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Abstract—In mining gradual patterns the idea is to express co-
variations of attributes, taking the direction of change of attribute
values into account. These patterns are such as {the more A, the
more B}, {the more A, the more B, the less C} or { the higher
the speed, the higher the danger }. These patterns are denoted as
{A≥B≥ }, { A≥B≥C≤} or { speed≥danger≥} respectively. Such
patterns hold if the variation constraints simultaneously hold on
the attributes. However, it is often hardly possible to compare
attribute values, either because the values are taken from noisy
data, or because it is difficult to consider that a small difference
between two values is meaningful. In this context, we focus on
the use of fuzzy orderings to take this into account.

Index Terms—Mining gradual patterns, fuzzy orderings, fuzzy
gradual patterns.

I. INTRODUCTION

Given a database D an association rule is defined as a rule
of the form If A Then B expressing the dependency between
the so-called itemsets (binary attributes) A, B from the schema
of D. The intended meaning of such a rule is that, if A is
present in a transaction, then B is likely to be present too. An
association rule is of the form:

R : Isa ⇒ Isc

where Isa and Isc are two itemsets. Two measures are usually
defined to assess such rules: The frequency/support is the
frequency of the union of the condition Isa and consequence
Isc ie.

Freq(R) = Freq(Isa ∪ Isc)

The confidence measures the probability of knowing or
occurrence of Isc given Isa, ie.

Conf(R) =
Freq(Isa ∪ Isc)
Freq(Isa)

In the fuzzy case, the presence of an item in a transaction
is a matter of degree. Another type of rule, called gradual
dependency, conveys information in the form of attribute
covariations, such as the higher the age, the higher the salary,
meaning that the age of the persons increases together with
its salary. Gradual dependencies consider tendencies across
the whole data set, in terms of correlation of the attribute

variations. This idea is closely connected to the so called
gradual rules in fuzzy logic [9].

The automatic extraction of gradual dependencies or gradual
association rules is one of the topics addressed in the field of
data mining, for the modelling of frequent co-variations over
a set of objects described by numerical attributes of data sets,
such as biological databases, survey databases, data streams
or sensor readings. In mining gradual dependency the idea is
to express dependencies between the direction of change of
attribute values.

As for the association rule extraction, the process consists of
two steps: first frequent gradual patterns (also known as item-
sets) are extracted. Then causality relations between the items
are extracted. In mining frequent gradual itemsets, the goal is
to discover frequent co-variations between attributes[10] [11].

When considering such gradual patterns and gradual rules, it
is thus important to be able to count to which extent attributes
co-variate. In this context, varied measures have been defined
in the literature. However, few works have focused on how to
exploit fuzzy orderings for handling noisy data.

For instance, when considering biological data from
RNA/DNA chips, it would be semantically false to consider
that two close values can be easily ordered. In this paper,
we thus focus on an approach that evaluates frequent gradual
patterns in terms of the robust rank correlation measure on the
basis of fuzzy orderings.

The paper is organized as follows: in Section II, we in-
troduce the preliminary definitions and related work. The
Section III is devoted to a review of fuzzy ordering-based rank
correlation coefficient. In Section IV, we present our approach.
Finally we present in Section V our conclusions and future
research.

II. PRELIMINARY DEFINITIONS AND RELATED WORK

In this section, after recalling the definitions of gradual
item, gradual itemset, gradual dependencies, rank correlation,
fuzzy rank correlation as given in [9], [10], [11], we present
the related works on gradual pattern mining, rank correlation
for extracting gradual itemsets, mining gradual dependencies
based on fuzzy rank correlation, fuzzy ordering-based rank
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Fig. 1. Preliminary definitions: Gradual dependency, gradual pattern, and
gradual item.

correlation coefficient, and on parallel frequent gradual pattern
mining.

A. Preliminary Definitions

Gradual dependencies extraction applies to a data set D
defined as a set of tuples T over a schema S of I attributes
with m numerical values.

A gradual item is defined as a pair (I,θ) where I is an
attribute in D and θ a comparison operator in { ≥, ≤ }. They
represent the fact that the attribute values increase (in case of
≥) or decrease (in case of ≤).

A gradual pattern/gradual itemset is defined as a combina-
tion of several gradual items, semantically interpreted as their
conjunction g = { (I1,θ1), (I2,θ2), . . . , (Ik,θk) } of cardinality
greater than or equal to 2, see Fig. fig:GradualDep. For
example, (Age,≥) is a gradual item, while {(Age, ≥ ), (Salary,
≤), (Loans, ≥)} is a gradual itemset, with a cardinality equal
to 3.

The support of a gradual itemset in a data set D can be
defined in varied manners [6], [11]. For instance, it can be
defined as the number of tuples that can be ordered to support
all item comparisons [11].

B. Related Works

Two kinds of dependencies can be distinguished: a first
category considers linguistic variables represented by fuzzy
sets and imposes covariation of the membership degrees across
all data, for example, the more the age is middle-aged, the
less the number of cars is low, where middle-aged and low
refer to modalities of the linguistic variables age and number
of cars respectively. A second, category directly considers
the numerical values of the attributes and applies to attribute
covariation on the whole attribute universe [11].

There are different interpretations of gradual dependency, as
following: (1) based in regression, (2) based in correlation, (3)
approach based on conflict sets, and (4) approach based on
the precedence grap. Consult [11] for more information.

Laurent, Lesot, and Rifqi in [11] present an approach
called GRAANK that combines the interpretation of gradual
dependency of rank correlation measures and an algorithm

on the precedence graph, named GRITE represented by its
adjacency matrix, in a bitmap. The proposed algorithm thus
follows the principle of the APRIORI algorithm, modifying the
step of candidate evaluation, where for all candidate itemsets,
compute their support as the sum of their binary matrices
divided by n(n - 1)/2 where n is the number of objects.

Koh and Hullermeier in [9] present a framework for mining
gradual dependencies based on the use of fuzzy rank cor-
relation for measuring the sthrenght of a dependency. The
approach is a unification of previous approaches to evaluate
gradual dependencies and captures both qualitative and quan-
titative measures of association as special cases. A gradual
dependency A → B is evaluated in terms of two measures,
namely the number of concordant pairs, CT, and the rank
correlation Fuzzy γ as defined in (2). Comparing this approach
with the classical setting of association analysis, CT plays the
role of the support of a rule, while Fuzzy γ corresponds to
the confidence. These measures can also be interpreted within
the formal framework proposed by Dubois and Hullermeier
in [7], in which every observation (in the case of a pair of
points (A(u), B(u)) and (A(v), B(v)) is considered, to a certain
degree, as an example of a pattern, as a counterexample, or
as being irrelevant for the evaluation of the pattern. In the
framework and the algorithm of Koh and Hullermeier, these
degrees are given, respectively, by the degree of concordance,
the degree of discordance, and the degree to which the pair
is a tie. Formally they define the support and confidence of a
gradual dependency A → B as follows:

supp(A→ B) = CT (1)

conf(A→ B) = Fuzzy γ =
CT −DT
CT +DT

(2)

where
CT =

∑
ui

∑
uj

C(ui, uj) (3)

CT =
∑
ui

∑
uj

T (L(A(ui), A(uj)), L(B(ui), B(uj))) (4)

DT =
∑
ui

∑
uj

D(ui, uj) (5)

DT =
∑
ui

∑
uj

T (L(A(ui), A(uj)), L(B(uj), B(ui))) (6)

Laurent et al. in [10] present an efficient parallel mining of
gradual patterns and gradual rules on multicore procesor based
on the algorithm named GRITE (Gradual Itemset Extraction)
and a model of parallelization multithreading type master-
workers, where only parallelized the evaluation phase of fre-
quent itemsets. In that framework, Laurent et al. consider the
support of a gradual itemset P in a database DB as the ratio of
the cardinality of P in DB denoted by λ(P,DB) over the car-
dinality of DB denoted by |DB|. That is, supp(P,DB)=λ(P,DB)

|DB| .
Do et al. in [6] present PGLCM (Efficient Parallel Mining of

Closed Frequent Gradual Itemsets) based on the parallelization
of the GLCM algoritm based on the LCM algoritm (Linear



time Closed itemset Miner) using the Melinda library. In this
framework, Do et al. consider a gradual itemset P= {(ik1 ,vk1 ), .
. . , (ikj ,vkj )} where {k1, ..., kj} ⊆ { 1, ..., n} and the k1, ..., kj
are all distinct. Two tuples t and t’ can be ordered with respect
to P if all the values of the corresponding ik items from the
gradual itemset can be ordered with respect to variation v ∈ {
↑, ↓ } where ↑ stands for a positive (ascending) variation, ↓ for
a negative (descending) variation and the formal definition of
the suport of P is support(P )=maxL∈l(|L|)

|R| , i.e. it is the size
of the longest list of tuples that respects a gradual itemset P,
where L = {t1, ..., tm} be a list of tuples from a set of tuples
R defined over the schema S = {I1, ..., In} of a dataset.

III. AN OVERVIEW OF ROBUST RANK CORRELATION
COEFFICIENTS ON THE BASIS OF FUZZY ORDERINGS

A. Rank Correlation Measures: An Overview

Correlation measures are among the most basic tools in
statistical data analysis and machine learning. They are applied
to pairs of observations (n≥2) of two variables X and Y

(xi, yi)
n
i=1 (7)

x = (x1, x2, ..., xn) (8)

y = (y1, y2, ..., yn) (9)

of two linearly ordered domains X and Y to measure to
which extent the two observations comply with a certain
model. The most prominent representative is surely Pearson’s
product moment coefficient, often called correlation coefficient
for short. Pearson’s product moment coefficient is applicable
to numerical data and assumes a linear relationship as the
underlying model; therefore, it can be used to detect linear
relationships, but no non−linear ones [4].

Rank correlation measures are intended to measure to which
extent a monotonic function is able to model the inherent
relationship between the two observables. They neither assume
a specific parametric model nor specific distributions of the
observables. They can be applied to ordinal data and, if
some ordering relation is given, to numerical data too [4].
Therefore, rank correlation measures are ideally suited for de-
tecting monotonic relationships, in particular, if more specific
information about the data is not available [5], [9]. The two
most common approaches are Spearman’s rank correlation
coefficient (short Spearman’s rho) and Kendall’s tau (rank
correlation coefficient).

The goal of a rank correlation measure is to measure
the dependence between the two variables in terms of their
tendency to increase and decrease in the same or the opposite
direction. If an increease in X tends to come along with an
increase in Y, then the (rank) correlation is positive. The other
way around, the correlation is negative if an increase in X tends
to come along with a decrease in Y. If there is no dependency
of either kind, the correlation is (close to) 0. Several rank
correlation measures are defined in terms of the number C
of concordant, the number D of discordant, and the number
N of tied data points [9]. For a give index pair (i,j) ε { 1, .

. . , n }2̂, we say that (i,j) is concordant, discordant or tied
depending on whether (xi, xj)(yi, yj) is positive, negative
or 0, respectively. A well-known example is Goodman and
Kruskal’s gamma rank correlation, which is defined as:

γ =
C −D
C +D

(10)

B. Fuzzy Orderings

Fuzzy relation, fuzzy equivalence relation, and fuzzy or-
dering are concepts that have been introduced with the aim;
to model human-like decisions by taking the graduality of
human thinking and reasoning into account. Fuzzy orderings
have broad utility. They can be applied, for example, when
expressing our preferences with a set of alternatives. Compared
to crisp orderings, they have greater expressive power. They
allow us to express not only that we prefer an alternative to
another one, but also the strength of this preference [8]. The
study of similarity, fuzzy relation, fuzzy ordering, similarity
relation, and the notion of equivalence was started by Zadeh
[12] in 1971, in that paper he defined the notion of similarity
as a generalization of the notion of equivalence, and a fuzzy
ordering as a generalization of the concept of ordering.

A fuzzy relation S : X2 →[0,1] is called similarity relation
on a domain X with respect to a t-norm T, for brevity T-
similarity, if and only if the following three axioms hold for
all x, y, z ∈ X:
(i) S-reflexivity: µS(x,x)=1,
(ii) S-symmetry: µS(x,y)=µS(y,x), and
(iii) T-transitivity: µT (µS(x,y), µS(y,z))≤ µS(x,z).

Where µS(x,y), µS(y,z) and µS(x,z) are the grade of mem-
bership of the ordered pairs (x,y), (y,z), and (x,z) in S, with
respect to a triangular norm (t-norm) T.

A fuzzy relation E : X2 →[0,1] is called fuzzy equivalence
relation on a domain X with respect to a t-norm T, for brevity
T-equivalence, if and only if the following three axioms are
fulfilled for all x, y, z ∈ X:
(i) E-reflexivity: µE(x,x)=1,
(ii) E-symmetry: µE(x,y)=µE(y,x), and
(iii) T-transitivity: µT (µE(x,y), µE(y,z))≤ µE(x,z).

Where µE(x,y), µE(y,z) and µE(x,z) are the grade of mem-
bership of the ordered pairs (x,y), (y,z), and (x,z) in E, with
respect to a triangular norm (t-norm) T.

The concept of fuzzy order was introduced by generalizing
the notion of (i) reflexivity µR(x,x) for any x ∈ X, (ii)
antisymmetry (µR(x,y) and µR(y,x)) imply x = y, and (iii)
transitivity (µR(x,y) and µR(y,z)) imply µR(x,z) ), where R is
a fuzzy relation called an order relation in X if it satisfies (i),
(ii), and (iii). A set X in which an order relation has been
given is called an ordered set (semi-ordered set or partially
ordered set), i.e. a fuzzy ordering is a fuzzy relation which
is transitive. A fuzzy partial ordering, P, is a fuzzy ordering
which is reflexive and antisymetric (µP (x, y) > 0 and x 6=y)
imply µP (y, x) =0. A fuzzy linear ordering is a fuzzy partial
ordering in which x6=y imply µS(x, y)>0 or µS(y, x)>0. A
fuzzy preordering is a fuzzy ordering which is reflexive. A



fuzzy weak ordering is a fuzzy preordering in which x6=y imply
µS(x, y)>0 or µS(y, x)>0.

In the last decade Ulrich Bodenhofer [1],[2] and [3] has
presented a general framework for comparing fuzzy sets with
respect to a general class of fuzzy orderings. This approach in-
cludes known techniques based on generalizing the crisp linear
ordering of real numbers by means of the extension principle,
applicable to any fuzzy subsets of any kind of universe for
which a fuzzy ordering is known−no matter whether linear or
partial. A approach for fuzzification of the ordering relation
and ways to compare fuzzy sets with different heights, and
ways of how to refine the ordering relation by lexicographic
hybridization with a different ordering method. A formal study
of fuzzy orderings with applications to statistical analysis of
numerical data, has been made by Bodenhofer and Klawonn
[4], [5].

A fuzzy relation L : X2→[0,1] is called fuzzy ordering with
respect to a t-norm T and a T-equivalence E : X2 →[0,1], for
brevity T-E-ordering, if and only if the following three axioms
are fulfilled for all x, y, z ∈ X:
(i) E-Reflexivity: µE(x,y)≤ µL(x,y)

(ii) T-E-Antisymmetry: µT (µL(x,y),µL(y,x))≤ µE(x,y)
(ii) T-transitivity: µT (µL(x,y),µL(y,z))≤ µL(x,z).

Where T − E−ordering L is strongly complete if
µT (µL(x,y), µL(y,x)) =1 for all x,y ∈ X, µEr (x,y)=max(0,1-
1
r ∗ |x − y|) is a µTL

-Equivalence on R (assume r>0), and
µTL

(x,y) denoted the Lukasiewicz t-norm.

µTL
(x, y) = max(0, x+ y − 1) (11)

For all x, y ∈ X, and based on the definition of strongly
complete fuzzy orderings [4] and [5],

µLr (x, y) = min(1,max(0, 1− 1

r
∗ (x− y))) (12)

is a strongly complete TL − Er−ordering on R. In or-
der to generalize the notion of concordant and discordant
pair, a binary fuzzy relation R : X2 →[0,1] is called a
strict fuzzy ordering with respect to a t-norm T and a T-
equivalence E, for brevity strict T-E-ordering, if it is irreflex-
ive µR(x,x)=0 for all x ∈ X, T-transitive, and E-extensional
µT (µE(x,x

′
),µE(y,y

′
),µR(x,y))≤ µR(x

′
, y

′
), for all x, y, z ∈

X. Given a TL − E−ordering L strongly complete, it can be
proven that the fuzzy relation Rx is defined as:

µRx
(x1, x2) = 1− µLx

(x2, x1) (13)

Analogously for all y ∈ Y Ry is defined as:

µRy
(y1, y2) = 1− µLy

(y2, y1) (14)

C. A Fuzzy Ordering-Based Rank Correlation Coefficient

Bodenhofer and Klawonn in [4] and [5] demonstrate that
established rank correlation measure are not ideally suited
for measuring rank correlation for numerical data that are
perturbed by noise, they propose to use robust rank cor-
relation meassures based on fuzzy orderings named Fuzzy
Rank Correlation and demonstrate that the new measures

overcome the robustness problems of existing rank correlation
coefficients. The formal description is: Assume that the data
are given as in (7), (domainx), and (domainy), where xi ∈X
and yi ∈Y for all i=1, . . . , n, this means that we have two
TL−equivalences Ex : X2 →[0,1] and Ey : Y 2 →[0,1], a
strongly complete TL −Ex−ordering Lx : X2 →[0,1] with a
strict TL−Ex−ordering on X define as in (13) and a strongly
complete TL − Ey−ordering Ly : Y 2 →[0,1] with a strict
TL − Ey−ordering on Y define as in (14).

According to the gamma rank correlations measure and
given an index pair (i, j) where i = (xi, yi) and j = (xj , yj),
we can compute the degree to which (i, j) is a concordant pair
as:

C(i, j) = µTL
(µRx

(xi, xj), µRy
(yi, yj)) (15)

And the degree to which (i, j) is a discordant pair as

D(i, j) = µTL
(µRx

(xi, xj), µRy
(yj , yi)) (16)

The numbers of concordant pairs CT and discordant pair
DT, respectively, as:

CT =

n∑
i=1

∑
j 6=i

C(i, j) (17)

DT =

n∑
i=1

∑
j 6=i

D(i, j) (18)

So the fuzzy ordering-based rank correlation meassure γ
can be computed as:

Fuzzy γ =
CT −DT
CT +DT

(19)

Where µTL
(x,y), µRx (x1,x2), µRy (y1,y2), µLx(x2,x1) and

µLy (y2,y1) by fuzzy orderings we can compute as in (11),
(13), (14), and (12) respectively.

IV. FUZZY ORDERING-BASED RANK CORRELATION
COEFFICIENT FOR MINING OF GRADUAL ITEMSETS

A. Notations

The automatic extraction of gradual dependencies consists
of two steps: 1. extraction of frequent gradual itemsets, and
2. extraction of causality relations between the items. In this
work, we focus on the first step, and we consider the following
notations: A data set DS , constituted of N objects or trans-
actions (data record) denote by T = {t1, ..., tN } described by
M numerical attributes denote by A= {A1, ..., AM}. Table of
Fig. 2. shows an example data set where T = {t1, t2, t3, t4, t5}
transactions and A= {A1 : age,A2 : salary,A3 : loans,A4 :
cars} attributs, its graphic illustration is shown in the diagram
and graphics of Fig. 2.

In this framework, let us consider a gradual pattern
GPl,p::={Il}k where {Il}k ::= I1 ... Ik, such that I1 6= I2 6=
... 6= Ik, for k ::= 2 | 3 | ... | M, each gradual item Il::=Av,
where A::= A1 | A2 | ... | AM, each Am::=id attribut
[vector of numeric values ui] for i=1, 2,..., N , and v ::=
≥ | ≤, represent a positive (ascending) variation in the numeric



values of the attribute Am (in case v ::= ≥) or a negative
(descending) variation (in case v ::= ≤), see Fig. 3 a). For
instance GP3,p::={ A1≥A2≥A4≤ } is interpreted as a gradual
pattern of size k = 3 and level l = 3 illustrated in Fig. 3 b),
where for case of the data set of table in Fig 2 it imposes
an ascending variation on the values of attributes age(ui, uj)
and salary(ui, uj) and a descending variation on the values of
attribute cars(ui, uj) and are concordant pairs simultaneously.

B. Algorithm of Extraction of Frequent Gradual Itemsets

In this context we propose an algorithm that evaluates
gradual dependencies in terms of a fuzzy rank correlation
coefficient, as described in the algorithms 1 and 2, where we
apply the APRIORI algorithm to generate candidates from the
k−itemsets to take advantage of the fact that any subset of a
frequent itemset is also a frequent itemset and all infrequent
itemsets can be pruned if it has an infrequent subset, see Figs
4 and 5. We implemented the Fuzzy Ordering-Based Rank
Correlation Coefficient (Fuzzy γ) according to the formal
description presented in the previous section, this in order
to evaluate candidates itemsets and mining frequent gradual
itemset.

C. Properties of the Proposed Method

For us, in this work, the problem to address is the automatic
extraction of frequent gradual itemsets, in which, relations
between the directions of changing the values of the attributes
involved are non-linear and/or affected by noise. Consequently,
we propose a method of automatic extraction of frequent
gradual itemsets on the basis of fuzzy orderings. To illustrate
this, we consider the data set described in table and graphs
of Fig. 2. Table I contains the list de concordant couplas, the
numbers of concordant pairs CT and discordant pair DT, the
support, and the fuzzy rank correlation coefficient (Fuzzy γ),
for several gradual itemsets.

Properties of the proposed method and algorithms are: (i)
In order to compute the degree to which each index pair
C(i, j) ← min(RC [0],RC [1], ...,RC [k − 1]) are concordant
pairs in itemsets |Is| > 2, we exploit the properties of
associativity and commutativity of t-norm of (15), (ii) In
order to compute the degree to which each index pair

Fig. 2. Notations of a Data Set.

Id A1: Size A2: Weight A3:Sugar 
levels 

t0 6 6 5.3 

t1 10 12 5.1 

t2 14 4 4.9 

t3 23 10 4.9 

t4 6 8 5.0 

t5 14 9 4.9 

t6 18 9 5.2 

t7 23 10 5.3 

t8 28 13 5.5 

Database of some fruit 
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     is of the form: 

   GD:  “The more/less GPAx , the more/less GPAy” 

≥ ≥ 
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10 
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14 
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 the more size, 
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12 
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10 
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10 

13 
Here, the idea is to express 
dependencies between the 
direction of change of attribute 
values. 

GD: 

i 

j 

A1 A2 ≥ ≥ 

Fig. 3. Ilustration: a) Variations of a gradual item, b) A gradual itemset of
size k = 2.

Algorithm 1: Fuzzy Gradual Dependencies Mining
Data: Transactions Database Ds, {AM}, minSupp
Result: Fuzzy Frequent Gradual Dependencies FFGP
FFGP ← ∅;
Set g(Il)← Gen gItems({AM} × v{≤,≥});
k ← 2;
CGpk ← GenCand(Set g(Il), size(k), level(k));
Fk ← fuzzyOrderings(CGpk, aV alues);
L Fk ← Fk.ListFk;
FFGP ← FFGP ∪ {L Fk};
k ++;
repeat
Fk ← ∅;
q ← 1;
CGpk ← GenCand({L Fk−1}, size(k), level(k));
Cgpk,q ← FirstCandidate ∈ CGpk;
foreach Cgpk,q ∈ CGP k do

Cgpk,q.M ← T (Cgpk−1,a.M,Cgpk−1,b.M);
Support(Cgpk,q)← EvalSupport(Cgpk,q.M);
/* minSupp stands for a user-specified minimum
support value */
if Support(Cgpk) ≥ minSupp then
Fk.ListFk ← Fk.ListFk ∪ {Cgpk,q};

q ++;
Cgpk,q ← NextCandidate ∈ CGpk;

Delet(Fk−1.Matrices);
FFGP ← FFGP ∪ {Fk};
L Fk ← Fk.ListFk;
k++;

until FFGP does not grow any more;
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minSupp=0.38 

Level (k)=3 
 ⎜GPk,p⎟=3 

Level  
(k)=2 

 ⎜GPk,p⎟=2 GP2,1← {A1≥ A2≥ }←{A1≥,  A2≥ } 

GP2,3← {A1≥ A3≥ }←{A1≥,  A3≥ } 

GP2,9← {A2≥ A3≥ }←{A2≥,  A3≥ } 

GP3,1← {A1≥ A2≥ A3≥ }←{{A1≥ A2≥ }, {A1≥ A3≥ }} 

Fig. 4. Ilustration of APRIORI algorithm to generate candidates gradual
patters.
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Fig. 5. Ilustration of APRIORI algorithm to generate candidates gradual
patters.

TABLE I
EXAMPLES OF LISTS OF CONCORDANT COUPLES OF GRADUAL ITEMSETS

Itemset List of concordant couples CT DT Support Fuzzy γ

A1 ≥ A2 ≥ {(0,1)(0,2)(0,3)(0,4)(1,3)(1,4)} 6 4 6/10 0.2
A1 ≥ A2 ≥ A3 ≤ {(0,1)(0,2)(0,3)(0,4)} 4 5 4/10 -0.111

A1 ≥ A2 ≥ A3 ≥ A4 ≤ {(0,1)(0,2)(0,3)(0,4)} 4 6 4/10 -0.2
A1 ≥ A3 ≤ {(0,1)(0,2)(0,3)(0,4) } 4 5 4/10 -0.111
A2 ≥ A3 ≤ { (0,1)(0,2)(0,3)(0,4) } 4 4 4/10 0.00

D(i, j) ← min(Rd[0],Rd[1], ...,Rd[k − 1]) are discordant
pairs in itemsets |Is| > 2, we exploit the properties of
associativity and commutativity of t-norm of (16), (iii) Each
RC [ri], for the concordant case, is computed as RC[ri]←
RI (I.Ari(ui), I.Ari(uj)), and for the discordant case as
Rd[ri]← RI (I.Ari(uj), I.Ari(ui)), (iv)The concordance
degrees C(i, j) are stored in an | N | × | N | matrix, from
which the total number of concordant pairs CT of an itemset
Is is computed by summing all entries, and (v) Finally,
the support of itemset Is is computed as: Support(Is)=
CT/(n ∗ (n− 1)), and the set of frequent gradual itemsets IF
is updated as IF ← IF ∪{Is} if Support(Is) is ≥ minSupp (ε).

Algorithm 2: Fuzzy Ordering-Based Correlation
Data: Set of candidate gradual patters (CGpk), Size(k),

aV alues, and minSupp
Result: Frequent Gradual Patterns(Fk=2), Support()
CT ← ∅; /* Concordant and Support */
DT ← ∅; /* Discordant */
q ← 1;
Cgp2,q ← FirstCandidate ∈ CGpk=2;
foreach Cgp2,q ∈ CGpk=2 do

/* Compute of concordant C and discordant D pair
(ui,uj) ∈ aV alues */
for i=0, 1, 2, ... , N − 1 do

foreach j ∈ { 0, ... , N − 1 } and j 6=i do
/* Compute: Relatinships RI of each Item I
{A≥ | A≤ } ∈ Cgp2,q */
for ri=0, ... , 2-1 do

if variation is ” ≥ ” then
RC[ri]← RAri

(ui,uj);
Rd[ri]← RAri

(uj ,ui);
if variation is ” ≤ ” then
RC[ri]← RAri

(uj ,ui);
Rd[ri]← RAri

(ui,uj);

/* Compute: to each index pair ∈ RI is
concordant C */
C(i, j)← T norm(RC [0],RC [1]);
CT ← CT + C(i, j);
/* Compute: to each index pair ∈ RI is
discordant D */
D(i, j)← T norm(Rd[0],Rd[1]);
DT ← DT +D(i, j);
j ++;

i++;
Support← CT/(n ∗ (n− 1));
if Support ≥ minSupp (ε) then
Fk.ListF k ← Fk.ListF k ∪ {Cgp2,q};
Fk.Matrices← Fk.Matrices ∪ C(i, j);

q++;
End;

V. CONCLUSIONS AND REMARKS

In this paper, we have presented a review of the basis and
new models of fuzzy orderings, also we propose an original
approach for extracting gradual itemsets. In our approach
apply the APRIORI algorithm to generate candidates from the
k−itemsets to take advantage of the fact that any subset of a
frequent itemset is also a frequent itemset and all infrequent
itemsets can be pruned if it has an infrequent subset, in
order to evaluate candidates itemsets and mining frequent
gradual itemset we implemented the Fuzzy Ordering-Based
Rank Correlation Coefficient (Fuzzy γ) according to the
formal description of Bodenhofer and Klawonn [4], [5] and
Zadeh [12].

An important aspect to be addressed in future work includes



the study of other optimizations in order to improve the
efficiency of our approach (for example, the parallelization
of our algorithm). Thus, in order to guarantee scalability,
efficient pruning techniques are needed to avoid unnecessary
comparisons. We will also study how causality can be defined
based on this work, and efficiently extracted.
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