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Abstract. We provide a framework for the design and analysis of dynamic pro-
gramming algorithms for H-minor-free graphs with branchwidth at most k. Our
technique applies to a wide family of problems where standard (deterministic)
dynamic programming runs in 2O(k·log k) · nO(1) steps, with n being the number
of vertices of the input graph. Extending the approach developed by the same
authors for graphs embedded in surfaces, we introduce a new type of branch de-
composition for H-minor-free graphs, called an H-minor-free cut decomposition,
and we show that they can be constructed in Oh(n3) steps, where the hidden
constant depends exclusively on H. We show that the separators of such decom-
positions have connected packings whose behavior can be described in terms of a
combinatorial object called `-triangulation. Our main result is that when applied
on H-minor-free cut decompositions, dynamic programming runs in 2Oh(k) ·nO(1)

steps. This broadens substantially the class of problems that can be solved deter-
ministically in single-exponential time for H-minor-free graphs.

Keywords: analysis of algorithms; parameterized algorithms; graphs minors; branch-
width; dynamic programming; non-crossing partitions.

1 Introduction

The celebrated theorem of Courcelle [7] states that graph problems expressible in MSOL
can be solved in f(bw) · n steps, where bw is the branchwidth and n is the number of
vertices of the input graph. Using terminology from parameterized complexity, this im-
plies that a large number of graph problems admit fixed-parameter tractable algorithms
when parameterized by the branchwidth of their input graph. As the bounds for f(bw)
provided by Courcelle’s theorem are huge, the design of specific dynamic programming
algorithms for graph problems so that f(bw) is a simple function, became an essential
ingredient for many results on graph algorithms (see [2, 4, 12, 13, 33]). In this paper, we
provide a general framework for the design and analysis of dynamic programming algo-
rithms for families of graphs excluding a graph H as a minor, where f(bw) = 2O(bw).
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Our framework applies to a family of problems where no deterministic dynamic program-
ming algorithm with single-exponential parameterized dependence on bw is known.

Motivation and previous work. Dynamic programming is usually applied in a bottom-
up fashion on a rooted branch decomposition of the input graph G. Roughly, a branch
decomposition of a graph is a way to decompose it into a tree structure of edge bipar-
titions (the formal definition is in Section 2). Each bipartition defines a separator S
of the graph called the middle set, of cardinality bounded by the branchwidth of the
input graph. The decomposition is routed, in the sense that one of the parts of each
bipartition is the “lower part of the middle set”, i.e., the so-far processed one. For each
graph problem, dynamic programming requires a suitable definition of tables encoding
how potential (global) solutions of the problem are restricted to a middle set and the
corresponding lower part. The size of these tables reflects the dependence on k = |S| in
the running time of the dynamic programming.

Designing the tables for each middle set S may vary considerably among different
problems. For simple problems where the tables of dynamic programming encode vertex
subsets of the middle set, such as Vertex Cover or Dominating Set, we may easily
have a single-exponential dependence on k, as the number of subsets of a set of size k is
2k. However, there are problems where the tables of the dynamic programming encode
vertex pairings, such as Longest Path, Cycle Packing, or Hamiltonian Cycle, or
(more generally) vertex packings, such as Connected Vertex Cover, Connected
Dominating Set, Feedback Vertex Set, or Steiner Tree. For the latter category
of problems, single-exponential bounds on their table size are not known to exist. This
complication arises from the fact that, for such problems, the tables should encode at
least 2Θ(k log k) many pairings/packings. Nevertheless, for such problems one can do bet-
ter for several classes of sparse graphs. This line of research was initiated in [14] and occu-
pied several researchers in parameterized algorithms design (see also [5,8,11,13,24,33]).
The current technology of dynamic programming in graphs of bounded decomposability
implies single-exponential parametric dependence for problems encodable by pairings in
H-minor free graphs [13] and for problems encodable by packings in graphs embedded
in surfaces [33]. In this paper we extend both approaches of [13] and [33] to problems
encodable by packings in H-minor free graphs.

Our results and techniques. We present a general framework that provides single-
exponential dynamic programming algorithms for connected packing-encodable prob-
lems (the formal definition of this class of problems is in Section 3) when the input
graph excludes a graph H as a minor. The main idea in [33] was to introduce a new type
of branch decomposition for graphs on surfaces, called a surface cut decomposition (which
in turn, extended the concept of sphere cut decompositions for planar graphs introduced
in [14,34]). Namely, in [33], it was proved that the number of partial solutions that can
be arranged on a surface cut decomposition can be upper-bounded by the number of
non-crossing partitions on surfaces with boundary, which have been recently enumer-
ated in [32]. It follows that partial solutions can be represented by a single-exponential
number of configurations. This proves that, when applied on surface cut decompositions,
dynamic programming for connected packing-encodable problems runs in 2O(k) · nO(1)

steps.

We follow the same approach to extend this technique to H-minor-free graphs: we
define a new type of branch decomposition for graphs excluding an h-vertex graph H
as a minor; we call it an H-minor-free cut decomposition. In Section 5 we show how
to compute an H-minor-free cut decomposition of width Oh(k) in Oh(n3) steps1. This

1 Given a computable function f and an integer h, we use the notation Oh(f(k)) to denote
O(g(h) · f(k)) for some computable function g.
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algorithm uses the recent result of Kawarabayashi and Wollan [21] to find in time O(n3)
the tree-like decomposition of an H-minor-free graph G, given by the seminal structure
theorem of Robertson and Seymour [30]. Roughly, this result says that each H-minor free
graph admits a bounded-adhesion tree decomposition whose bags are nearly embedded
in some surface of small genus. We also make use of the algorithm of [33] to find a surface
cut decomposition of the surface-embedded part of each bag, then enhance them with
the apices and vortices, and finally we glue them appropriately along the clique-sums.
But for being able to use the algorithm of [33], we need to prove that there exists a tree-
like decomposition of G whose bags have good topological properties. This is done in
Section 4, and requires a suitable extension of the notion of a polyhedral decomposition
introduced in [33].

In order to prove the upper bound on the size of the tables when using an H-minor-
free cut decomposition, the main difficulty is to deal with the vortices. From a combi-
natorial point of view, our main contribution is to capture the behavior of the vortices
of an H-minor-free graph in terms of an object called `-triangulation (cf. Section 2).
Roughly speaking, in order to take into account the number of simultaneous crossings of
a set of connected subgraphs inside a vortex, `-triangulations seem to be the appropriate
combinatorial object to look at (see Section 6 for more details). Finally, we prove our
main result in Section 7. That is, by combining all the ingredients mentioned above,
we prove that by using H-minor-free cut decompositions, the size of the tables for solv-
ing connected packing-encodable problems is single-exponential in the branchwidth. We
would like to note that we did not make any effort to optimize the constants depending
on H, as they are already huge since we use the Structure Theorem of the Graph Minors
series [21,30].

Our results can also be used to derive subexponential parameterized algorithms for
connected packing-encodable bidimensional problems. That way, we broaden the class
of problems where the general framework introduced in [9] can be applied. It is worth
mentioning that our results directly imply that Steiner Tree and Connected Domi-
nating Set, among others, can be solved in subexponential time inH-minor-free graphs,
which has been recently (and independently) proved by Tazari [35].

Recent results and further research. Recently, Cygan et al. [8] have presented a
new framework for obtaining randomized single-exponential algorithms parameterized by
treewidth in general graphs. This framework is based on a dynamic programming tech-
nique named Cut&Count, which seems applicable to most connected packing-encodable
problems, like Connected Vertex Cover, Connected Dominating Set, Feed-
back Vertex Set, or Steiner Tree. The randomization in the algorithms of [8]
comes from the usage a probabilistic result called the Isolation Lemma [26], whose de-
randomization is a challenging open problem [3]. Therefore, the existence of determin-
istic single-exponential algorithms parameterized by treewidth for connected packing-
encodable problems in general graphs remains wide open.

Our results for minor-free graphs can be seen as an intermediate step towards an
eventual positive answer to this question. It may also be the case that this class of graphs
establishes a frontier of the existence of deterministic single-exponential parameterized
algorithms for connected packing-encodable problems (one way to prove this would be to
use the recent approach given by Lokshtanov et al. [24] in order to provide lower bounds
of running times of problems parameterized by treewidth), although we do not think
that this is the case. It would be also interesting to reduce the big polynomial overheads
in the algorithms of [8], given by the usage of the Isolation Lemma. In addition, the
approach presented in [8] does not seem to be applicable to weighted problems, while
our results are easily extendable to weighted connected packing-encodable problems.
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If one wants to further extend our approach to more general classes of graphs, the
natural candidate are graphs excluding a graph H as a topological minor, possibly using
the recent structural results of Grohe and Marx [18]. Nevertheless, our framework seems
hard to extend to graphs of bounded degree, which are topological-minor-free.

Finally, it is worth mentioning that another type of branch decomposition for graphs
on surfaces, called surface split decomposition, has been recently introduced by Bon-
sma [5] to prove that Subgraph Isomorphism can be solved in single-exponential time
in graphs on surfaces. It remains open to find single-exponential algorithms for Sub-
graph Isomorphism in H-minor-free graphs.

2 Preliminaries

All graphs we consider are finite, simple, and undirected. Given a graph G and an edge
e ∈ E(G), let G/e be the graph obtained from G by contracting e, removing loops
and parallel edges. If H can be obtained from a subgraph of G by a (possibly empty)
sequence of edge contractions, we say that H is a minor of G. In this paper, we consider
graphs embedded in surfaces that are compact and their boundary is homeomorphic
to a (possibly empty) finite set of disjoint circles. We denote by ν(Σ) the number of
connected components of the boundary of a surface Σ. For a graph G, the Euler genus
of G, denoted γ(G), is the smallest Euler genus among all surfaces in which G can be
embedded (see [25] for the precise definitions). A subset Π of a surface Σ is surface-
separating if Σ \Π has at least two connected components.

Tree-like decompositions of graphs. Let G be a graph on n vertices. A branch
decomposition (T, µ) of a graph G consists of an unrooted ternary tree T (i.e., all internal
vertices are of degree three) and a bijection µ : L → E(G) from the set L of leaves of
T to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G)
as follows: Let T1 and T2 be the two connected components of T \ {e}. Then let Gi be
the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle
set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2).
The width of (T, µ) is defined as w(T, µ) := max{|mid(e)| | e ∈ T}. An optimal branch
decomposition of G is defined by a tree T and a bijection µ which give the minimum
width, the branchwidth, denoted by bw(G). By definition (see [29]), the branchwidth of
a graph G with |E(G)| ≤ 1 is taken to be zero.

A tree decomposition of a graph G is a pair D = (X , T ) where T is a tree and
X = {Xt | t ∈ V (T )} is a collection of subgraphs of V (G) such that:

⋃
t∈V (T )X

t = G

and for each x ∈ V (G), the set {t | x ∈ V (Xt)} induces a connected subtree of T .
We call the vertices of T nodes of D and we call the graphs in X bags of D. The
width of a tree decomposition D is max {|V (Xt)| − 1 | t ∈ V (T )} and its adhesion is
max{|V (Xt) ∩ V (Xt′)| | t, t′ ∈ V (T )}. The treewidth of a graph G is the minimum
width over all tree decompositions of G. For every Xt, t ∈ V (T ) we denote by C(Xt) =

{V (Xt) ∩ V (Xt′) | t′ ∈ NT (t)} and we define the D-closure of Xt, as the graph X
t

=

Xt ∪
(⋃

C∈C(Xt)K[C]
)

, where K[C] is the clique obtained if we connect all pairs of

distinct vertices of C. We finally define G =
⋃
t∈V (T )X

t
.

`-triangulations and related constructions. Let Dk be a disc with k vertices on its
border. We assume that these vertices are labeled counterclockwise with labels 1, 2, . . . , k.
By an `-triangulation of Dk we mean a maximal set of diagonals with no pairwise
crossing-set of size ` + 1. In other words, the graph whose vertices are the diagonals
of the `-triangulation and there is an edge between two diagonals if and only if they
cross in an internal vertex, does not contain K`+1 as a subgraph. This concept gener-
alizes the classical notion of triangulation of a disc, as 1-triangulations correspond to
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triangulations. Denote by T`(k) the number of different `-triangulations of Dk. In par-
ticular, T0(k + 2) is equal to the k-th Catalan number Ck = 1

k+1

(
2k
k

)
, a result which is

well-known since Euler’s time. The study of `-triangulations for ` > 1 is more involved
than the study of triangulations. In [16, 27] the authors show that the number of di-
agonals in an `-triangulation of Dk is always `(k − 2` − 1). More recently, in [20] the
following closed expression for T`(k) has been obtained:

T`(k) =

∣∣∣∣∣∣∣∣∣
Ck−2 Ck−3 · · · Ck−`−1

Ck−3 Ck−4 · · · Ck−`−2

...
...

. . .
...

Ck−`−1 Ck−`−2 · · · Ck−2`

∣∣∣∣∣∣∣∣∣ . (1)

This expression generalizes the enumeration of the number of triangulations of a polygon
with k vertices. For the asymptotic of T`(k), observe that the recurrence Ck = 4k−2

k+1 Ck−1

makes each entry of the determinant equal to Ck times a rational function of degree at
most 2` in `. Using also that Ck = 1√

π
k−3/24k(1 + o(1)) for k large enough, it is easy to

get bounds for T`(k). More concretely, T`(k) ≤k→∞ `!
π`/2

k−3`/24`k.
We say that a set of diagonals in Dk is a partial `-triangulation if it a subset of

an `-triangulation. Let Π = {π1, π2, . . . , πr} be a partition of the set {1, 2, . . . , k} (i.e.,⋃r
i=1 πi = {1, 2, . . . , r}, and πi ∩ πj = ∅ if and only if i 6= j). We say that each of the

subsets πi, i ∈ {1, 2, . . . , r} is a block of the partition Π. We represent a partition in
the following way: we draw each block of Π as a polygon connecting the corresponding
vertices. This defines a graph G(Π) whose vertices are the blocks of Π, and the edges are
defined by the incidences of the blocks (i.e., an edge is drawn between a block πi and a
block πj if and only if the associated polygons intersect in the graphical representation).
We say that a packing (that is, a collection of pairwise disjoint non-empty blocks) of
the disc Dk is an `-packing if and only if G(Π) does not contain K`+1 as a subgraph. In
particular, if ` < `′, then an `-packing is also an `′-packing. The notion of `-packing of a
disc is a natural generalization of the notion of non-crossing partition, which corresponds
to the case ` = 1, in the same way as `-triangulations generalize triangulations of a disc.
In the leftmost side of Fig. 1 a 3-packing is drawn. In the following lemma we find
asymptotic estimates for the number of `-packings of Dk, which we denote by P`(k).

Lemma 1. The number of `-packings of Dk satisfies P`(k) = 2O`(k).

Proof: Our aim is to prove that the number of `-packings of Dk satisfies

P`(k) ≤ 2`(k−2`−1) · T`(k) ≤k→∞
`!

22`2+` · π`/2 · k
−3`/2 · 8h`k = 2O`(k).

We construct an injective application from `-packings of Dk into partial `-triangulations
of Dk. For each block, we consider the first vertex we meet when we move around Dk
starting at vertex 1. From each one of these vertices we draw diagonals to the rest of the
vertices of the block. Then it is obvious that the resulting set of diagonals is a partial
`-triangulation: a pair of diagonals coming from the same block do not cross, and for
each pair of crossing blocks there exists at least a pair of crossing diagonals. See the
rightmost side of Fig. 1 for an explicit construction. As each partial `-triangulation is
obtained from a (maximal) `-triangulation by deleting a subset of edges, and each (max-
imal) `-triangulation has `(k − 2`− 1) edges, the result follows. �

Partitions of an integer. Let q be a non-negative integer. A partition of q is a non-
increasing sequence of positive integers p1, p2, . . . , pr whose sum is q. We denote by p(q)
the number of partitions of q. The Hardy-Ramanujan-Rademacher estimate for p(q)

(see [1] for details) states that p(q) = 1
4
√

3q
eπ
√

2q/3 (1 + o(1)) = 2O(
√
q).
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same way as h-triangulations generalize triangulations of a disc. In the leftmost side of
Fig. 1 a 3-partition is drawn. We denote by Ph(k) the number of h-packings of a disc
with k vertices.

In the following proposition we find asymptotic estimates for the number of h-
packings of Dk.

Lemma 1. The number of h-packings of Dk satisfies

Ph(k) ≤ 2h(k−2h−1) · Th(k) ≤k→∞
h!

22h2+h · πh/2
· k−3h/2 · 8hk = 2O(hk+h log h).

Proof: We construct an injective application from h-packings of Dk into partial h-
triangulations of Dk. For each block, we consider the first vertex we meet when we move
around Dk starting at vertex 1. From each one of these vertices we draw diagonals to the
rest of the vertices of the block. Then it is obvious that the resulting set of diagonals is
a partial h-triangulation: a pair of diagonals coming from the same block do not cross,
and for each pair of crossing blocks there exists at least a pair of crossing diagonals. See
the rightmost side of Fig. 1 for an explicit construction. As each partial h-triangulation
is obtained from a (maximal) h-triangulation by deleting a subset of edges, and each
(maximal) h-triangulation has h(k − 2h− 1) edges, the result follows. !
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Fig. 1. A 3-partition of the disc D14 with blocks A = {1, 6, 9, 11, 13}, B = {2, 4, 10}, C =
{3, 7, 12, 14} and D = {5, 8}, the incidence graph of the partition and the associated partial
3-triangulation.

4.2 Non-crossing partitions of a surface with boundary

Extended considerations of this subsection can be found in [?]. Let Σ be a connected
surface with boundary. Such a surface can be constructed by a compact and connected
surface by deleting a finite set of disjoint open discs (see [?]). Denote by ν(Σ), χ(Σ)
the number of connected components of the boundary and the Euler characteristic of
Σ, respectively. We assume k vertices on the boundary of the surface. Vertices on each
boundary are labeled in anticounterclockwise order. In particular, boundary components

Fig. 1. A 3-packing of the disc D14 with blocks A = {1, 6, 9, 11, 13}, B = {2, 4, 10},
C = {3, 7, 12, 14} and D = {5, 8}. On the left, the incidence graph of the partition, and
on the right, the associated partial 3-triangulation (used in the proof of Lemma 1).

3 Connected packing-encodable problems

The standard dynamic programming approach on branch decompositions requires a so
called rooted branch decomposition, defined as a triple (T, µ, er), where (T, µ) is a branch
decomposition of G such that T is a tree rooted at a leaf vr of T incident with some
edge er. We slightly abuse notation by insisting that no edge of G is assigned to vr and
thus mid(er) = ∅ (for this, we arbitrarily pick some edge of a branch decomposition,
subdivide it and then connect by er the subdivision vertex with a new leaf vr). The
edges of T are oriented towards the root er, and for each edge e ∈ E(T ) we denote by
Ee the edges of G that are mapped to leaves of T that are descendants of e. We also set
Ge = G[Ee] and we denote by L(T ) the edges of T that are incident with leaves of T .
Given an edge e whose tail is a non-leaf vertex v, we denote by e1, e2 ∈ E(T ) the two
edges heading at v (we call them children of e). When the tail of an edge of T is also a
leaf of T then we call it leaf-edge.

Typically, dynamic programming on a rooted branch decomposition (T, µ, er) of a
graph G associates some suitable combinatorial structure struct(e) with each edge e of T ,
such that the knowledge of struct(er) makes it possible to determine the solution to the
problem. Roughly speaking, struct(e) encodes all the ways that the possible certificates
of a partial solution on graph Ge may be restricted to mid(e). The computation of
struct(e) is done bottom-up, by first providing struct(e) when e is a leaf-edge of T and
then giving a recursive way to construct struct(e) from struct(e1) and struct(e2), where
e1 and e2 are the children of e.

The encoding of struct is commonly referred as the “tables” of the dynamic pro-
gramming algorithm. It is desirable that the size of the tables, as well as the time to
process them, is bounded by f(|mid(e)|) · nO(1), where f is a function not depending
on n. This would give a polynomial-time algorithm for graphs of fixed branchwidth. In
technical terms, this means that the problem is Fixed Parameter Tractable (FPT), when
parameterized by the branchwidth of the input graph (for more on Fixed Parameter
Tractability, see [15, 17, 28]). A challenge in the design of such algorithms is to reduce
the contribution of branchwidth to the size of their tables, and therefore to simplify f
as much as possible. As indicated by the lower bounds in [6, 19, 23], for many problems
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like Independent Set, Dominating Set, or q-Coloring for fixed q ≥ 3, f is not
expected to be better than single-exponential in general graphs.

Before we proceed with the description of the family of problems that we examine in
this paper, we need some definitions. Let G be a graph and let S be a set of vertices of
G. We denote by G the collection of all subgraphs of G. Each H ∈ G defines a packing
PS(H) of S such that two vertices x, y ∈ S belong to the same set of PS(H) if x, y
belong to the same connected component of H. We say that H1, H2 ∈ G are S-equivalent
if PS(H1) = PS(H2), and we denote it by H1 ≡S H2. Let GS the collection of all
subgraphs of G modulo the equivalence relation ≡S . We define the set of all connected
packings of S with respect to G as the collection ΨG(S) = {PS(H) | H ∈ GS}. Notice
that each member of ΨG(S) can indeed be seen as a packing of S, as its sets may not
necessarily meet all vertices of S.

In this paper we consider graph problems that can be solved by dynamic programming
algorithms on branch decompositions for which the size of struct(e) is upper-bounded2 by
2O(|mid(e)|) · |ΨGe(mid(e))| · nO(1). We call these problems connected packing-encodable.
We stress that our definition of connected packing-encodable problem assumes the exis-
tence of an algorithm with this property, but there may exist other algorithms whose ta-
bles are much bigger. For these problems, dynamic programming has a single-exponential
dependence on branchwidth if and only if ΨGe(mid(e)) contains a single-exponential
number of packings, i.e., |ΨGe(mid(e))| = 2O(|mid(e)|). See [33] for more details.

In general, the number of different connected packings that could be created dur-
ing the dynamic programming is not necessarily smaller than the number of the non-
connected ones. In fact, it typically depends on the k-th Bell number, where k is the
branchwidth of the input graph. This implies that, in general, |ΨGe(mid(e))| = 2O(k log k)

is the best upper bound that can be so far achieved for connected packing-encodable
problems, at least for deterministic algorithms. The purpose of this paper is to show
that, for such problems, this bound can be reduced to a single-exponential one when
their input graphs exclude a graph as a minor. In Section 5, we define the concept of an
H-minor-free cut decomposition, which is a key tool for the main result of this paper,
summarized as follows.

Theorem 1. Every connected packing-encodable problem whose input is an n-vertex
graph G that excludes an h-vertex graph H as a minor, and has branchwidth at most k,
can be solved by a dynamic programming algorithm on an H-minor-free cut decomposition
of G with tables of size 2Oh(k) · nO(1).

In Section 3, we prove (Theorem 3) that, given an H-minor-free graph G, an H-
minor-free cut decomposition of G of width Oh(bw(G)) can be constructed in Oh(n3)
steps. Therefore, we conclude the following result.

Theorem 2. Every connected packing-encodable problem whose input is an n-vertex
graph G that excludes an h-vertex graph H as a minor and has branchwidth at most k,
can be solved in 2Oh(k) · nO(1) steps.

4 Polyhedral decomposition of H-minor-free graphs

Let Σ be a surface with boundary. An O-arc is a subset of Σ homeomorphic to S1. A
subset of Σ meeting the drawing only at vertices of G is called G-normal. If an O-arc is

2 In most cases this bound is independent from n. We choose to present it in a more general
form that might include graph problems that are not covered by the linear time algorithms
derived from Courcelles’s theorem.
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G-normal, then we call it a noose. We denote by VN the set of vertices met by a noose
N , i.e., V (N) = V (G)∩N . The length N of a noose is the number of the vertices that it
meets and is denoted by |N |, i.e., |N | = |V (N)|. The facewidth of a Σ-embedded graph
embedding (G, τ) is the smallest length of a non-contractible (i.e., non null-homotopic)
noose in Σ and is denoted by fw(G). We call a Σ-embedded graph G polyhedral [25] if
G is 3-connected and fw(G) ≥ 3, or if G is a clique and 1 ≤ |V (G)| ≤ 3.

Definition 1. Let α, β, γ, δ be non-negative integers. A graph G is (α, β, γ, δ)-nearly
embeddable, if there is a surface Σ of Euler genus γ and a set of vertices A ⊆ V (G)
(called apices) of size at most α such that graph G \ A is the union of subgraphs G =
{G0, . . . , Gδ} (some of them may be the empty graph) with the following properties:

1. There is a set R = {∆1, . . . ,∆δ} of pairwise disjoint open discs in Σ such that G0 is
a graph embedded in Σ in a way that G0 ∩

⋃
i=1,...,δ∆i = ∅ (G0 is called underlying

graph of G),
2. the graphs G1, . . . , Gδ (called vortices) are pairwise disjoint and for 1 ≤ i ≤ δ,

V (G0) ∩ V (Gi) ⊆ bor(∆i) (we call the vertices in V (G0) ∩ V (Gi) ⊆ bor(∆i) base
vertices of the vortex Gi),

3. for 1 ≤ i ≤ δ, let Ui = {ui1, . . . , uimi} be the base vertices of Gi appearing in an order
obtained by counterclockwise traversing bor(∆i). Then Gi has a path decomposition
Bi = (Bij)1≤j≤mi , of width equal to β such that for 1 ≤ j ≤ mi, we have uij ∈ Bij.
We also denote B = {B1, . . . ,Bδ} and for each vij, we call Bij the cloud of vij.

If G is an (α, β, γ, δ)-nearly embeddable graph for some E = (A,Σ,G,R,B) as above,
we say that E is its embedding pattern. If in Definition 1 we demand the embedding of
the graph G0 to be polyhedral, then we say that G is polyhedrally (α, β, γ, δ)-nearly
embeddable, and we say that the corresponding pattern is polyhedral. We also say that
G is (polyhedrally) c-nearly embeddable graph if it is (polyhedrally) (α, β, γ, δ)-nearly
embeddable for some α, β, γ, δ ≤ c.

We would like to stress that the proof of Proposition 1 below, which is the main result
of this section, heavily relies on the recent result of Kawarabayashi and Wollan [21] to
find in time O(n3) the tree-like decomposition of an H-minor-free graph G, given by
structure theorem of Robertson and Seymour [30].

Proposition 1. There exists an algorithm that, given an h-vertex graph H and an n-
vertex graph G that excludes H as a minor, outputs, in Oh(n3) steps, a tree decomposition

D = (X = {Xt | t ∈ V (T )}, T ) of G of adhesion Oh(1) and such that every t ∈ V (T ), X
t

is a polyhedrally Oh(1)-nearly embeddable graph. Moreover, the same algorithm outputs

the corresponding embedding pattern Et of X
t

for each t ∈ V (T ).

Sketch of proof: The result has been recently been proven in [22] without the demand

that X
t

is a polyhedrally Oh(1)-nearly embeddable graph. In fact, the non-polyhedral
version of Theorem 1 is known as the Structure Theorem of the Graph Minors series [31].
In [22], a simpler proof of this theorem was found together with an algorithm with the
claimed running time (see also [10]). In order to impose the polyhedral condition, we

further build a tree decomposition of each X
t

where all of its bags are polyhedrally
Oh(1)-nearly embeddable. For this, assume that Et = (At, Σt,Gt,Rt,Bt) is the embed-

ding pattern of a bag X
t

that is non-polyhedrally (α, β, γ, δ)-nearly embeddable where
α, β, γ, δ ≤ ch.

We fist update Bt so that for each i ∈ {1, . . . , δ} and j ∈ {1, . . . ,mi}, the following
hold: (a) uij , u

i
j+1 ∈ Bij (here we interpret uimi+1 as ui1), (b) uij ∈ Bij ∩ Bij−1 (here we

interpret Bi0 as Bimi), and (c) |Bij ∩ Bij+1| ≤ k+1
2 (here we interpret Bimi+1 as Bi1).
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This can be done if for every i ∈ {1, . . . , δ}, we set Bi ← (B̂ij)1≤j≤mi so that B̂ij =

Bij ∪ Bij+1, j ∈ {1, . . . ,mi} (here Bimi+1 = Bi1). We call the conditions (a), (b), (c)
flexibility conditions for Bt and we show that they can be assumed with the cost of
updating β to be 2β + 1. This enhancement of Bt is necessary in order to build a tree

decomposition of X
t
. For this, we essentially imitate the steps of Algorithm 1 in [33] by

including in the common intersections of the bags of this tree decomposition not only
the vertices met by the separating nooses, but also their cloud vertices along with the
(common) apex set A. In what follows, we outline this enhancement process.

The fact that Et is not polyhedral implies that the underlying graph Gt0, embedded
in Σ has a noose N where |V (N)| ≤ 2 and such that one of the following holds:

(1) V (N) is a separator of Gt0.
(2) V (N) is not a separator of Gt0 and N is non-contracible and not surface separating.

In case (1), X
t

has a separation (X,Y ) where X ∩ Y contains the vertices of V (N)
along with their clouds and the apices in A. Making use of the flexibility conditions, it

is possible to split the bag X
t

into two bags A and B that are both (α, β, γ, δ)-nearly
embeddable and the flexibility conditions are still satisfied for both of them. While
step (1) is applied, the apices in At are included in the common intersection of any

two neighboring bags of this tree decomposition of X
t
. This makes the adhesion of the

resulting tree decomposition to be at most 2β + α.
In case (2), we revise Et = (At, Σt,Gt,Rt,Bt) to a new one E′ = (At′, Σt′,Gt′,Rt′,Bt′)

as follows: we define At′ so that it contains all vertices in At along with the vertices in
V (N) and their clouds. We define Σt′ to be the surface where Gt0 \ V (N) is embedded,
and take into account that γ′ = γ(Σt′) < γ. Our next step is to see that N may split, in
the new embedding, at most one of the vortices in Gt to two vortices, and this induces a

revision of (Gt,Rt,B) to a new triple (Gt′,Rt′,Bt′) such that X
t

is (α′, β′, γ′, δ′)-nearly
embeddable with pattern (At′, Σt′,Gt′,Rt′,Bt′) where α′ ≤ α+ 2 · β, β′ = β, γ′ ≤ γ − 1,
and δ′ ≤ δ + 1. Also, this update can be done in a way flexibility conditions again hold
for Bt′. Our progress is that we reduced γ′ in the cost of increasing α′ and δ′. This
means that case (2) will not be applied more than Oh(1) times, and therefore after the
application of the transformation of cases (1) and (2) until this is not possible anymore,
we end up with a tree decomposition of adhesion 2β + α = Oh(1) consisting of polyhe-
drally (α′, β′, γ′, δ′)-nearly embeddable bags, where α′, β, γ′, δ′ = Oh(1). Given that we

have the decomposition D and the embedding pattern Et of X
t

for each t ∈ V (T ) and
following the arguments of the proof of Proposition 4.2 in [33], it is easy to verify that,

given D and the embedding pattern Et of X
t

for each t ∈ V (T ), the procedure described
in the above sketch requires at most O(n3) steps. �

Given an h-vertex graph H and an H-minor free graph G, we call a tree decom-
position D as the one in Proposition 1, a ch-nearly polyhedral decomposition (where ch
is a constant depending only on h). If in Proposition 1 G is a graph embedded in a
surface, then a ch-nearly polyhedral decomposition is what has been defined in [33] as
a polyhedral decomposition, where the adhesion is at most 2 (now in each embedding
pattern Et = (At, Σt,Gt,Rt,Bt), we have that Gt0 contains only the underlying graph,
while Rt = ∅ and Bt = ∅).

5 H-minor-free cut decompositions

In this section we define and show how to construct a special type of branch decomposi-
tions for families of graphs excluding a graph H as a minor; we call them H-minor-free
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cut decompositions. Their construction relies on surface cut decompositions, recently
introduced in [33].

Let Σ be a surface without boundary, and let N be a finite set of O-arcs in Σ
pairwise intersecting at zero-dimensional subsets of Σ (i.e., points). Then the closure of
each connected component of Σ \∪∪∪∪∪∪∪∪∪N is called a pseudo-surface, where ∪∪∪∪∪∪∪∪∪N =

⋃
N∈N N .

For a point p ∈ Σ, let N (p) be the number of O-arcs in N containing p, and let
P (N ) = {p ∈ Σ : N (p) ≥ 2}; note that by assumption P (N ) is a finite set of points of
Σ. Then we define θ(N ) =

∑
p∈P (N )(N (p)− 1).

Note that if the O-arcs are pairwise disjoint, then each pseudo-surface is a surface
with boundary. Notice that in Definition 1 we can permit Σ to be a pseudo-surface
with boundary instead of a surface without boundary. This extension of the definition
is necessary for defining the concept of an H-minor-free cut decomposition below.

Definition 2. Given an h-vertex graph H, an n-vertex H-minor-free graph G, an H-
minor-free cut decomposition of G is a branch decomposition (T, µ) of G such that there
exists an Oh(1)-nearly polyhedral decomposition D = (X = {Xt | t ∈ V (T ′)}, T ′) of G
such that for each edge e ∈ E(T ), either |mid(e)| = Oh(1) or there exists a bag Xt ∈ X
such that

• mid(e) ⊆ V (Xt);

• given that Et = (At, Σt,Gt,Rt,Bt) is the embedding pattern of X
t

and Gt = {Gt0, Gt1,
. . . , Gtδ}, there exists a set N of nooses of Gt0 in Σt such the vertices of mid(e) ∩
V (Gt0) are all met by the nooses in N in a way that the following hold
1. |N | = Oh(1),
2. the nooses in N pairwise intersect only at subsets of mid(e),
3. θ(N ) = Oh(1),
4. Σt\∪∪∪∪∪∪∪∪∪N contains exactly two connected components, such that the graph G[V (Ge)∩

V (Xt)] is Oh(1)-nearly embedded in the closure of one of them.

If in the above definition we consider that G is embedded in some surface of genus γ
and we restrict each Gt to contain only the underlying graph (i.e., there are no vortices,
Rt = ∅, and Bt = ∅), we have the definition of surface cut decompositions introduced
in [33]. Finally, if we further restrict Σ to be a sphere and set At = ∅, we have the notion
of sphere cut decompositions introduced in [14,34].

Theorem 3. There exists an algorithm that, given an h-vertex graph H and an n-vertex
graph G that excludes H as a minor and has branchwidth at most k, outputs in Oh(n3)
steps an H-minor-free cut decomposition of G of width Oh(k).

Sketch of proof: The algorithm applies first the algorithm of Proposition 1 in order to
find a tree decomposition D = (X = {Xt | t ∈ V (T ′)}, T ′) of adhesion Oh(1) and such

that for every t ∈ V (T ′), X
t

is a polyhedrally Oh(1)-nearly embeddable graph. Then, for
every t ∈ V (T ′) we consider the underlying graph Gt0, and find a branch decomposition of
it of width Oh(k). This can be done in O(n3) steps by using a standard planarization pro-
cedure that cuts the graph along minimum length non-contractible nooses (see [11, 13])
and then using the approximation algorithm in [34]. Our next aim is to transform this
branch decomposition into a new branch decomposition (T t, τ t) of Gt0 with the property
that for every e ∈ E(T ), there exists a set N of nooses of Gt0 in Σt such that the vertices
of mid(e) ∩ V (Gt0) are all met by the nooses in N , in a way that conditions 1 –3 of
Definition 2 hold and, moreover, Σt \∪∪∪∪∪∪∪∪∪N contains exactly two connected components,
such that the graph Ge \A is embedded in the closure of one of them. This construction
is using Algorithm 2 of [33] and the proof of its correctness uses the same arguments as
the proof of Theorem 7.2 in [33]. Our next step is to enhance (T t, τ t) so that it becomes
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a branch decomposition of G[V (Ge) ∩ V (Xt)] satisfying property 4 . For this, we use
Observation 5.1 of [33] to enhance (T t, τ t) so to contain also all edges incident with the
vertices in At, and then we use the construction of Lemma 10 of [13] in order to further
enhance it to a branch decomposition (T̂ t, τ̂ t) of G[V (Ge) ∩ V (Xt)] so that property
4 holds. Our last step is to glue together all branch decompositions (T t, τ t), t ∈ T ′ by
following the way the bags of X are glued together in D. The outcome of this procedure
gives the required H-minor-free cut decomposition of G. �

In contract with the algorithm of Theorem 3, it is worth noting here that the algo-
rithm that computes a surface cut decomposition for a surface-embedded graph in [33]
has running time 2O(k) ·n3, because we wanted to optimize the dependence on the genus
of the width of the obtained branch decomposition, while keeping the overall running
time single-exponential in k.

6 Combinatorial behavior of the vortices

In this section we focus on the combinatorial behavior of the vortices in a graph excluding
a graph H as a minor. The main objective is to prove that, in an H-minor-free cut
decomposition, the number of ways that connected subgraphs can behave inside a vortex
can be upper-bounded by the number of Oh(1)-packings (defined in Section 2) of size
linear in the branchwidth of the input graph. By Theorem 3, from now on we assume that
we have an H-minor-free cut decomposition (T, µ) of G, as well as a tree decomposition

D = (X = {Xt | t ∈ V (T )}, T ) of G of adhesion Oh(1), such that each D-closure X
t
is a

polyhedrally (α, β, γ, δ)-nearly embedded graph, with α, β, γ, δ = Oh(1).
In order to have a clearer picture of the behavior of the vortices, we define according

to [13] the graph Rd,s, where

V (Rd,s) = V1 ∪ · · · ∪ Vs with |Vi| = d for 1 ≤ i ≤ s, and

E(Rd,s) = {{xj , xk} | xj , xk ∈ Vi, 1 ≤ j 6= k ≤ d, 1 ≤ i ≤ s} ∪
{{xj , yj} | xj ∈ Vi−1 and yj ∈ Vi, 1 ≤ j ≤ d, 1 ≤ i ≤ s}.

We call such a graph Rd,s a normalized vortex. In the graph Rd,s we distinguish a subset
U ⊆ V (Rd,s) containing exactly one vertex from each Vi. The pair (Rd,s, U) is called
an (d, s)-vortex pattern. See Fig. 2 for an example of a normalized vortex R5,12 and the
corresponding (5, 12)-vortex pattern, where the set U is defined by the white vertices.
These white vertices are the base vertices of the vortex, and each one of the d concentric
paths is called a track of the vortex. We say that an (d, s)-vortex pattern has depth
d. Note that each base vertex belongs to a clique of size d. The d edges between two
consecutive cliques are called a section of the vortex. Normalized vortices and vortex
patterns are useful because any vortex is a minor of a vortex pattern, as stated in the
following lemma.

Lemma 2 (Dorn, Fomin, and Thilikos [13]). Any vortex of a d-nearly embeddable
graph with base set J is a minor of a (d, s)-vortex pattern (Rd,s, U), where the minor
operations map bijectively the vertices of U to the vertices in J in a way that the order of
the vortex and the cyclic ordering of U induced by the indices of its elements is respected.

By Lemma 2, from now on we will only deal with vortex patterns. We say that
connected subgraph B of G meets a vortex F , if B contains some of the base vertices of
F . If U is the set of base vertices of F , the number of times that B meets F is exactly
|V (B) ∩ U |. For the analysis, we need to consider the possibility that a subgraph in
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R5,12

V1

V2

V3

V4 V5
V6

V7

V8

V9

V10
V11V12

Fig. 2. A (5, 12)-vortex pattern. The set U is defined by the white vertices.

a connected packing P ∈ ΨG(S) meets more than one vortex. This possibility is ruled
out in Lemma 3. Loosely speaking, the proof of Lemma 3 is based on the fact that if a
subgraph B in a connected packing P ∈ ΨG(S) meets two vortices of depth at most β,
these two vortices can be virtually merged along a path of B into a new vortex of depth
at most 2β. As a subgraph may a priori meet an arbitrary number of the vortices, for
our analysis we need to consider all possibilities of merging any subset of the δ vortices,
which are at most p(δ) many (see “partitions of an integer” in Section 2). Therefore,
potentially some of this merged vortices may have depth up to δ · β = Oh(1). Also, in
order to find an upper bound for the number of connected packings, we will need to incur
an additional factor p(δ). Lemma 4, whose proof uses Lemma 3, will allow us to simulate
the behavior of the vortices with simpler objects of appropriate size, independent of the
integer s (recall that we deal with (β, s)-vortex patterns, cf. Section 6). More details
follow.

Lemma 3. We can assume that each subgraph in a connected packing P ∈ ΨG(S) meets
at most one vortex.

Sketch of proof: Let B be a subgraph in a connected packing P ∈ ΨG(S), and assume
that B intersects two vortices F1 and F2 of depth at most β. Let ∆1 and ∆2 be the
open discs of Σ such that Fi is contained in ∆i for i ∈ {1, 2}. Since B intersects both F1

and F2, we can assume that B contains a path P in Σ connecting the discs ∆1 and ∆2,
disjoint from all the other vortices. Since G0 is embedded in Σ, no other subgraph in the
connected packing P intersects the path P . Therefore, the same packing P would also
exist if the two discs ∆1 and ∆2 are merged along the path P . In terms of the vortices,
this merging operation can be translated into considering a new vortex F1,2 of depth
at most 2β made of the union of F1 and F2 along P , as illustrated in Fig. 3. We omit
the details here (see [13] for a similar trick). As a subgraph may a priori intersect an
arbitrary number of vortices, we need to consider all possibilities of merging any subset
of the δ vortices, which are at most p(δ) many (see Section 2). Therefore, potentially
some of this merged vortices may have depth up to δ · β = Oh(1). �

Lemma 4. For each vortex F , we can assume that the total number of times that the
subgraphs in a connected packing P ∈ ΨG(S) meet F is Oh(k).

Sketch of proof: Again, it will be useful to assume that the vortices are all isomorphic
to (β, s)-vortex patterns (see Fig. 2). Let F be a fixed vortex, and let us order its base
vertices counterclockwise as U = {u1, u2, . . . , us} (cf. the white set of vertices in Fig. 2).

We can also assume that each subgraph in a connected packing is a tree of G, which is
enough for connectivity purposes. Each leaf of such a tree is a vertex in the corresponding
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F1,2

F1
P F2

Fig. 3. Example in the proof of Lemma 3. If a subgraph intersects two vortices F1 and F2

(illustrated above with the red path P ), we can consider a bigger vortex F1,2 (depicted
below) obtained from merging vortices F1 and F2 along the path P .

middle set of the branch decomposition. As the total number of vertices in each middle
set is at most k, in order to prove that a given vortex is met by some subgraph Oh(k)
times, it is enough to prove that every path of a subgraph with both endvertices being
in the separator S meets a given vortex Oh(1) times. Therefore, we assume henceforth
that the subgraphs in a connected packing are paths. Throughout the proof, see Fig. 4.
In the figure, vertices of the form vi belong to the separator S of the minor-free cut
decomposition, while vertices of the form uj are base vertices of the vortex.

Let B a fixed path intersecting F (cf. the thick black path in Fig. 4, containing ver-
tices v1 and v4), and let uf (resp. ul) be the first (resp. last) vertex of V (B)∩U according
to the counterclockwise ordering of U (in Fig. 4, we have uf = u2 and ul = u12). By
Lemma 3, we may assume that B does not intersect any other vortex other than F . Let
ui and uj be two consecutive vertices in V (B) ∩ U , with f < i < j < l. If no other
subgraph intersects a vertex u` ∈ U , with i < k < j (cf. vertices u4 and u6 in Fig. 4),
we can just shortcut the path B from the clique containing ui to the clique containing
uj along a free track of the vortex, so that B does not intersect ui or uj anymore (such
a shortcut is depicted with a thick green path in Fig. 4). This transformation preserves
the connectivity of B and does not modify any other subgraph in the connected packing.
Therefore, we may assume that some other subgraph B′ intersects a vertex u` ∈ U , with
i < k < j. But since B is connected, B contains a path P from ui or uj outside the
vortex H (cf. vertices u8 and u11 in Fig. 4). The idea is that if B′ intersects u` and is
disjoint from P (by definition of a connected packing), then necessarily B′ uses a handle
or a noose (for instance, in Fig. 4, the red path containing vertex v2 uses a handle, and
the blue path containing vertex v3 uses a noose). There may be other vortices F ′ inside
the region delimited by P (cf. vortex F ′ in Fig. 4), but by Lemma 3 we can assume that
no subgraph intersecting F ′ intersects also F . That is, the number of times that the
path B intersects the vortex F can be linearly upper-bounded by the total number of
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Fig. 4. Example in the proof of Lemma 4.

handles and nooses in the surface. Since the genus of Σ is Oh(1), as well as the number
of nooses in an H-minor-free cut decomposition, we conclude that B meets F at most
Oh(1) times. The lemma follows. �

Let F be a given (d, s)-vortex pattern with set of base vertices U = {u1, . . . , us}, or-
dered cyclically. A configuration in F is a set of vertex-disjoint subgraphs F={F1, . . . , F }̀
of F . We say that two subgraphs Fi, Fj ∈ F cross if there exist ui1 , ui2 ∈ V (Fi) ∩ U
and uj1 , uj2 ∈ V (Fj) ∩ U such that i1 < j1 < i2 < j2. The crossing graph Fc of a con-
figuration F has one vertex for each subgraph in F , and an edge between two vertices
if and only if their corresponding subgraphs cross. A configuration F is said to be an
`-configuration if the maximum size of a clique in Fc is `. In the following lemma we
prove that in a vortex of given depth, the existing configurations can cross only in a
bounded way. This fact will enable us to upper-bound the number of configurations in
a vortex of depth d in terms of the number of d-packings in the circle.

Lemma 5. A vortex pattern of depth at most β does not contain any β′-configuration
with β′ > β.

Sketch of proof: Let F be a vortex pattern of depth d, and assume that F is a con-
figuration in F . The key observation is that is F1 and F2 are two crossing subgraphs
in F , then by the structure of a vortex pattern necessarily F1 and F2 use two edges
in a same section of F . Inductively, one can easily check that if F1, . . . , F` are pairwise
crossing subgraphs in F , then necessarily F1, . . . , F` use ` edges in a same section of F .
Therefore, as the number of edges in a section of F is exactly d, it follows that Fc does
not contain any clique of size at least d+ 1. �

7 Upper-bounding the size of the tables

In this section we show that by using H-minor-free cut decompositions in order to solve
connected packing-encodable problems in H-minor-free graphs, one can guarantee single-
exponential upper bounds on the size of the tables of dynamic programming algorithms.
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Theorem 1 follows directly by the definition of a connected packing-encodable problem
and the following lemma, which we will prove in this section.

Lemma 6. Let G be a graph excluding an h-vertex graph H as a minor, and let (T, µ)
be an H-minor-free cut decomposition of G of width at most k. Then for every e ∈ E(T ),
|ΨGe(mid(e))| = 2Oh(k).

Let (T, µ) be an H-minor-free cut decomposition of a graph G. For edges e ∈ E(T )
such that mid(e) = Oh(1), we trivially have that |ΨGe(mid(e))| = 2Oh(1), and there-
fore the statement of Lemma 6 is satisfied. Therefore, we only need to deal with edges
e ∈ E(T ) such that mid(e) is contained in a graph which is polyhedrally Oh(1)-nearly
embedded in a surface Σ.

In order to prove Lemma 6, we will need the lemmata of Section 6 about the com-
binatorial behavior of the vortices. We will also need the following key result from [33],
which bounds the size of the tables for graphs embedded in surfaces with boundary.

Lemma 7 (Rué, Sau, and Thilikos [33]). Let G be a graph containing a set A of
vertices such that G \ A is embedded in a surface Σ with boundary. Let also S be the
set of vertices of G that lie on the boundary of Σ and A′ ⊆ A. Then, if |S| ≤ k and
|A|, γ(Σ), ν(Σ) ≤ γ, then |ΨG(S ∪A′)| = γO(γ) · kO(γ) · γO(k).

Note that, in the statement of Lemma 7, if |A|, γ(Σ), ν(Σ) = Oh(1), then it holds that
|ΨG(S∪A′)| = 2Oh(k). The following lemma gives an upper bound on the number of non-
crossing packings on a surface with apices and vortices. Intuitively, our approach consists
in considering each vortex as a new virtual noose of length Oh(k) in an H-minor-free cut
decomposition, where each vertex of such noose corresponds to an eventual meeting of
a subgraph of the connected packing with the corresponding vortex. We then consider
all non-crossing packings taking into account the original and the virtual nooses, and
finally we merge the subgraphs incident to a virtual noose according to the possible
Oh(1)-packings corresponding to that vortex. This approach is made more precise in
Lemma 8 below, which implies Lemma 6, and therefore also Theorem 1 and Theorem 2.
The proof of Lemma 8 makes use of Lemmata 2, 4, 5, and 7.

Lemma 8. Let G be a graph polyhedrally (α, β, γ, δ)-nearly embedded in a surface Σ
with boundary, with a set of apices A. Let also S be the set of vertices of G that lie on
the boundary of Σ. If |S| ≤ k and α, β, γ, δ, ν(Σ) ≤ η, then |ΨG(S ∪A)| = 2Oη(k).

Sketch of proof: Let G = {G0, G1, . . . , Gδ} be the subgraphs of G \ A defining its
polyhedral (α, β, γ, δ)-nearly embedding. By Lemma 2, we can assume that each vortex
is isomorphic to an (β, s)-vortex pattern for some s ≥ 1. Recall that each vortex is
contained in an open disc ∆i of Σ, such that Ui = V (G0) ∩ V (Gi) ⊆ bor(∆i). Also, by
Lemma 4, we can assume that the subgraphs of a connected packing meet each vortex
Oh(k) times. Let S = {v1, . . . , vk} be the set of vertices of G that lie on the boundary
of Σ, which we can assume to be contained in a set of disjoint nooses N1, . . . , Nγ with
γ = Oh(1) (see [33] for more details). Let ch be a constant such that chk satisfies the
statement of Lemma 4. For each vortex Gi, 1 ≤ i ≤ δ, we consider a set of chk auxiliary
vertices Si = {u1

i , . . . , u
chk
i } placed cyclically inside around ∆i, corresponding to the

potential meetings of the subgraphs in a connected packing with the vortex. We see each
set of auxiliary vertices Si as a new noose N̄i of size chk, placed in Σ inside the border
of ∆i, such that both nooses are concentric. Potentially, the vertices in Ui (which are
in bor(∆i)) can be joined to the vertices in Si (which are in N̄i) in any planar way
inside Σ. In order to formalize this fact, we define the class of graphs Ḡ0 as follows: Ḡ0

contains all the graphs that can be obtained from G0 by replacing each vortex Gi with
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Fig. 5. Example in the plane of our approach to simulate the behavior of the vor-
tices. There are four nooses N1, N2, N3, N4 drawn with full lines, and a vortex F of
depth 2 drawn with a dashed circle. Black vertices correspond to vertices in the sep-
arator S (thus, in the nooses), while white vertices belong to the base set of the vor-
tex. The non-crossing packing P0 in Σ has the following six subgraphs (depicted with
dark regions), abstracted as blocks containing only black and white vertices: B1 =
{v1, v2, u2}, B2 = {v3, v4, v5}, B3 = {v8, u4}, B4 = {v6, v7, v11}, B5 = {v9, v10, u5, u6},
and B6 = {v12, v13, u7}. With the two subgraphs T1 = {u3, u4, u7} and T2 = {u1, u2, u6}
corresponding to a 2-packing of the vortex, subgraphs B1 and B5 (resp. B6 and B6) get
merged into the new subgraph {v1, v2, v9, v10} (resp. {v8, v12, v13}).

a planar bipartite subgraph Ḡi with bipartition Ui and Si, such that the vertices of Ui
are placed around bor(∆i), and the vertices of Si are placed around N̄i. (We would
like to stress that do not need to compute this class of graphs algorithmically, it is only
used in the analysis to provide an upper bound on the number of connected packings.)
Note that each graph Ḡ0 ∈ Ḡ0 is embedded in Σ, and therefore Lemma 7 can be applied

to Ḡ0. Let S̄ = S ∪
(⋃δ

i=1 Si

)
, and note that |S̄| ≤ k + Oh(k) = Oh(k), and that the

vertices in S̄ are contained in a set of at most γ + δ = Oh(1) disjoint nooses of Σ.
The key observation is that every connected packing P ∈ ΨG(S ∪ A) can be obtained
by combining a non-crossing packing P0 ∈ ΨḠ0

(S̄ ∪ A), for some graph Ḡ0 ∈ Ḡ0, with
appropriate Oh(1)-packings of the (possibly merged) vortices. Indeed, by Lemma 5 we
know that a vortex pattern of depth at most β does not contain any β′-configuration
with β′ > β, so the number of β-packings on chk elements gives an upper bound to the
number of configurations in each vortex. See Fig. 5 for an example of such construction.

Hence, from the above discussion we conclude that

|ΨG(S ∪A)| ≤ max
Ḡ0∈Ḡ0

{|ΨḠ0
(S̄ ∪A)|} · p(δ) · (Pδβ(chk))

δ

= 2Oh(k) · 2Oh(1) ·
(

2Oh(k)
)Oh(1)

= 2Oh(k) ,

where in the last equality we have used Lemma 7, the estimate for p(q) given in Sec-
tion 2, and Lemma 1, in this order. The result follows. �
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