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Abstract—After defining the High Performance Pre-
Computing —referred as HPPC— concept, the aim of the
present study is to develop a prototype whether to approve
or not the benefits of this concept. Our application case tries
to answer the geophysical issue of coastal flooding. This is an
example of an alert system based on the HPPC architecture,
thus on pre-computed scenarios. The prototype provides the
scientists with an ergonomic and on-demand tool allowing the
run of scenarios of any implemented numerical models. These
runs are available through a web application which submits
the corresponding jobs on the remote french public cluster of
HPC@LR. In this study we simulate the waves propagation over
a Mediterranean grid using the wave model WaveWatch III R©.
A reference simulation using usual conditions is approximated
using the k-NN algorithm over 12, 98 and then 980 pre-computed
scenarios. This simple experiment demonstrates how useful the
pre-computing of scenarios is for alert systems as far as enough
and relevant scenarios are pre-computed. This is the reason
why searches continue in each critical points of the HPPC
architecture such as the design of experiment, the approximation
of the results by meta-models and the research of the closest
scenarios in this big data context.

I. INTRODUCTION

Floods like in India in july 2009, windstorms like Xynthia
in Europe in february 2010, tsunamis like Fukushima events in
Japan in march 2011,. . . Unfortunately each year gets its own
disaster(s). To prevent the risk and limit the damages caused
by these terrible events, alert systems are built all around the
world. In this context the American National Oceanic and
Atmospheric Administration (NOAA)’s Tsunamis Warning
Centers built a decision tool mixing live tsunami forecast simu-
lations and pre-computed scenarios of seismic propagation [1],
[2]. The European Flood Alert System (EFAS) [3] is also a
decision tool reporting the probability of having a flood event
using a statistical approach [4]. Other techniques are focused
on data ubiquity such as the web-based flood forecasting tool
presented by [5]. These efforts are made in the common
objective of understanding quickly and accurately what the
live conditions are and what will be their consequences. In
this paper, we are following these approaches but introducing

a technique of pre-computing scenarios instead of simulating
online -i.e. in live- the time-. Generally, an alert system
is based on models which require huge resources and are
extremely time consuming. Therefore the major contribution
to the area of alert system is to get rid of the dependancies on
these constraints to provide a forecast once a crisis arises.
In [6], we established that the HPPC architecture presents
the potential to provide the scientists with an ergonomic and
generic tool to run any model of their choice as the GenScn
tool presented in [7]. The HPPC architecture allows the end-
user to perform statistical analyses on previously computed
scenarios. The aim of this process is to forecast the outputs
of a run without any live simulation. Therefore two main
innovative concepts are added: the automation of the choice
of scenarios to pre-compute coupled with the use of a web
based application negociating with a remote cluster to run the
simulations. The development of the prototype in this study is
used as a validator of this innovative approach of pre-computed
scenarios.
We are focusing our study on the question of the coastal
submersion. [8] defines the coastal submersion mechanism
as the intrusion of marine salt water into the (usually) dry
flood plain, by over-wash of the sand barrier, by digging of
storm inlets through the sand barrier or by any similar process
that originates in a significant elevation of the mean sea
level. The experimentation consists in studying the behavior
of the waves such as the wave-height, the wave-length and the
wave-period in a configuration representing the Mediterranean
sea. Basically a scenario defines a simulation —with a set
of parameters— using the WaveWatch III R© model [9]. The
scenario Sref is set as the reference scenario for the queries
studied in this paper. The goal is to approximate the best as
possible the result of Sref using only other pre-computed
scenarios. The approximation is re-established after having
respectively populated the database by 12, 99, and 980 pre-
computed scenarios to observe whether the HPPC approach is
a good way to proceed or not. Thus, it will justify the need
—or not— of a large optimized infrastructure. By validating



the HPPC infrastructure on a little set of experiments, we
ensure the continuity and the investments on the project.
These investments are concretely more experimentations and
searches around the critical points of the architecture. It is
translated as developing a performant and relevant automation
of the design of experiment, providing the tool with the best
clustering algorithms and building meta-models to mimic the
simulations.
The other benefit of the prototype is to develop technical
skills which can be used in a latter and more industrial
scaled solution. Indeed in this prototype, many concepts of
abstractions, design patterns and software engineering are
intensively used. These concepts make the development and
the tool more ergonomic and contribute to the use of the HPPC
architecture by the scientists.

The paper is organized as follows. Section II introduces the
technical infrastructure built for the HPPC prototype, while
Section III details the implementation and the choices made
to obtain a maintainable and efficient tool. Finally Section IV
explains the experiment and proposes an interpretation of the
results.

II. TECHNICAL INFRASTRUCTURE

Fig. 1. Technical infrastructure of the HPPC prototype.

The HPPC prototype is based on an architecture Client-
Server-Cluster as illustrated by Figure 1. The web server is
in charge of the front-end of the application. The user only
interacts with the web-server. The web-server pushes jobs
to perform into a database and pulls from the database the
progress of a job and its results. The cluster is the back-end
of the prototype. Its only purpose is to pull the jobs from
the database, submit them and push the results —and status
changes— back into the database. Section III-A specifies how
jobs are submitted and results retrieved by the cluster.
The web-server and the database are stored on the same ma-
chine but remotely from the cluster (managed by a dedicated
node). The communications between the client and the web-
server follow the web standard HTTP protocol. The cluster
communicates with the remote database through the JDBC
driver.

In this first stage of our development, this configuration
has been chosen instead of the web-service implementation in

order to be focused on the HPPC concept validation. Indeed,
the handling of jobs submissions, the discovering of inputs
and the retrieving of outputs can theorically be performed by
a web-service technology in a less coupled way. However,
it should involve a cascading of different web-services that
we were not confident to quickly deploy to validate the
HPPC concept. This approach will be considered in future
development.

III. PROTOTYPE

The prototype designed is in charge of validating the
concept of the HPPC architecture. For the first steps only
few modules of the global architecture —but the main ones—
have been developed. Figure 2 illustrates the entire workflow
embedded. In the next sections the choices of implementation
for each module included in the prototype are detailed.

A. Simulation

We developed the prototype keeping a great genericity over
the models we used [6]. For instance, it could have been
possible to run a financial model as far as this later model
is set up on the HPC cluster of the prototype. To make the
link with the case study, we can state that a ”job” in Figure
1 corresponds to a ”a set of parameters” chosen by the client
and which is given as input of the corresponding wave model.
As illustrated in Figure 1, the cluster is in charge of submitting
and running the jobs. Along the processing, the cluster sends
back status of jobs to the web server via the database. In
order to perform these tasks, a daemon containing three stubs
—respectively input, exec and output stub— for each model
is launched on the cluster.

• The input stub generates the input files corresponding to
its model by mapping the input parameter values pulled
from the database.

• The exec stub runs the pre-processing subroutines, sub-
mits the job and runs the post-processing subroutines.

• The output stub retrieves the output values to the database
by parsing the outputs of the model.

Even if two models have been installed and currently available
to run jobs on the HPPC architecture —which is a proof of the
application genericity—, we focus this study on the determinist
wave propagation model: WaveWatch III R© [9]. Our chose
model WaveWatch III R© is configured to run simulations on
HPC platforms with optimal benefits thanks to the MPI library.
This particularity represents one of its main advantage for our
application. The simulations of wave propagation are made
on a Mediterranean grid describing 141× 220 computational
nodes. Figure 5 is a preview of the computational mesh dis-
played on Google Earth tool. More details are provided in the
section IV-C. The main purpose of the prototype is to validate
the HPPC principle. This is why each run of the defined
simulation is quite fast: from 9 to 26 minutes running on
an Intel bi-processor hexacore machine. These relatively short
jobs allow us to analyze them quickly. It is certain that from a
geophysical point of view, the results of our simulations are not
really relevant. However in case of good results we can extend



this analysis to more complicated configurations and models
thanks to the generic implementation. It is also important to
highlight that WaveWatch III R© has several pre/post-processing
subroutines. Therefore embedding this kind of models into the
prototype is an additional challenge of this study.

B. Choice

The choice module implemented in the prototype is really
simple compared to the one defined in the HPPC architecture
[6]. We do not use any feedback loop on the computed
scenarios to reveal which parameters contribute the more on
the output of the model. This former analysis is done by
ourselves and confirmed by advices of experts in the area.
At the model definition via the user-interface, each input gets
a minimum value, a maximum value and a step. The scenarios
to be pre-computed, often referred in this paper as design of
experiment, are simply built by a Cartesian product of each
possible value for the inputs.
For instance, let us have a model f with two inputs ’a’ and
’b’. We design the experiment with the following values:

• For a: min = 1,max = 2, step = 1⇒ A = {1, 2}
• For b: min = 1,max = 3, step = 1⇒ B = {1, 2, 3}

Therefore the design of experiment is defined by the set:
A×B = {{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}} and
|A| × |B| = 6 scenarios are pre-computed.
In general, the model f takes n inputs X = (x1, x2, . . ., xn) ∈
DI = I1 × I2 × I... × In and generates m outputs Y =
(y1, y2, . . ., ym) ∈ DO = O1 ×O2 ×O... ×Om. The model
f is an application from DI to DO and is defined as:

f : DI −→ DO ; X −→ Y = f(X). (1)

An additional remark is that for all i input, i ∈ {1, . . . , n}, the
ensemble Ii is defined as: Ii = {imin, imin+istep, . . . , imin+
k × istep, imax}, with k ∈ N s.t. imin + (k + 1)× istep ≥
imax. Thus

∏n
i=1 |Ii| scenarios are computed.

C. Storage

In the prototype the current storage is a MySQL relational
database. The engine innoDB is used to guarantee the respect
of the ACID transactional rules. This database has two roles
in the application and so hosts two semantic kind of tables.
Indeed the database is on the one hand a resource to provide
information on jobs to the end-user while on the second
hand the system uses the database to display and exchange
information relative to the numerical models. Therefore in
addition to a) system tables that support the whole HPPC
tool from jobs historic to dynamic contents of the web server,
b) specific tables are designed to store the models, inputs and
outputs. Because the prototype must be generic to host any
model, the specific tables are generated dynamically by the
system. This automation is realized with the help of an XML
file provided for each model which is validated and parsed by
the web server.
The system can handle basic types such as integers, decimals,
booleans and enumerations. Outputs can be vectors. However

no work has been made on the optimization of this storage
and it remains a key point of research for the ongoing work.

D. Interrogation

The interrogation over the pre-computed scenarios already
stored is done by the k-NN algorithm [10] considering the
inputs of the model. The distance between two inputs is
computed using for instance an Euclidian distance given by
the following equation:

d(A,B) =

√√√√ n∑
i=1

(ai − bi)2.

where A = (a1, . . . , an) ∈ Rn

and B = (b1, . . . , bn) ∈ Rn.

(2)

For instance, lets take the model f previously defined and
having two input variables. Lets define two scenarios of f ,
respectively S1 and S2 defined as:

S1 =

(
a1
a2

)
and S2 =

(
b1
b2

)
. (3)

The distance between S1 and S2 is computed with the follow-
ing formula:

d(S1, S2) =
√

(a1 − b1)2 + (a2 − b2)2. (4)

N.B.: Before making the difference, the inputs ai and bi
are normalized regarding their minimum and maximum values.

Then the answer is displayed immediately, and the results
from the k-closest scenarios can be compared through the
web interface as illustrated in the screenshot referenced as
Figure 3.

E. Monitoring and features

A real work has been made around the monitoring of
informations along the development of the prototype. This
module allows to check the good behavior of the entire
workflow: ”What is running?”, ”What is waiting?”, ”What is
done?”. Moreover, we use the software-engineering concept
of ”contracts” — i.e. at each step corresponds a contract
as pictured in Figure 4, from the job submission to the
consultation of the results. This technique allows the user to
identify from where the issues are raising. This is a real value
for a tool like this prototype which interacts a lot with different
external components without having any feedback to directly
display to the end-user. This last feature will certainly be
implemented on the large scaled industrial solution regarding
the benefits provided.

F. Littoral Model

Another feature of our prototype is to use a littoral-model
[8] which takes outputs of the WaveWatch III R© model as
inputs to compute accurately the waves for the last hundred
meters before reaching the shoreline. We have two reasons to
use this model. Firstly the wave propagation is perturbed by



the presence of a closer seabed. Unfortunately the oceano-
graphic models such as WaveWatch III R© use to not/badly
consider this phenomenon. Secondly the littoral model creates
a map which indicates to the end-user where along the coast
a submersion is forecasted. This map is built by making
the difference between the wave-height computed along the
shoreline and the height of the coastline. The littoral-model is
an online tool and neither required a lot of resources nor a lot
of time to perform the computations. However this model is
still under development by the specialists thus no analysis can
be performed on it, even if a mock map is currently presented
to the end-user to validate the workflow.

IV. EXPERIENCE

In our experience, we are simulating the wave propagation
over a grid defined in the following section. Each simulation
represents a 3-days run decomposed into steps of 3 hours, so
24 time series.

A. Inputs

To perform a simulation, the end-user must define the
following inputs:

1) Do not vary for each scenario:
• A computational grid. In our case the input grid (named

’MED’ and described in Section IV-C) has 141 × 220
nodes as illustrated in Figure 5.

• The bathymetry of the corresponding zone. In this exper-
iment the bathymetry is provided by the LEGOS -French
Laboratory fulfilling Spatial studies of Geophysics and
Oceanography-.

• We only consider the waves generated by the wind,
therefore no initial conditions of the sea water level are
used for the simulation.

2) Varying for each scenario:
• The wind conditions between the starting date and the

stopping date. These data are provided for each node of
the grid. For each time step, we set the wind contribution
parallel to the latitude and then the wind contribution
parallel to the longitude. For the tests, the contributions
are fixed and remains constant during the simulation in
order to simplify the addressed problem.

B. Outputs

As outputs of the simulation the end-user obtain the wave-
height, the wave-length and the wave-period for each arbitrary
defined points given in decimal degrees. In our case we define
six points as enumerated in the following:

• Point1 latitude : 40.40, longitude : 2.86
• Point2 latitude : 41.04, longitude : 5.54
• Point3 latitude : 42.19, longitude : 7.43
• Point4 latitude : 41.09, longitude : 10.95
• Point5 latitude : 38.92, longitude : 11.37
• Point6 latitude : 38.08, longitude : 7.47

We establish statistical analyses on the outputs point by point.

C. Area studied

The geographical area studied is delimited by the following
fourth points given in decimal degrees:

• SouthWest latitude : 31.00, longitude : −5.6
• SouthEast latitude : 31.00, longitude : 17.6
• NorthEast latitude : 45.00, longitude : 17.6
• NorthWest latitude : 45.00, longitude : −5.6

This zone is referenced in this paper as the ’MED’ grid
illustrated in Figure 5. It corresponds to a large part of the
mediterranean sea bordered with the shorelines of North-
Africa and South of Western-Europe.
The mesh is clearly not accurate enough for such an area if
we would like to provide a real alert system tool for coastal
submersion. However the mesh satisfies our needs to validate
our approach of pre-computed scenarios by providing a valid
simulation.

D. Results

In this study we firstly define the design of experiments
on the inputs Vx and Vy: respectively the contribution of the
wind parallel to the latitude and the contribution of the wind
parallel to the longitude. These inputs are both given in meter
per second and set on the ranges [-20;20] for Vx and [-25;25]
for Vy . We query the system after respectively 12, 99 and
980 pre-computed scenarios but excluding the Sref scenario.
Following the query step, the system provides the 4-closest
scenarios —see III-D. We arbitrary set the value of k to 4 in
the k-NN algorithm. This choice is based on the observation
of several experiments which show that neither a greater nor
a lower value of k does really improve the results. Further
experimentations with a variable value of k will be the object
of a future work. Then the system gives an approximation
of the results by making a weighted average on the results
of these selected scenarios. For each scenario, the weight is
defined as the inverse of the distance to the scenario Sref .
Finally we compare the mean and the max of the differences
between the six output points and the reference scenario Sref

—more details in Section IV-D2. The comparison is given for
each output variables: the wave-height in meter named H , the
wave-length in meter named L and the wave-period in second
named T .
The following tables summarize the experiment:

1) Sref results: Hereafter are presented results of the ref-
erence scenario simulation Sref . For this scenario simulated,
the contribution of the wind parallel to the latitude is set to
Vx = 7.87 m.s−1 and the contribution of the wind parallel to
the longitude is set to Vy = −9.31 m.s−1.

Variable Pt1 Pt2 Pt3 Pt4 Pt5 Pt6
H(m) 2.28 2.63 2.96 2.04 2.06 2.82
L(m) 70.6 80.0 78.3 56.0 54.7 79.9
T (s) 6.47 6.94 6.88 5.81 5.69 6.90

TABLE I
RESULTS FOR THE SIMULATION OF THE SCENARIO Sref



2) Details: In the following tables we defined the mean
relative error and the max relative error for each variable: the
wave-height, the wave-length and the wave-period. Lets have
a closer look on the definition of these values by taking for
instance the definition of the wave-height mean relative error
by Equation 5 and the wave-height maximum relative error by
Equation 6:

The wave-height mean relative error is defined as:

∆H =
1

6

6∑
p=1

|Hp −Hpref |
Hpref

.

where p is the output point number.

(5)

When we analyze the ∆H column in the results tables, we
have to note that:

• If for the row ”Query” the value is close to 0, thus the
approximation of Sref by the model is ”on average” good
for all the points.

• If the value is too high, thus the approximation of the
model is bad. For instance a value of 85 corresponds to a
mean relative error of 85% regarding the Sref scenario,
which is a bad approximation.

The wave-height maximum relative error is defined as:

∆Hmax = max
p

|Hp −Hpref |
Hpref

.

where p is the output point number.
(6)

When we analyze the ∆Hmax column, we have to consider
that:

• If for the row ”Query” the value is close to 0, thus the
approximation of Sref by the model is good for all the
points. Indeed every points are well approximated.

• If the value is too high, thus the approximation of the
model is bad for at least one point. For instance a value
of 85 means that the error of the approximated points are
between 0 and 85% of the Sref corresponding value, with
at least one error equal to 85% which is too important to
consider the results as good ones.

In the same way we define those values for the wave-length
and wave-period variables. It provides the figures reported in
the following tables, grouped in two kind of rows:

• The ”Query” row is the results of the approximation made
by the system using the weighted average over the 4-
closest scenarios to the reference scenario Sref .

• The Ki rows correspond to each i-closest scenario results
and reported for information.

3) For 12 pre-computed scenarios: The design of experi-
ments is defined on the range [−20; 20]× [−25; 25] with both
steps of 20. Using a design of experiments containing only
12 scenarios equally distributed over the inputs, we observe
in Table II that the approximation of the result is far from the
one expected. Indeed the mean relative errors for the wave-
height, the wave-length and the wave-period are respectively
149%, 126% and 40%. We can also remark that the maximum
relative error point by point are close to the mean relative error,

Scenario Inputs Outputs (normalized to Sref , in %)
[distance] Vx Vy ∆H ∆Hmax ∆L ∆Lmax ∆T ∆Tmax

Query 7.87 -9.31 149 185 126 152 40 47
K1[0.215] 0 -5 75 86 55 70 25 44
K2[0.315] 20 -5 223 358 214 316 79 104
K3[0.370] 0 -25 288 455 265 385 93 125
K4[0.436] 20 -25 371 431 236 280 85 94

TABLE II
RESULTS FOR A QUERY OVER 12 PRE-COMPUTED SCENARIOS

which states that the system badly approximates the result at
the same level for each point.

4) For 99 pre-computed scenarios: The design of experi-
ments is defined on the range [−20; 20]× [−25; 25] with both
steps of 5. In the case of 99 scenarios, the approximation is

Scenario Inputs Outputs (normalized to Sref , in %)
[distance] Vx Vy ∆H ∆Hmax ∆L ∆Lmax ∆P ∆Pmax

Query 7.87 -9.31 18 25 18 30 6 10
K1[0.055] 10 -10 30 46 22 29 11 15
K2[0.073] 5 -10 105 146 89 113 38 45
K3[0.101] 10 -5 16 31 18 40 8 18
K4[0.112] 5 -5 66 83 57 69 36 42

TABLE III
RESULTS FOR A QUERY OVER 99 PRE-COMPUTED SCENARIOS

more relevant as illustrated in Table III. The approximation
still contains mean relative error of 18%, 18% and 6% for
respectively the wave-height, the wave-length and the wave-
period. But globally the accuracy of the results increases
considerably and thus the confidence given by this statistical
approximation is more important.

5) For 980 pre-computed scenarios: The design of experi-
ment is defined on the range [−20; 20]× [−25; 25] with both
steps of 1.5. These last tests are made once the database is pop-

Scenario Inputs Outputs (normalized to Sref , in %)
[distance] Vx Vy ∆H ∆Hmax ∆L ∆Lmax ∆P ∆Pmax

Query 7.87 -9.31 1 1 2 3 1 1
K1[0.021] 8.5 -10 14 18 11 13 5 6
K2[0.023] 8.5 -8.5 9 17 6 14 3 7
K3[0.026] 7 -10 9 16 11 16 5 7
K4[0.027] 7 -8.5 17 20 13 16 7 8

TABLE IV
RESULTS FOR A QUERY OVER 980 PRE-COMPUTED SCENARIOS

ulated of 980 pre-computed scenarios. In that case we observe
in Table IV a very good approximation of the results having an
approximation where the maximum relative errors never reach
more than 3% whatever the output variable considered. These
results can be explained because the distances are this time
really close to the scenario queried. Therefore the confidence
in the result is very important.

E. Interpretation

Regarding the results of the experiments, the main diffi-
culty of the HPPC architecture remains in the process of
pre-computing scenarios close to the scenario queried. It is



obvious that the larger the number of scenarios, the larger we
probably get an accurate result. But this is not enough. The
scenarios computed have to be ”close” to the query. If like
in real situation we do not have any clue of what will be
the queries, those principles are dependent. Two perspectives
are opened: a) trying to understand which variance of each
parameter contributes the more on the variance of the outputs
— i.e. the sensitivity analysis — in order to optimize the
design of experiments. This will contribute to get scenarios
representing any queries accurately. b) considering the similar
and regular queries of end-users to populate the database with
these scenarios. In other words the more a ”class” of scenario
is queried, the more the design of experiments has to run
scenarios contained into this class. Because the end-product
is an alert decisional tool, the system should also consider
the extreme values which correspond to the unusual weather
conditions at the origin of the natural disasters.

V. CONCLUSION

In this paper, we present the HPPC prototype that was
developed and we set an experiment to validate the HPPC
architecture. More specifically, we show how the concept of
pre-computed scenarios can be used for alert system tools. A
lot of works have been carried out during the development of
the HPPC prototype and many computer sciences techniques
and concepts embedded will be reused for a more industrial
scaled solution. Behind technical skills, the prototype is com-
plete enough to obtain good results on a specific academic
configuration. This experiment validates the HPPC principle
and allows us to keep on developing the general HPPC
architecture: on the one hand, every module of the general
HPPC architecture has to be implemented and improved. It
concerns the meta-model creation, the sensitivity analysis, the
optimization of scenarios storage, the way of aggregating the
k-closest scenarios. On the other hand, the global technical
architecture is going to be modified by using web-services,
adding a cloud layer to perform runs within the technique
of cloud bursting and finally keep developing the features
embedded to provide the end-user with a very ergonomic and
efficient decision tool.
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Fig. 2. HPPC prototype architecture.

Fig. 3. Screenshot of the web interface: the dashboard sums up to the end-user the results of the 4-closest pre-computed scenarios from the query. Every
job is identified by its ’id’ number and its distance to the query. Moreover it gives an approximation by making the weighted average of these results. The
weight corresponds to the inverse of the distance. We specifically added the reference line to compare with the real result of the simulation queried.

Fig. 4. Screenshot of the web interface: monitoring the evolution of the jobs by consulting the contracts.



Fig. 5. Representation of the structured computational grid (141× 220 nodes) named ’MED’ and output-points analyzed, displayed on Google Earth.


