:c|d) ≤ δ and I(a:d|c) ≤ δ, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b) + ε

(note that δ is not linear in ε). In this paper we prove that this

is not the case for (1) and (3) – these inequalities do not hold

for a.e. vectors, and they are not robust. So, these inequalities

are, in some sense, similar to the nonlinear (piecewise linear)

conditional information inequality from [10].

Together with [7], where (1–3) are proven to be essentially

conditional, our result indicates that (1) and (3) are very fragile

and non-robust properties of entropies. We cannot hope that

similar inequalities hold when the constraints become soft. For

instance, assuming that I(a:b) and I(a:b|c) are “very small”

we cannot say that

I(c:d) ≤ I(c:d|a) + I(c:d|b)

holds also with only “a small error”; even a negligible devia-

tion from the conditions in (1) can result in a dramatic effect

I(c:d) ≫ I(c:d|a) + I(c:d|b).
Conditional information inequalities (in particular, inequal-

ity (2)) were used in [9] to describe conditional independences

among several jointly distributed random variables. Condi-

tional independence is known to have wide applications in

statistical theory (including methods of parameter identifica-

tion, causal inference, data selection mechanisms, etc.), see,

e.g., surveys in [2], [16]. We are not aware of any direct or

implicit practical usage of (1-3), but it would not be surprising

to see such usages in the future. However, our results indicate

that these inequalities are non-robust and therefore might be

misleading in practice-oriented applications.

The rest of the paper is organized as follows. We provide

a new proof of why two conditional inequalities (1) and (3)

are essentially conditional. This proof uses a simple algebraic

example of random variables. Then, we show that (1) and (3)

are not valid for a.e. vectors, leaving the question for (2) open.

II. WHY “ESSENTIALLY CONDITIONAL” : AN ALGEBRAIC

COUNTEREXAMPLE

Consider the quadruple (a, b, c, d)q of geometric objects,

resp. A,B, C,D, on the affine plane over the finite field Fq

defined as follows :

• First choose a random non-vertical line C defined by the

equation y = c0 + c1x (the coefficients c0 and c1 are

independent random elements of the field);

• pick points A and B on C independently and uniformly

at random (these points coincide with probability 1/q);

• then pick a parabola D uniformly at random in the set

of all non-degenerate parabolas y = d0 + d1x + d2x
2

(where d0, d1, d2 ∈ Fq, d2 6= 0) that intersect C at A and

B; (if A = B we require that C is a tangent line to D).

When C and A,B are chosen, there exist (q−1) different

parabolas D meeting these conditions.

A typical quadruple is represented on Figure 1.

Remark 1. This picture is not strictly accurate, for the plane is

discrete, but helps grasping the general idea since the relevant

properties used are also valid in the continuous case.

Let us now describe the entropy profile of this quadruple.

• Every single random variable is uniform over its support.

• The line and the parabola share some mutual information,

(the fact that they intersect) which is approximately one

bit. Indeed, C and D intersect iff the corresponding equa-

tion discriminant is a quadratic residue, which happens
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Fig. 1. An algebraic example

almost half of the time.

I(c:d) =
q − 1

q

• When an intersection point is given, the line does not

give more information about the parabola.

I(c:d|a) = I(c:d|b) = 0

• When the line is known, an intersection point does not

help knowing the other (by construction).

I(a:b|c) = 0

• The probability that there is only one intersection point is

1/q. In that case, the line can be any line going through

this point.

I(a:b) = H(c|a, b) =
log2 q

q

Now we plug the computations into the following inequal-

ities

I(c:d) ≤ I(c:d|a) + I(c:d|b) + λ1I(a:b) + λ2I(a:b|c)

or

I(c:d) ≤ I(c:d|a)+I(c:d|b)+I(a:b)+λ1I(a:b|c)+λ2H(c|a, b),

which are “unconditional” counterparts of (1) and (3) respec-

tively. For every constants λ1, λ2 we get

1−
1

q
≤ (λ1 + λ2)

log2 q

q

and conclude they can not hold when q is large. Thus, we get

the following theorem (originally proven in [7]):

Theorem 1. Inequalities (1) and (3) are essentially condi-

tional.

III. WHY (1) AND (3) DO NOT HOLD FOR A.E. VECTORS

We are going to use the previous example to show that

conditional inequalities (1) and (3) are not valid for asymptot-

ically entropic vectors. We will use the Slepian–Wolf coding

theorem (cf. [18]) as our main tool.

Lemma 1 (Slepian–Wolf). Let (x, y) be joint random vari-

ables and (X,Y ) be N independent copies of this distribution.

Then there exists X ′ such that H(X ′|X) = 0, H(X ′) =
H(X |Y ) + o(N) and H(X |X ′, Y ) = o(N).

This lemma constructs a hash of a random variable X which

is almost independent of Y and has approximately the entropy

of X given Y . We will say that X ′ is the Slepian–Wolf hash

of X given Y and write X ′ = SW (X |Y ).
In what follows we call by the entropy profile of

(x1, . . . , xn) the vector of entropies for all non-empty subset

of these random variable in the lexicographic order. We denote

it
~H(x1, . . . , xn) = (H(S))∅6=S⊆{x1,...,xn}.

This is a vector in R
2n−1 (dimension is equal to the number

of nonempty subsets in the set of n elements).

Theorem 2. (1) and (3) are not valid for a.e. vectors.

Proof: For each given inequality, we construct an asymp-

totically entropic vector which excludes it. The main step is to

ensure, via Slepian–Wolf lemma, that the constraints are met.
a) An a.e. counterexample for (1):

1. Start with the quadruple (a, b, c, d)q from the previous

section for some fixed q to be defined later. Notice that

it does not satisfy the constraints.

2. Serialize it: define a new quadruple (A,B,C,D) such

that each entropy is N times greater. (A,B,C,D) is

obtained by sampling N times independently (ai, bi, ci, di)
according to the distribution (a, b, c, d) and letting, e.g.,

A = (a1, a2, . . . , aN).
3. Apply Slepian–Wolf lemma to get A′ = SW (A|B) such

that I(A′ :B) = o(N), and replace A by A′ in the quadru-

ple. The entropy profile of (A′, B, C,D) cannot vary much

from the profile of (A,B,C,D). More precisely, entropies

for A′, B, C,D differ from the corresponding entropies for

A,B,C,D by at most I(A:B) + o(N) = O
(

log
2
q

q
N
)

.

Notice that I(A′ :B|C) = 0 since A′ functionally depends

on A and I(a:b|c) = 0.

4. Scale down the entropy profile of (A′, B, C,D) by a factor

of 1/N . This operation can be done within a precision of,

say, o(N). Basically, this can be done because the set of

all a.e. points is convex (see, e.g., [19])

5. Tend N to infinity to define an a.e. vector. This limit vector

is not an entropic vector. For this a.e. vector, inequality

(1) does not hold when q is large. Indeed I(A:B)/N and

I(A:B|C)/N both approaches zero as N tends to infinity.

On the other hand, for the resulting limit vector, inequality

(1) turns into

1 +O

(

log2 q

q

)

≤ O

(

log2 q

q

)

,



which can not hold if q is bigger than some constant.

b) An a.e. counterexample for (3): We start with another

lemma based on the Slepian–Wolf coding theorem.

Lemma 2. For every distribution (a, b, c, d) and every integer

N there exists a distribution (A′, B′, C′, D′) such that

• H(C′|A′, B′) = o(N),
• The difference between corresponding components of the

entropy profile ~H(A′, B′, C′, D′) and N · ~H(a, b, c, d) is

at most N ·H(c|a, b) + o(N).

Proof: First we serialize (a, b, c, d), i.e., we take M i.i.d.

copies of the initial distribution. The result of this serialization

is a distribution (A,B,C,D) whose entropy profile is the

exactly the entropy profile of (a, b, c, d) multiplied by M . In

particular, we have I(A:B|C) = 0. Then, we apply Slepian–

Wolf encoding (Lemma 1) and get a Z = SW (C|A,B) such

that

• H(Z|C) = 0,

• H(Z) = H(C|A,B) + o(M),
• H(C|A,B,Z) = o(M).

The entropy profile of the conditional distribution of

(A,B,C,D) given Z differs from then entropy profile of

(A,B,C,D) by at most H(Z) = M · H(c|a, b) + o(M).
Also, if in the original distribution I(a:b|c) = 0, then

I(A:B|C,Z) = I(A:B|C) = 0.

We would like to “relativize” (A,B,C,D) conditional on

Z and get a new distribution for a quadruple (A′, B′, C′, D′)
whose unconditional entropies are equal to the corresponding

entropies of (A,B,C,D) conditional on Z . For different

values of Z , the corresponding conditional distributions on

(A,B,C,D) can be very different. So there is no well-

defined “relativization” of (A,B,C,D) conditional on Z . The

simplest way to overcome this obstacle is the method of quasi-

uniform distributions suggested by T.H. Chan and R.W. Yeung,

see [1].

Definition 1 (Quasi-uniform random variables, [1]). A random

variable u distributed on a finite set U is called quasi-uniform

if the probability distribution function of u is constant over

its support (all values of u have the same probability). That

is, there exists c > 0 such that Prob[u = u] ∈ {0, c} for all

u ∈ U . A set of random variables (x1, . . . , xn) is called quasi-

uniform if for any non-empty subset {i1, . . . , is} ⊂ {1, . . . , n}
the joint distribution (xi1 , . . . , xis) is quasi-uniform.

In [1][theorem 3.1] it is proven that for every distribution

(A,B,C,D,Z) and every δ > 0 there exists a quasi-uniform

distribution (A′′, B′′, C′′, D′′, Z ′′) and an integer k such that

‖ ~H(A,B,C,D,Z)−
1

k
~H(A′′, B′′, C′′, D′′, Z ′′)‖ < δ.

For a quasi-uniform distribution for all values z of Z ′′

the corresponding conditional distributions (A′′, B′′, C′′, D′′)
have the same entropies, which are equal to the conditional

entropies. That is, entropies of the distribution of A′′, B′′,

(A′′, B′′), etc. given Z ′′ = z are equal to H(A′′|Z ′′),

H(B′′|Z ′′), H(A′′, B′′|Z ′′) and so on. Thus, for a quasi-

uniform distribution we can do “relativization” as follows.

Fix any value z of Z ′′ and take the conditional distribution

on (A′′, B′′, C′′, D′′) given Z ′′ = z. In this conditional

distribution the entropy of C′′ given (A′′, B′′) is not greater

than

k · (H(C|A,B,Z) + δ) = k · (δ + o(M)).

Also, by letting δ be small enough (e.g., δ = 1/M ), all

entropies of (A′′, B′′, C′′, D′′) given Z ′′ = z differ from

the corresponding entropies of kM · ~H(a, b, c, d) by at most

H(Z ′′) ≤ kM ·H(c|a, b) + o(kM).
Moreover, entropies of (A′′, B′′) given (C′′, Z ′′) are the

same as entropies of (A′′, B′′) given C′′, since Z functionally

depends on C. If in the original distribution I(a:b|c) = 0, then

the mutual information between A′′ and B′′ given (C′′, Z ′′)
is o(kM).

Denote N = kM and (A′, B′, C′, D′) the above-defined

conditional distribution to get the theorem.

c) Rest of the proof for (3):

1. Start with the distribution (a, b, c, d)q for some q, to be

fixed later, from the previous section.

2. Apply the “relativization” lemma 2 and get (A′, B′, C′, D′)
such that H(C′|A′, B′) = o(N). Lemma 2 guarantees

that other entropies are about N times larger than the

corresponding entropies for (a, b, c, d), possibly with an

overhead of size

O(N ·H(c|a, b)) = O

(

log2 q

q
N

)

.

Moreover, since the quadruple (a, b, c, d) satisfies

I(a:b|c) = 0, we also have I(A′ :B′|C′) = 0 by

construction of the random variables in Lemma 2.

3. Scale down the entropy profile of (A′, B′, C′, D′) by a

factor of 1/N within a o(N) precision.

4. Tend N to infinity to get an a.e. vector. Indeed, all entropies

from the previous profile converge when N goes to infinity.

Conditions of inequality (3) are satisfied for I(A′ :B′|C′)
and H(C′|A′, B′) both vanish at the limit. Inequality (3)

eventually reduces to

1 +O

(

log2 q

q

)

≤ O

(

log2 q

q

)

which can not hold for large enough q.

Remark 2. In both cases of the proof we constructed an a.e.

vector such that the corresponding unconditional inequalities

with Lagrange multipliers reduces (as N → ∞) to

1 +O

(

log2 q

q

)

≤ O

(

log2 q

q

)

+ o(λ1 + λ2),

which cannot hold if we choose q appropriately.

Remark 3. Notice that in our proof even one fixed value of q
suffices to prove that (1) and (3) do not hold for a.e. points. The



choice of the value of q provides some freedom in controlling

the gap between the lhs and rhs of both inequalities.

In fact, we may combine the two above constructions into

one to get a single a.e. vector to prove the previous result.

Proposition 1. There exists one a.e. vector which excludes

both (1) and (3) simultaneously.

Proof sketch:

1. Generate (A,B,C,D) from (a, b, c, d)q with entropies N
times greater.

2. Construct A′′ = SW (A|B) and C′ = SW (C|A,B)
simultaneously (with the same serialization (A,B,C,D)).

3. Since A′′ is a Slepian–Wolf hash of A given B, we have

• H(C|A′′, B) = H(C|A,B) + o(N) and

• H(C|A′′, B, C′) = H(C|A,B,C′) + o(N) = o(N).

4. By inspecting the proof of the Slepian–Wolf theorem we

conclude that A′′ can be plugged into the argument of

Lemma 2 instead of A. The entropy profile of the quadruple

(A′, B′, C′, D′) thusly obtained from Lemma 2 is approx-

imately N times the entropy profile of (a, b, c, d)q with a

possible overhead of

O(I(A:B) +H(C|A,B)) + o(N) = O

(

log2 q

q
N

)

,

and further :

• I(A′ :B′|C′) = 0,

• I(A′ :B′) = o(N),
• H(C′|A′, B′) = o(N).

5. Scale the corresponding entropy profile by a factor 1/N
and tend N to infinity to define the desired a.e. vector.

IV. CONCLUSION & DISCUSSION

In this paper we discussed the known conditional informa-

tion inequalities. We presented a simple algebraic example

which provides a new proof that two conditional informa-

tion inequalities are essentially conditional (they cannot be

obtained as a direct corollary of any unconditional information

inequality). Then, we prove a stronger result: two linear condi-

tional information inequalities are not valid for asymptotically

entropic vectors.

This last result has a counterpart in the Kolmogorov

complexity framework. It is known that unconditional linear

information inequalities for Shannon’s entropy can be directly

translated into equivalent linear inequalities for Kolmogorov

complexity, [4]. For conditional inequalities the things are

more complicated. Inequalities (1) and (3) could be rephrased

in the Kolmogorov complexity setting; but the natural counter-

parts of these inequalities prove to be not valid for Kolmogorov

complexity. The proof of this fact is very similar to the

argument in Theorem 2 (we need to use Muchik’s theorem

on conditional descriptions [14] instead of the Slepian–Wolf

theorem employed in Shannon’s framework). We skip details

for the lack of space.

Open problem 1: Does (2) hold for a.e. vectors?

Every essentially conditional linear inequality for a.e. vec-

tors has an interesting geometric interpretation: it provides a

proof of Matúš’ theorem from [13], which claims that the

convex cone of a.e. vectors for 4 variables is not polyhedral.

Open problem 2: Do (1) and (3) (that hold for entropic

but not for a.e. vectors) have any geometric or “physical”

meaning?
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[13] F. Matúš, Infinitely many information inequalities. IEEE ISIT 2007,
pp. 41–44.

[14] An. Muchnik, Conditional complexity and codes, Theoretical Computer
Science, 271(1–2), 2002, pp. 97–109.

[15] N. Pippenger, What are the laws of information theory. 1986 Special
Problems on Communication and Computation Conf., Palo Alto, CA.

[16] Judea Pearl, Causal inference in statistics: An overview. Statistics
Surveys, 3, 2009, pp. 96–146.

[17] A. Romashchenko, Extracting the Mutual Information for a Triple of
Binary Strings. Proc. 18th Annual IEEE Conference on Computational
Complexity (2003). Aarhus, Denmark, July 2003, pp. 221–235.

[18] D. Slepian and J. K. Wolf, Noiseless coding of correlated informa-
tion sources, IEEE Transactions on Information Theory, 19(4), 1973,
pp. 471–480.

[19] R.W. Yeung, A first course in information theory. Norwell, MA/New
York: Kluwer/Plenum, 2002.

[20] Z. Zhang and R. W. Yeung, A non-Shannon-type conditional information
inequality. IEEE Trans. Inform. Theory, vol. 43, pp. 1982–1985, Nov.
1997.

[21] Z. Zhang and R. W. Yeung, On characterization of entropy function
via information inequalities. IEEE Transactions on Information Theory,
44(1998), pp. 1440–1450.

[22] Z. Zhang, On a new non-Shannon-type information inequality, Commu-
nications in Information and Systems. 3(1), pp. 47–60, June 2003.


