
HAL Id: lirmm-00736723
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736723

Submitted on 28 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint Satisfaction based Approach to View
Selection in a Distributed Context
Imene Mami, Zohra Bellahsene, Remi Coletta

To cite this version:
Imene Mami, Zohra Bellahsene, Remi Coletta. A Constraint Satisfaction based Approach to View
Selection in a Distributed Context. BDA 2012 - 28e journées Bases de Donnees Avancées, Oct 2012,
Clermont-Ferrand, France. �lirmm-00736723�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736723
https://hal.archives-ouvertes.fr

A Constraint Satisfaction based Approach to View

Selection in a Distributed Context

Imene Mami1, Zohra Bellahsene1, and Remi Coletta2

1University Montpellier 2 - INRIA, LIRMM, France
2University Montpellier 2 - LIRMM, France

{mami,bella,coletta}@lirmm.fr

Abstract

Les vues matérialisées sont utilisées dans les systèmes de gestion de bases de données

commercialisés pour accélérer le temps de traitement des requêtes. Cette technique est aussi

très utile dans les entrepôts de données pour améliorer les performances des requêtes déci-

sionnelles. Cependant, le problème de sélection de vues a été étudié surtout dans un contexte

centralisé. Dans cet article, nous abordons le problème de sélection de vues dans un environ-

nement distribué. Pour ce faire, nous avons étendu le concept des graphes de vues AND-OR

qui permet de capturer les caractéristiques d'un système distribué. Nous proposons ensuite

une méthode utilisant la programmation par contraintes pour la modélisation et la résolu-

tion du problème de sélection de vues sous des contraintes de ressources multiples. Nous

montrons expérimentalement que notre approche fournit de meilleures performances au sens

où elle permet d'améliorer la qualité des solutions en réduisant davantage encore le coût de

traitement des requêtes.

Keywords: materialized views, query processing and optimization, view selection.

1 Introduction

View materialization is a widely used strategy in commercial database systems and data warehous-
ing systems to improve query performance. Indeed, answering queries using materialized views
can signi�cantly speed up the query processing since the access to materialized views is much
faster than recomputing views on demand. However, whenever a base relation is changed the
materialized views built on it have to be updated in order to compute up-to-date query results.
The process of updating materialized views is known as view maintenance. Besides, material-
ized views require storage space. The problem of choosing which views to materialize by taking
into account three important features: query cost, view maintenance cost and storage space is
known as the view selection problem and to be a NP-complete problem. For this reason, it has
received signi�cant attention in past research but most of these studies presented solutions in the
centralized context.

In a distributed environment the view selection problem becomes more challenging. Indeed,
it includes another issue which is to decide on which computer nodes the selected views should
be materialized. Furthermore, resource constraints such as CPU, IO, network bandwidth have
to be taken into consideration. The view selection problem in a distributed context may also
be constrained by storage space capacities per computer node and maximum view maintenance
cost. To the best of our knowledge, no past work has addressed this problem under all these

1

resource constraints. Our constraint programming based approach �lls this gap. Indeed, all
these resource constraints will easily be modeled with the rich constraint programming language.
Furthermore, the heuristic algorithms which have been designed to solve the view selection problem
in a distributed scenario are deterministic algorithms. For example greedy algorithm [3] and
genetic algorithm [4], a type of randomized algorithms. These heuristic algorithms may provide
near optimal solutions but there is no guarantee to �nd the global optimum because of their greedy
nature or their probabilistic behavior. We have demonstrated in our recent work [10] the bene�t
of using constraint programming techniques for solving the view selection problem with reference
to the centralized context in terms of the solution quality. Indeed, our approach is able to provide
a near optimal solution to the view selection problem during a given time interval. The quality
of this solution may be improved over time until reaching the optimal solution. Speci�cally, our
main contributions are:

1. We propose an extension of the concept of the AND-OR view graph [14] in order to re�ect
the relation between views and communication network within the distributed scenario. We
make use of the concept of the AND-OR view graph to exhibit common sub-expressions
between queries of workload which can be exploited for sharing updates and storage space.

2. We describe how to model the view selection problem in a distributed context as a Constraint
Satisfaction Problem (CSP). Its resolution is supported automatically by the constraint
solver such as the powerful version of CHOCO [1]. The view selection problem has been
addressed under multiple resource constraints. The limited resources are the total view
maintenance cost and the storage space capacity for each computer node. Furthermore, we
consider the IO and CPU costs for each computer node as well as the network bandwidth.

3. We have implemented our approach and compared it with a randomized method i.e., genetic
algorithm [4] which has been designed for a distributed setting. We experimentally show
that our approach provides better performance resulting from evaluating the quality of the
solutions in terms of cost saving.

The rest of this paper is organized as follows. Section 2 presents the framework that we
have designed speci�cally to a distributed setting. Section 3 describes how to model the view
selection problem under multiple resource constraints in a distributed environment as a constraint
satisfaction problem. In section 4, it is provided our experimental evaluation. Section 5 presents
a brief survey of related work. Finally, section 6 contains concluding remarks and future work.

2 The Distributed AND-OR View Graph

In order to exhibit common sub-expressions between queries of workload, the view selection is
represented by using a AND-OR view graph [14]. Common sub-expressions can be exploited for
sharing updates and storage space. The AND-OR view graph is a Directed Acyclic Graph (DAG)
which is composed of two types of nodes: Operation nodes (Op-nodes) and Equivalence nodes
(Eq-nodes). Each Op-node represents an algebraic expression (Select-Project-Join) with possible
aggregate function. An Eq-node represents a set of logical expressions that are equivalent (i.e.,
that yield the same result). The Op-nodes have only Eq-nodes as children and Eq-nodes have
only Op-nodes as children. The root nodes are equivalence nodes representing the queries and
the leaf nodes represent the base relations. Equivalence nodes correspond to the views that are
candidates to materialization.

The AND-OR view graph is the union of all possible execution plans of each query. Our
motivation to consider all execution strategies is that it has been argued that a good selection of
materialized views can only be found by considering the optimization of both global processing
plans and materialized view selection [16]. The AND-OR view graph of the queries q1= P join
PS join S and q2= PS join S join N where P, PS, S and N are the base relations 1 is shown in

1The subscripts P, PS, S and N denote respectively the base relations of TPC-H benchmark: Part, PartSupp,
Supplier and Nation

2

�gure 1. Circles represent operation nodes and boxes represent equivalence nodes. For simplicity,
we represent only two execution plans for the query q1 and one execution plan for the query q2.
The remaining execution plans are just indicated by dashed lines. For example, view P-PS-S,
corresponding to query q1, can be computed from P-PS and S or P and PS-S. This dependence is
indicated in �gure 1 by AND and OR arcs.

Figure 1: AND-OR view graph of two queries q1 and q2

In this paper, we extend the concept of the AND-OR view graph to deal with distributed
settings. Therefore, we propose the distributed AND-OR view graph to re�ect the relation be-
tween views and communication network in the distributed scenario. We consider a distributed
setting involving a set of sites (computer nodes) with di�erent resource constraints (CPU, IO,
storage space capacity, network bandwidth), a set of queries, a set of updates and their respective
frequencies. For each query q, we consider all possible execution plans which represent its execu-
tion strategies. In this paper we consider selection-projection-join (SPJ) queries that may involve
aggregation and a group by clause as well. Let us consider the query q de�ned over a simpli�ed
version of the TPC-H benchmark [2]. Query q �nds the minimal supply cost for each country and
each product having the brand name 'Renault'. The associated query is as follows:
Select P.partkey, N.nationkey, N.name, Min(PS.supplycost)

From Part P, Supplier S, Nation N, PartSupp PS

Where P.brand = 'Renault'

and P.partkey = PS.partkey

and PS.suppkey = S. suppkey

and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey, N.name;

A sample distributed AND-OR view graph is shown in �gure 2. For simplicity, we consider a
network of only three sites s1, s2, s3 and we illustrate a part of the query q by considering only
join operations and one execution strategy. Indeed, in �gure 2 we consider only the join between
Part (P) and PartSupp (PS) and the join between PartSupp (PS) and Supplier (S). The execution
strategy that we have presented in �gure 2 is ((P join PS) join S). We suppose that the base
relations are stored on di�erent sites.

In order to represent the communication channels, every node is split into three sub-nodes,
each of which denotes the view or the execution operation at one site. The communication
edges between equivalence nodes of the same level (i.e., (P − PS − S, S1), (P − PS − S, S2)
and (P − PS − S, S3)), as shown in the dashed rectangle in �gure 2, denote that a view can be
answered from any other site if it is less expensive than computing this view from any children
nodes. However, these edges are bidirectional creating cycles which no longer conforms to the
characteristics of a DAG. In order to eliminate cycles, each sub-node (vi, Sj), as illustrated in
�gure 3, has been arti�cially split into two nodes (vi, Sj)

′ and (vi, Sj)
′′.

3

Figure 2: Distributed AND-OR view graph.

Figure 3: Modi�ed Distributed AND-OR view graph.

3 Modeling View Selection Problem in a Distributed Con-

text as a Constraint Satisfaction Problem (CSP)

In this subsection, we describe how to model the view selection problem in a distributed scenario
as CSP. Then, its resolution is supported automatically by the constraint solver. In what follows,
we de�ne all the symbols as well as the variables that we have used in our CSP.
• G. The distributed AND-OR view graph.

• Q(G). The query workload. *

• V (G). The set of candidate views.

• U . The set of updates.

• δ(vi, sj , u). The di�erential result of view vi on sj , with respect to update u.

• fq. The frequency of a query.

• fu. The update frequency of a query (or view).

• S. The set of sites which represent the computer nodes.

• Spmaxi . The storage space capacity of the site si.

• Umax. The maximum view maintenance cost.

• |vi|. The size of vi in terms of number of bytes.

• Bw(sk, sj). The bandwidth between sj and sk.

CSP variables and their domains

• Mat(vi, sj). The materialization of the view vi on site sj . It is a binary variable (dMat(vi,sj) =0,1;

0: vi is not materialized on sj , 1: vi is materialized on sj).

• Qc(vi, sj). The query cost corresponding to the view vi if it is computed or materialized on site sj .
The domain is a �nite subset of R∗+(dQc(vi,sj) ⊂ R∗+).

• Mc(vi, sj). The maintenance cost corresponding to the view vi if it is updated on site sj , where
dMc(vi,sj) ⊂ R∗+.

4

The view selection in a distributed scenario can be formulated by the following constraint satis-
faction model.

minimize
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗Qc(vi, sj)

)
(1)

subject to ∀sj ∈ S
∑

(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ |vi| ∗ IOj

)
≤ Spmaxj (2)

∑
(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ fu(vi) ∗Mc(vi, sj)

)
≤ Umax (3)

In our approach, the main objective is the minimization of the total query cost. The total
query cost is computed by summing over the cost of processing each input query rewritten over
the materialized views. Constraints (2) and (3) state that the views are selected to be materialized
on a set of sites under a limited amount of resources. Constraint (2) ensures that for each site
the total space occupied by the materialized views on it is less than its storage space capacity.
Constraint (3) guarantees that the total maintenance cost of the set of materialized views is less
than the maximum view maintenance cost.

The query and maintenance costs may be formulated as follows.

Qc(vi, sj) = min
sk∈S

(
Qclocal(vi, sk) +

|vi|
Bw(sk, sj)

)
(4)

Qclocal(vi, sj) =

{
ComputingCost(vi, sj) if Mat(vi, sj) = 0
|vi| ∗ IOj otherwise

(5)

ComputingCost(vi, sj) = min
opl∈child(vi,sj)

(
cost(opl, sj) +

∑
(vm,sn)∈child(opl)

(
Qc(vm, sn) +

|vm|
Bw(sn, sj)

)) (6)

Query Cost. The query cost includes the local processing cost and the communication cost.
The local processing cost re�ects CPU and IO costs. Constraint (4) guarantees that a view is
answered from the site that can provide the answer with the lowest cost. Constraint (5) and (6)
ensure that the minimum cost path is selected for computing a given view on a given site. Each
minimum cost path is composed of all the cost of executing the operation nodes on the path and
the query cost corresponding to the related views or bases relations. The reading cost is considered
if the view has been materialized.

Mc(vi, sj) =

0 if Mat(vi, sj) = 0∑

u∈U(vi,sj)

(
minsk∈S

(
Mcost(vi, sk, u) +

|vi|
Bw(sk,sj)

))
otherwise

(7)

Mcost(vi, sj , u) = min
opl∈child(vi,sj)

(
cost(opl, sj , u) +

∑
(vm,sn)∈child(opl)

(
UpdatingCost(vm, sn, u) +

|vm|
Bw(sn, sj)

)) (8)

5

UpdatingCost(vm, sn, u) =

{
Mcost(vm, sn, u) +

|vl|
Bw(sn,sm) if Mat(vm, sn) = 0

δ(vm, sn, u) otherwise
(9)

View Maintenance Cost. The view maintenance cost is computed by summing the number of
changes in the base relations from which the view is updated. We assume incremental maintenance
to estimate the view maintenance cost. Therefore, the maintenance cost is the di�erential results of
materialized views given the di�erential (updates) of the bases relations. Constraint (7) guarantees
that a view with respect to the updates of the underlying base relations is updated from the site
that can provide the di�erential results with the lowest cost. Constraints (8) and (9) insure that
the best plan with the minimum cost is selected to maintain a view. The view maintenance cost
is computed similarly to the query cost, but the cost of each minimum path is composed of all the
cost of executing the operation nodes with respect to update on the path and the maintenance
cost corresponding to the related views.

4 Experimental Evaluation

In this section, we demonstrate the performance of our approach and compare it to the one of
a randomized method i.e., genetic algorithm which has been designed for a distributed setting
[4]. The performance of view selection methods was evaluated by measuring the solution quality
which results from evaluating the quality of the obtained set of materialized views in terms of cost
saving.

4.1 Experiment Settings

For our experiments, we implemented a simulated distributed environment including a network
of a set of sites (computer nodes). We assume that the di�erent sites are divided into clusters
so that there is a high probability that the sites which belong to the same cluster have similar
query workloads. In our approach, for each cluster all the queries of the di�erent workloads are
merged into the same graph in order to detect the overlapping and capture the dependencies
among them. Then, our method decides which views have to be selected and determine where
these views should be materialized so that the full query workload is answered with the lowest cost
under multiple resource constraints. The query workload are de�ned over the database schema
of the TPC-H benchmark [2]. We then randomly assigned values to the frequencies for access
and update based on a uniform distribution. In order to solve the view selection problem in a
distributed context as a constraint satisfaction problem, we have used the latest powerful version
of CHOCO [1]. For the randomized method, we have implemented the genetic algorithm presented
in [4] by incorporating space and maintenance cost constraints into the algorithm. In order to
let the genetic algorithm converge quickly, we generated an initial population which represents a
favorable view con�guration rather than a random sampling. Favorable view con�guration such
as the views which satisfy space and maintenance cost constraints are most likely selected for
materialization. In the experimental results, the solution quality denoted by Qs is computed as
follows.

Qs = 1−
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗Qc(vi, sj)

)
WM

(10)

Where WM is the total query cost obtained using the "WithoutMat" approach which does
not materialize views and always recomputes queries. The "WithoutMat" approach is used as a

6

benchmark for our normalized results. Recall that Qc(vi, sj) is the query cost corresponding to
the view vi on site sj and fq(vi) is the frequency of the view vi corresponding to a single query.

In our approach, the view selection problem in a distributed environment is constrained by
storage capacities Spmax = {Spmaxi

, Spmaxj
, .., Spmaxn} where each site si has an associated storage

space capacity Spmaxi
and maximum view maintenance cost Umax. Similar to [7] the storage space

and maintenance cost limits are computed respectively as a function of the size (see equation 11)
and total maintenance cost (see equation 12) of the query workload.

Spmaxi
= α ∗ Spi(AllM) (11)

Umax = β ∗Mc(AllM) (12)

Where AllM is the "AllMat" approach which materializes the result of each query of the
workload; α and β are constant. In our experiments, the storage space limit is per site and
computed as a function of the size of the associated query workload. The view maintenance cost
limit is calculated as a function of the total maintenance cost when all the queries are materialized.

Our approach to solve the view selection problem in a distributed setting is able to provide
optimal solutions. However, computing optimal solutions may be very expensive because of the
great number of comparisons between all possible subsets of views which are candidate to mate-
rialization. In this case, we use timeout condition to limit the search by considering that some
solutions should not be explored. Note that the constraint solver can �nd a set of feasible solutions
in which all the constraints are satis�ed before reaching the optimal solution. In the next exper-
iments, the constraint solver performed a search until reaching the timeout condition. Indeed,
our approach is able to provide a feasible solution at any time. The timeout condition was set to
the time required by the genetic algorithm to solve the problem. This means that the constraint
solver was left to run until the convergence of the genetic algorithm in the following experiments.

4.2 Experiment Results

We examined the e�ectiveness of our approach within three experiments. The �rst one compares
the performance of our approach and the genetic algorithm for various values of storage space
and maintenance cost limits. The second experiment evaluates the view selection methods with
respect to di�erent sizes of the distributed AND-OR view graph in terms of number of views (
equivalence nodes). Finally, the last experiment evaluates our approach and the genetic algorithm
with di�erent network sizes in terms of the number of sites per cluster.

4.2.1 Performances under resource constraints.

In this experiment, we examine the impact of space and maintenance cost constraints on solution
quality. For this evaluation, each cluster includes 8 sites with di�erent constraints of CPU, IO and
network bandwidth and each site has an associated query workload. The values of α and β which
de�ne respectively the storage space capacities and the view maintenance cost limit are varied from
10% to 100%. All the results are shown in �gure 4. Figure 4 (a) investigates the in�uence of space
constraint on solution quality for each value of α where β was set to 60%. We note that the quality
of the solutions produced by our approach and genetic algorithm improves when α increases, since
there is storage space available for more views to be materialized. However, when α>=80% there
is no improvement in the solution quality because the maintenance cost constraint becomes the
signi�cant factor. Figure 4 (b) examines the impact of maintenance cost constraint on solution
quality for each value of β where α was set to 80%. We can observe similarly to �gure 4 (a) that
we have better solutions when β increases since there is time to update the materialized views.
The performance stabilizes when β>=90% because the space constraint becomes the signi�cant
factor. We note from these experiments that our approach outperforms the genetic algorithm in

7

the case where the resource constraints become very tight as well as in the case where we relax
them. Indeed, for di�erent values of α and β we can see that our approach generates solutions
with cost saving more than 2 times more than the genetic algorithm.

(a) Solution quality while varying
the space constraint

(b) Solution quality while varying
the maintenance cost constraint

Figure 4: Evaluating the performance under resource constraints.

4.2.2 Performance according to the number of views.

Let us now evaluate the performance of our approach and the one of genetic algorithm while
varying the size of the search space. Recall that the size of the search space is estimated according
to the number of views (equivalence nodes) in the distributed AND-OR view graph described
in section 3. Figure 5 illustrates the quality of the solutions produced by the two methods in
a distributed environment. The number of sites per cluster is 4 sites in �gure 5 (a) and 8 sites
in �gure 5 (b). The queries of the workload are randomly distributed over the network so that
each site has an associated query workload. For instance, in �gure 5 (b), the number of views in
the distributed AND-OR view graph ranges from 200 to 1232 views. For each site, α was set to
40%. For the maintenance cost constraint, β was set to 60%. The experiment results depicted in
�gure 5 (a) and 5 (b) show that our approach provides the lowest query cost while varying the
number of views. In fact, the cost saving is up to 27% more than the genetic algorithm. Therefore,
our approach provides better performances compared with the genetic algorithm in terms of the
solution quality.

(a) Number of sites=4 (b) Number of sites=8

Figure 5: Evaluating the performance over di�erent number of views.

4.2.3 Performance according to the number of sites.

In order to evaluate the performance of view selection methods according to the number of sites,
we conducted experiments with clusters of di�erent sizes. For each cluster, we considered di�erent
number of sites with di�erent constraints of CPU, IO and network bandwidth. The number of
sites per cluster varies from 2 to 20. For each site, α was set to 40% and for the maintenance cost
constraint, β was set to 60%. The experiment results are shown in �gure 6. As in the previous

8

experiments, we observe that our approach provides an improvement in the quality of the obtained
set of materialized views in terms of cost saving compared with the genetic algorithm. Indeed,
the cost saving is up to 15% more than the genetic algorithm.

Figure 6: Evaluating the performance over di�erent number of sites.

5 Related Work
Several view selection methods have been proposed in the literature to select which views to
materialize in a centralized context. They can be classi�ed into four major groups.

Deterministic methods: Methods in this class take a deterministic approach by exhaustive
search [8, 13] or by some heuristics such as greedy [5, 6, 12, 14, 15]. However, greedy search is
subjected to the known caveats, i.e., sub-optimal solutions may be retained instead of the globally
optimal one since initial solutions in�uence the solution greatly.

Randomized methods: Typical algorithms in the context of view selection are genetic [9, 17] or
use simulated annealing [7]. Randomized algorithms can be applied to complex problems dealing
with large or even unlimited search spaces. However, the quality of the solution depends on the
set-up of the algorithm as well as the extremely di�cult �ne-tuning of algorithm that must be
performed during many test runs. Furthermore, randomized algorithms do not guarantee to �nd
the global optimum because of their probabilistic behavior.

Hybrid methods: Hybrid methods combine the strategies of deterministic and randomized
algorithms in their search. A hybrid approach has been applied in [16] to the view selection problem
which combine heuristic algorithms i.e., greedy algorithms and genetic algorithms. They prove
that hybrid algorithms provide better solution quality. However, they are more time consuming
and may be impractical due to their excessive computation time.

Constraint Programming methods: A constraint programming based approach has been pre-
sented in our previous work [10] to address the view selection problem in a centralized context.
We have proved experimentally that our approach provides better performance compared with a
randomized method i.e., genetic algorithm in term of cost savings. The success of using constraint
programming for combinatorial optimization is due to its combination of high level modeling,
constraint propagation and facilities to control the search behavior.

Analysis of view selection methods has shown that there is little work on view selection in
a distributed scenario. The view selection problem is addressed in a distributed data warehouse
environment in [3]. An extension of the concept of a data cube lattice to capture the distributed
semantics has been proposed. Moreover, they extend a greedy based selection algorithm to the dis-
tributed case. However, the cost model that they have used does not include the view maintenance
cost. Furthermore, the network transmission costs are not considered which is very important in a
distributed context. The study presented in [4] deals with the view selection problem in distributed
databases. This approach consists in applying a genetic algorithm to select a set of materialized
views and the nodes of the network on which they will be materialized. However, this approach
does not take into account neither the space nor the maintenance cost constraint. Besides, our
approach provides better results compared with genetic algorithm in terms of the solution quality.
A survey of view selection methods can be found in our previous work [11].

9

6 Conclusion
In this paper we have designed a constraint programming based approach to address the view
selection problem under multiple resource constraints in a distributed environment. Furthermore,
we have introduced the distributed AND-OR view graph to re�ect the relation between views
and communication network. We have performed several experiments over TPC-H queries and
comparison with a genetic algorithm. The experiment results have shown that our approach
provides better performance where the space and maintenance cost constraints become very tight
as well as in the case where we relax them or when the number of views is high. Besides, our
approach provides better solution quality in terms of cost saving when we consider diverse number
of sites.

As a future work, we plan to design a set of pruning heuristics in order to reduce the search
space of candidate views to materialization. This means that the size of the distributed AND-OR
view graph will be small enough to allow its use for solving the view selection problem in a large
scale distributed environment within reasonable execution time. The design of these heuristics
will also guarantee the optimality of the solution where no time limit is imposed.

References

[1] Choco, open-source software for constraint satisfaction problems. http://www.emn.fr/z-
info/choco-solver.

[2] The TPC benchmark H (TPC-H). http://www.tpc.org/tpch/spec/tpch2.14.3.pdf.
[3] A. Bauer and W. Lehner. On solving the view selection problem in distributed data warehouse

architectures. In SSDBM, pages 43�, 2003.
[4] L.W.F. Chaves, E. Buchmann, F. Hueske, and K. Böhm. Towards materialized view selection

for distributed databases. In EDBT, pages 1088�1099, New York, NY, USA, 2009. ACM.
[5] H. Gupta. Selection of views to materialize in a data warehouse. In ICDT, pages 98�112,

1997.
[6] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize under a

maintenance cost constraint. In ICDT, pages 453�470, 1999.
[7] P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search. Data

Knowl. Eng., 42(1):89�111, 2002.
[8] Wilburt Labio, Dallan Quass, and Brad Adelberg. Physical database design for data ware-

houses. In ICDE, pages 277�288, Washington, DC, USA, 1997. IEEE Computer Society.
[9] Minsoo Lee and Joachim Hammer. Speeding up materialized view selection in data ware-

houses using a randomized algorithm. Int. J. Cooperative Inf. Syst., 10(3):327�353, 2001.
[10] I. Mami, R. Coletta, and Z. Bellahsene. Modeling view selection as a constraint satisfaction

problem. In DEXA (2), pages 396�410, 2011.
[11] Imene Mami and Zohra Bellahsene. A survey of view selection methods. SIGMOD Record,

41(1):20�29, 2012.
[12] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection and

maintenance using multi-query optimization. In SIGMOD Conference, pages 307�318, 2001.
[13] K.A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and integrity

constraint checking: Trading space for time. In SIGMOD Conference, pages 447�458, 1996.
[14] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. E�cient and extensible algorithms for multi

query optimization. In SIGMOD Conference, pages 249�260, 2000.
[15] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized view design in

data warehousing environment. In VLDB, pages 136�145, 1997.
[16] C. Zhang, X. Yao, and J. Yang. An evolutionary approach to materialized views selection in

a data warehouse environment. IEEE Transactions on Systems, Man, and Cybernetics, Part
C, 31(3):282�294, 2001.

[17] Chuan Zhang and Jian Yang. Genetic algorithm for materialized view selection in data
warehouse environments. In DaWaK, pages 116�125, 1999.

10

