
HAL Id: lirmm-00737121
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737121

Submitted on 1 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Analysis of All-Optical Multicast Routing
Algorithms with Sparse Splitting
Dinh Danh Le, Miklós Molnár, Jérôme Palaysi

To cite this version:
Dinh Danh Le, Miklós Molnár, Jérôme Palaysi. Performance Analysis of All-Optical Multicast Routing
Algorithms with Sparse Splitting. RR-12020, 2012, pp.14. �lirmm-00737121�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737121
https://hal.archives-ouvertes.fr

Performance Analysis of All-Optical Multicast
Routing Algorithms with Sparse Splitting
Dinh Danh Le

LIRMM
Université Montpellier 2, France

Email: dinhdanh.le@lirmm.fr

Miklós Molnár
LIRMM

Université Montpellier 2, France
Email: miklos.molnar@lirmm.fr

Jérôme Palaysi
LIRMM

Université Montpellier 2, France
Email: jerome.palaysi@univ-montp2.fr

Abstract—In this paper we study the multicast routing
problem in all-optical WDM networks with sparse splitting
capacity. In the literature, there are several proposals on
finding the best way to construct multicast light-trees (or
light-forests) with the objective of minimizing the number
of wavelengths (link stress), the maximum end-to-end delay
from the source to the destinations (maximum delay) and/or
the total number of wavelength channels used (total cost) of
the light-forests. However, balancing all these criteria is very
difficult. Particularly, end-to-end delay and link tress cannot be
minimized simultaneously. Hence, it is interesting to find a good
approach that can provide a trade-off solution. Putting this into
practice, we propose a comparative study of the most known
algorithms and introduce a new one which can provide a good
trade-off among those three criteria. Simulation results and
comparison point out that our proposal provides the best link
stress, a low maximum delay and low total cost of the multicast
forest among considered algorithms. Especially, our proposal
works best in dense networks, and/or with a large multicast
group size in comparison to the classical algorithms.

Keywords: all-optical WDM networks, sparse splitting, light-
tree, light-forest, multicast routing.

I. INTRODUCTION

In the network evolution, optical network is considered as
a modern type of networks that can provides with a huge
bandwidth (about Tb/s) and low communication latency. It is
getting mature to be deployed world-wide in the Internet core
network in order to serve a larger number of high performance
applications coming from various kinds of devices such as
computers, smart-phones, TVs, etc.

Wavelength Division Multiplexing (WDM) is a type of Fre-
quency Division Multiplexing technology in optical frequency
domain, where each fiber consists of several communication
channels at different wavelengths. At any time, a pair of nodes
in the network can be connected to each other via a channel
supported by a single wavelength. Different channels must
use different wavelengths, and they can only use the same
wavelength if they do not have any common links [5].

Multicasting in WDM networks relates to transmitting
optical data from a single source to multiple destinations
concurrently. This type of communication is getting more
important in today Internet due to an increasing number
of multimedia and real time applications concerning several
destinations, such as video and phone conference, distance
e-learning, online television, etc. There are several ways of

multicasting in WDM networks. In the approach based on
unicast communication, data packets are first duplicated at
the source as many as the number of destinations, then
each of these copies is routed to each of destinations. This
simple way is proved to be bandwidth consuming [10] and
do not utilize available optical splitting capacity. In the other
approach, multicasting at WDM layer can be operated with the
support of Multicasting at WDM layer can be operated with
the support of splitters, i.e. Multicast Capable Optical Cross-
Connects (MC OXCs, or MC in short) [11]. In this scheme,
incoming light signal can be duplicated by splitting data at
intermediate MC nodes of a light-tree. Since communication
can use common links, WDM muticast saves considerably
bandwidth consumed compared to the first scheme, and it is
more desirable for multicasting in all-optical networks.

However, the implementation of WDM multicasting is not
easy due to not only the difficulty of multicast routing problem
itself but several optical constraints also. The first constraint
comes from sparse light splitting capacity, i.e. the small
number of MC nodes in the networks. Many studies showed
that, about below 50% of the OXCs in WDM networks can
be MC OXCs due to their costly fabrication and because they
require a large number of amplifiers [1], [2]. This constraint
makes WDM multicasting challenge, because lack of MC
OXCs induces more light trees for a given multicast session,
and so more bandwidth consumption.

The second constraint is the limitation of number of wave-
lengths can be supported on optical fibers. Wavelength is the
smallest transmission unit in WDM networks, each wave-
length corresponds to one channel. The more the wavelengths
supported in each fiber, the more the bandwidth available.
However, the number of wavelengths that can be supported
is limited by optical device technology [7]. Thus, in order to
serve an increasing number of multicast applications, multicast
routing algorithms should be carefully designed with the
awareness of minimizing number of wavelengths used.

The third constraint relates to the distinct wavelength con-
straint (i.e. two light-paths or light-trees can not be assigned
with the same wavelength if they have some common links).
If there is wavelength conversion (WC) [7] presented in the
network, the light-trees can be constructed more flexibly.
However, WC has not been deployed widely in reality due
to its expensive fabrication and immature technology [3], [8].

For this reason, we make the assumption that there is no WC
in the network. Thus, the distinct wavelength constraint must
be respected.

In this paper, we focus on the well-known algorithms for
constructing multicast light-forests proposed in [10] in the
consideration of optical constraints mentioned above. Previous
studies show that these algorithms are not always effective in
term of balancing multiple criteria (i.e. cost, delay and link
stress). We therefore recommend a new algorithm that can
provide a better trade-off solution. The rest of this paper is
organized as follows. We first review the studies related to
WDM multicast routing in sparse splitting networks in Section
II. In Section III, the problem is modelled and performance
metrics for the evaluations are also introduced. In Section IV,
we focus on our proposed algorithm and describe it in detail.
The simulation results with evaluations are showed in Section
V before the conclusion.

II. RELATED WORK

As mentioned above, MC OXC is the key element in
supporting multicast in WDM networks. However, equipping
full splitting capacity in WDM switches is not realistic due to
its complicated fabrication and high expense. Besides, wave-
length conversion is also helpful for constructing more flexible
multicast light-tress, but it is also expensive and immature
enough to deploy in reality. Thus, sparse splitting capacity and
without wavelength conversion are supposed in many studies
[1], [2], [9]–[11]. For this reason, our research is also carried
out in sparse splitting WDM networks with the absence of
WC. In addition, for simplicity, we also assume that any MC
nodes in the networks can split incoming light signal to all of
their outgoing ports. With these assumption, in this section, we
review the well-known multicast routing algorithms in sparse
splitting constraints proposed in the literature, including the
four algorithms in [10], and Avoidance of MIB node [11] and
briefly evaluate their performance.

In [10], four multicast light-forest computation algorithms
were presented, including Reroute-to-Source, Reroute-to-Any,
Member-First and Member-Only. The first three algorithms
are based on Shortest Path Tree (SPT), in which Member-
First is quite different when taking membership information
into account, and Member-Only is based on Steiner Tree
Approximation.

In the first two algorithms (i.e. Reroute-to-Source and
Reroute-to-Any), a spanning tree is first created from a source
to all destinations by employing a shortest path algorithm (e.g.
Dijkstra’s algorithm). Then, the algorithm checks the light
splitting capability of each branching node in the SPT. If the
number of its children is greater than its splitting capacity,
only some children are kept, and the other must be cut and
re-routed. For example, if the branching node is a multicast
incapable branching node (MIB node), then only one child can
be kept, which is chosen arbitrarily. All the other children (and
sub-trees rooted at them) must be re-routed to the current tree
either at an MC node along the shortest paths to the source
(Reroute-to-Source), or re-routed to any other node on a tree

(which can be an MC node or a leaf MI node) if possible
(Reroute-to-Any). Obviously, the end-to-end delay of Reroute-
to-Source is minimal. However, the link stress can be very
high, because downstream branches of an MI node have to
communicate with the source using the same shortest path but
on different wavelengths. In contrast, the end-to-end delay of
Reroute-to-Any is higher, and the number of wavelengths is
less compared to Reroute-to-Source.

Member-First is also based on SPT while taking member-
ship information into consideration. The algorithm manages
adjacent fringe links and constructs the light-tree iteratively,
by adding the link with the highest priority at each step. The
constructions begins by the source. When a destination (u) is
added, it checks every MIB node (x) from u back to the source,
keep only one branch and cut all other branches rooted at x.
It stops when the current set of possible fringe links is empty,
then it constructs another multicast tree from the source until
all the destinations are included (a more detailed description
can be found in Section IV). According to [10], Member-First
achieves a better link stress and cost in compared to Reroute-
to-Any, and produces a good trade-off among performance
metrics (i.e. link stress, total cost, maximum delay, and average
delay).

On the Steiner Tree Approximation based approach, Mem-
ber Only begins to build a multicast light-tree by connecting
the destinations to the source one by one just through the
shortest paths (the closest, the first). At each step, it tries to find
the shortest path from the destinations to the current multicast
light-tree so that the shortest paths do not traverse any MIB
nodes. If it is found, the corresponding destination and the
path are added to the light-tree. Otherwise, the current tree
is terminated and a new one on another wavelength is started
until all the destinations have been covered. According to [10],
the light-trees computed by Member-Only algorithm have the
best total cost among the other. However, because the distance
from the destinations to the source is not taken into account,
many destinations might be connected to the light-tree via a
node far away from the source. Consequently, the diameter of
the multicast tree is often very large (and hence, the end-to-end
delay is very high).

In [11], the authors proposed an algorithm called Avoidance
of MIB Nodes for multicast routing, and it can be viewed as
the improvement based on Reroute-to-Any algorithm. First, it
uses a modified Dijkstra algorithm taking some priorities of
candidate nodes into account to construct an SPT rooted at the
source. Then it processes MIB nodes of the SPT by special
heuristics to resolve conflicts. Finally, it uses a distance based
post-treatment to create the final light-forest. According to
[11], the algorithm is better than Reroute-to-Any and provides
a good trade-off between link stress and end-to-end delay
when MC nodes are very sparse in the network.

Reroute-to-Source connects the destinations to the source
via shortest paths. The cost and the link stress of its solution
can not significantly be improved. Member-Only tries to mini-
mize the total cost at the expense of delays. The improvement
of these algorithms is not trivial. Avoidance of MIB Nodes

2

for multicast routing is a good improvement of Reroute-to-
Any. Member-First is better than Reroute-to-Any in general
and especially, its framework (the incremental construction of
light-trees using fringe links) is promising to design efficient
algorithms. Thus, we select Member-First to design a more
efficient optical multicast routing algorithm. Our objective is to
analyse the effect of priority definition on the performance of
the algorithms. In the next sections, our proposed algorithm is
described in detail, and some analysis and comparison between
the mentioned algorithms are also given.

III. PROBLEM MODELLING AND PERFORMANCE METRICS

The network is modelled by a pair (G,S) where G is a
connected undirected graph and S is a subset of vertices of
G representing the MC nodes (VG presents network nodes
and EG presents network links1). We suppose that there is
a pair of fibers between the connected nodes, so the graph
is undirected. Any link e ∈ E is associated with a cost
c(e) and a propagation delay d(e). We consider (s,D) as the
multicast session triggered from the source node s to the set of
destinations D = {d1, d2, ..., dn} ⊂ VG, s /∈ D. Let S ⊂ VG

be the set of MC nodes in the network. Because of sparse
splitting capacity of the network, it is likely that a single
light-tree may not be sufficient to span all the destinations.
Therefore, we assume that k light-trees will be built composing
a light-forest F = {LTi, i = 1, . . . , k}. Since these k light-
trees are not edge-disjoint, they must be assigned with different
wavelengths (due to the distinct wavelength constraint). The
number of wavelengths required for the multicast session
(s,D) is equal to the number of light-trees in F , and it is
called link stress. Accordingly, the first performance metric is
defined as LinkStress(F) = k.

Another metric, the total cost of the forest F is the sum of
cost of all the links on all the light-trees of the light-forest:
TotalCost(F) =

∑
i∈[1,k]

∑
e∈LTi

c(e).

Besides, although optical fibers can support a very high
speed in optical networks, there is a propagation delay on
each link. When the network size becomes large, the ad-
ditive end-to-end delay will be considerably along the long
distance. Thus, end-to-end delay is a metric that should be
paid attention. Let LPs,di be the light-path from the source
s to destination di. Two metrics relating to end-to-end delay
(i.e. maximum delay and average delay) can be calculated as
follow:
MaxDelay(F) = max

di∈D

∑
e∈LPs,di

d(e)

AvgDelay(F) = 1
|D|

∑
di∈D

∑
e∈LPs,di

d(e)

With all the notations mentioned above, the all-optical
multicast routing problem can be stated as follow:

• Input: A connected undirected graph G, a set of MC
nodes S, a multicast session (s,D)

1For any graph G, we denote VG the set of its vertices and EG the set of
its edges.

• Output: A light-forest F for the multicast session (s,D)
satisfying the constraints: the leaves of the light-trees are
destinations and the branching nodes are in S.

• Objective: A trade-off solution among following criteria:
link tress, total cost, and end-to-end delay (i.e. maximum
delay and average delay).

As many studies (e.g. [10], [11]), for simplicity in calculat-
ing performance metrics, we assume that all the wavelengths
are equally expensive (or cheap), the bandwidth consumed
using a wavelength on different links is the same as well.
In addition, the propagation delay is also the same on each
link. With this assumption, for every link e, c(e) = 1 unit
cost and d(e) = 1 unit delay. Performance metrics can now
be briefly defined as follow: the link tress is the number of
wavelengths needed in the forest, the total cost is the total
number of branches of the forest, the maximum delay and
the average delay is the maximum number of hops, and the
average number of hops from the source to the destinations,
respectively.

IV. MEMBER-SPLITTER FIRST ALGORITHM

Before describing our proposed algorithm, we first give
some more details of Member-First algorithm, then analyse
it for possible improvements.

A. Member-First algorithm

This heuristic constructs light-trees incrementally by exam-
ining the possible fringe links of the trees. In [10], a fringe link
is defined as a link adjacent to the tree without forming a cycle
with edges of the tree as well as of the fringe link set. These
fringe links are managed by a priority queue. Accordingly,
each fringe link e is associated with a priority pe, and the
fringe link set is represented by a set L = {e, pe}. The
smaller the value of the fringe link, the higher the priority
of it. The tree construction begins at the source and can be
briefly described as follows.

1: Initialize the fringe link set L with the adjacent links of
the source

2: Select the fringe link with the highest priority from L
3: Add the selected link (and its end-node n) to the tree and

remove it from L
4: Remove impossible multiple children of MI nodes from

n back to the source
5: Update L with the adjacent links of n
6: If there are fringe links in L, go to step 2
7: Prune branches that do not lead to any destinations
8: If there are destinations not yet covered, then go to step

1 to construct another tree
Keeping the basic sequence of Member-First as a frame-

work, the algorithm can be improved to construct more
favourable light-trees by changing the priority of fringe links
and the procedure to update them.

B. Priority Definition

One of the primary factor that affects a lot on algorithm’s
performance is the priority of links in the fringe link set.

3

In Member-First, the priority of a fringe link (v, u) can be
briefly presented as the order of (h, member), in which h is the
number of hops (or length) from the source to u, and member
stands for the multicast membership of u. Accordingly, the link
(vi, ui) have higher priority than (vj , uj) if h(ui) < h(uj), or
when h(ui) = h(uj), ui is a member, but uj is not [10].

In fact, there are more than two factors mentioned above
that can affect the performance of the algorithm as analysed in
following sections. Moreover, Member-First provides a good
framework for easily alternating the possible combinations
of these factors. In this section, we analyse several possible
alternatives and study their influence on the algorithm’s per-
formance.

Apart form the two factors taken by Member-First
(h,member), the other ones that can affect the algorithm
performance are MC (the node is MC or not) and degree
(the degree of a node). Thus, there are totally four factors must
be taken in to account: (h,member,MC, degree). Different
combinations of them can lead to different results, and to
choose the best combination needs careful theoretical analysis
as well as realistic basis. Naturally, a good combination must
be corresponding to the order of the importance of each
parameter. Let us analyse each of these parameters in detail.

For the first factor, the number of hops h (or the length) from
a node to the source directly impacts the end-to-end delay. In
fact, Reroute-to-Source is taking only this metric into account
resulting in the best delay but the high total cost. The second
factor (member) can affect the total cost and the link stress
of the light-forest as the case of Member-Only. Recall that
Member-Only connects the destinations to the current tree one
by one, just considering the membership information, so the
cost is best but the delay is too high.

Member-First takes two of these factors (with sequence of
h,member) in order to give a more trade-off between the end-
to-end delay and the total cost. However, it does not regard to
MC nodes available in the network. Thus, it leaves a question
that when all the previous factors (h,member) are the same
for two fringe links, which link should be given higher priority.
Obviously, in such a case, the link leading to an MC node
should be the first choice because MC nodes can connect to
many of its children (probably including destinations) with
only a single wavelength. From this set of children, the
connection to other destinations seems to be more probable.
Thus, we propose to give higher priority to links leading to
MC nodes.

Finally, the degree of nodes also has a significant effect on
the quality of the multicast tree. Indeed, the probability that a
high degree node can lead to other destinations not yet spanned
is higher. However, high degree MI nodes are likely to produce
more MIB nodes in the resultant light-tree, resulting in more
wavelengths needed to cover all the destinations. That means
the link stress can be high. Thus, giving higher priority to
the higher-degree nodes can lead to lower end-to-end delay.
In contrast, MI nodes with smaller degree probably induce
higher delay but lower link stress.

From this fact, we give higher priority to links leading to

Fig. 1. NSF network topology

the MC nodes with higher degree, and then MI nodes with
smaller degree (when they have the same h and member).
By this way, the end-to-end delay and the link stress can be
balanced.

Combination of these aforementioned elements, the new
priority of fringe links can be defined in the order of: h,
member, MC, degree. In particular, a link (vi, ui) have higher
priority than (vj , uj) if:

• h(vi) < h(vj);
• or when h(vi) = h(vj), ui is a member, but uj is not;
• or when h(vi) = h(vj) and if their memberships are the

same, ui is MC and uj is MI;
• or when all the above criteria are the same, if both are

MC nodes, then ui has higher degree; otherwise, if both
are MI nodes, then ui has smaller degree.

To verify our analysis above, we carry out several simula-
tions employing Member-First with NSFNET network (Fig-
ure 1) in which the order of these factors are alternated and
compared together. The selected alternative orders are:

1) h, member (H-Member)
2) member, h (Member-H)
3) h, member, MC (H-Member-MC)
4) h, MC, member (H-MC-Member)
5) h, member, MC, small degree (H-Member-MC-sDeg)
6) h, member, MC, high degree (H-Member-MC-hDeg)
7) h, member, MC, high degree for MC nodes and small

degree for MI nodes (H-Member-MC-aDeg)
In the simulations, each node of the network is in turn

selected as the source for a multicast session. For a given
source, a given multicast group size, and a given fraction of
MC nodes, 100 random multicast sessions are generated. (The
destinations and MC nodes are distributed randomly through
the network.) Hence, the result of each point in the simulation
figures is the average of 100 × |V | computations on the four
metrics mentioned above: link stress, total cost, maximum
delay and average delay.

In our simulations, two types of network configurations are
set. The performance of the algorithm versus multicast group
size and performance of the algorithm versus the number of
MC nodes. For the first configuration, the number of MC nodes
is set fixed while the group size varies. In this case, the number
of MC nodes is set at 3 nodes (˜23% for the sparse splitting
capacity) and the group size is varied from 1 to 13 nodes.
MC nodes and destinations are distributed randomly in the
network. (In all cases, the source is not counted in number
of MC nodes as well as the group size.) The performance

4

metrics are calculated and plotted in Figure 2. For the second
configuration, the group size is set at 10 nodes (˜77%) while
the number of MC nodes varies from 1 to 13 nodes. The
simulation results are shown in Figure 3.

Firstly, we give the comparative between the two pair of
first sequences: H-Member vs. Member-H and H-Member-MC
vs. H-MC-Member.

H-Member versus Member-H
Now let us take a look at the first pair H-Member vs.

Member-H. As it is shown in Figures 2 and 3, H-Member
provides a low end-to-end delay, but high link stress and
total cost. In contrast, Member-H helps Member-First achieve
lower link stress and cost but high delay. That is exact
what we talked about these two factors above. Consequently,
choosing one or the other depends on what objective of the
problem. That is, one favours of better link stress and cost
should choose Member-H, and other supports a better delay
should choose H-Member. For our improved algorithm, we
choose the combination H-Member as the first order in later
combinations.

H-Member-MC versus H-MC-Member
Let us now focus on the second pair H-Member-MC vs.

H-MC-Member. We can see that, when taking MC parameter
into account, these combination can help to provide a balance
solution compared with the two first ones. In deed, these can
reduce link stress and cost of H-Member, concurrently reduce
end-to-end of Member-H. Between the two, H-Member-MC
is better than H-MC-Member in all the performance metrics.
Thus, H-Member-MC is selected for the last combinations
that we will investigate.

H-Member-MC-sDeg, H-Member-MC-hDeg and H-
Member-MC-aDeg

To verify the correctness of our selection of the final priority
combination, we also operate simulations to compare the
three last sequences mentioned above. The simulaions are
also carried out by using Member-First with NSFNET as the
same two network configurations as we did with the four first
sequences before. The results are shown in Figures 4 and 5.

We can see that H-Member-MC-aDeg is always ranked the
second among the other two, meaning that it can provides a
good trade-off between the two. As the result, this combination
can be a good candidate for our algorithm as described in the
following sections.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 4 6 8 10 12

L
in

k
st

re
ss

Group size

Topo: NSF. Number of MC nodes = 3

H-Member
Member-H

H-Member-MC
H-MC-Member

(a) Link Stress vs. Group size

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12

T
ot

al
 c

os
t

Group size

Topo: NSF. Number of MC nodes = 3

H-Member
Member-H

H-Member-MC
H-MC-Member

(b) Total Cost vs. Group size

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Group size

Topo: NSF. Number of MC nodes = 3

H-Member
Member-H

H-Member-MC
H-MC-Member

(c) Maximum delay vs. Group size

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Group size

Topo: NSF. Number of MC nodes = 3

H-Member
Member-H

H-Member-MC
H-MC-Member

(d) Average delay vs. Group size

Fig. 2. H-Member vs. Member-H and H-Member-MC vs. H-MC-Member
when Group size varies in NSF network with 3 random MC nodes

5

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 2 4 6 8 10 12

L
in

k
st

re
ss

Number of MC nodes

Topo: NSF. Group size: 10

H-Member
Member-H

H-Member-MC
H-MC-Member

(a) Link Stress vs. Number of MC nodes

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 2 4 6 8 10 12

T
ot

al
 c

os
t

Number of MC nodes

Topo: NSF. Group size: 10

H-Member
Member-H

H-Member-MC
H-MC-Member

(b) Total Cost vs. Number of MC nodes

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

H-Member
Member-H

H-Member-MC
H-MC-Member

(c) Maximum delay vs. Number of MC nodes

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 2 4 6 8 10 12

A
ve

ra
ge

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

H-Member
Member-H

H-Member-MC
H-MC-Member

(d) Average delay vs. Number of MC nodes

Fig. 3. H-Member vs. Member-H and Member-MC vs. MC-Member when
Number of MC nodes varies in NSF network with group size of 10

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 4 6 8 10 12

L
in

k
st

re
ss

Group size

Topo: NSF. Number of MC nodes = 3

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(a) Link Stress vs. Group size

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12

T
ot

al
 c

os
t

Group size

Topo: NSF. Number of MC nodes = 3

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(b) Total Cost vs. Group size

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Group size

Topo: NSF. Number of MC nodes = 3

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(c) Maximum delay vs. Group size

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Group size

Topo: NSF. Number of MC nodes = 3

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(d) Average delay vs. Group size

Fig. 4. H-Member-MC-sDeg, H-Member-MC-hDeg and H-Member-MC-
aDeg when Group size varies in NSF network with 3 random MC nodes

6

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 4 6 8 10 12

L
in

k
st

re
ss

Number of MC nodes

Topo: NSF. Group size: 10

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(a) Link Stress vs. Number of MC nodes

 11.8

 12

 12.2

 12.4

 12.6

 12.8

 13

 13.2

 13.4

 2 4 6 8 10 12

T
ot

al
 c

os
t

Number of MC nodes

Topo: NSF. Group size: 10

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(b) Total Cost vs. Number of MC nodes

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(c) Maximum delay vs. Number of MC nodes

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 2 4 6 8 10 12

A
ve

ra
ge

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

H-Member-MC-hDeg
H-Member-MC-sDeg
H-Member-MC-aDeg

(d) Average delay vs. Number of MC nodes

Fig. 5. H-Member-MC-sDeg, H-Member-MC-hDeg and H-Member-MC-
aDeg when Number of MC nodes varies in NSF network with group size of
10

To give a better visualization, let us consider the network
in Figure 6 where the MC nodes are drawn in a circle
(including 4, 6, 9), and MI nodes in a square (the other nodes).
Suppose that the multicast session is triggered at node 6 to the
destination set {1, 2, 3, 5, 7, 8, 10, 11} that are shaded in grey.

We can compare the two light-forests constructed by orig-
inal Member-First (Figure 7) and by Member-First with the
new priority definition (Figure 8). When constructing the light-
trees according to original Member-First, we assume that when
all the factors (h, member) are the same for two fringe links,
the algorithm choose the link in the order of nodes, the smaller
the sooner. After pruning branch (6, 4) (step (6)), in Figure 7,
the light-forest created by the original Member-First consists
of 2 light-trees (link stress = 2), with the total number of
branches is 10 (total cost = 10), the maximum number of
hops from the source to destinations is 3 (max delay = 3) and
average delay = 2.0. In Figure 8, the light-forest created by
Member-First with the new priority definition is better with
one light-tree (link stress = 1), total cost = 9, max delay = 4,
and average delay = 2.25.

Fig. 6. A network to consider

Fig. 7. Member-First light-forest

Fig. 8. Member-First with New Priority Definition light-forest

C. Updating Bud-Links

When updating fringe links (step 5) from a node, node
v for example, Member-First algorithm adds all the possible
adjacent links of v to the fringe link set L regardless to its
splitting capacity. It is worth noting that, if v is an MC node,
there is no problem. However, if it is an MI node, it can

7

Fig. 9. Member-First with New Bud-Link Concept light-forest

Fig. 10. Member-Splitter First light-forest

support only one child, if all the possible adjacent links are
added, there is no chance for other nodes (if any) connecting
to these links. Let us use the topology in Figure 1 and employ
Member-First to explain this point in detail. Suppose that at
first Member-First select link (6,5), there are four possible
adjacent fringe links from node 5: (5,1), (5,2), (5,3) and (5,8).
If all of these links are added to fringe link set L, then when
updating L from node 4, there is no chance for node 4 to
connect 1 and 2, because (4,1) and (4,2) have the same priority
to (5,1) and (5,2), and hence they cannot be updated (according
to the procedure UpdateFL in [10]). This is one of the key
reasons making Member-First inefficient.

Consequently, it is more reasonable to add only one link
from an MI node, that selected link must have the highest
priority. By this way, when selecting the highest priority link
from L in order to add to the multicast tree, we just go
straight-forward without any branch-cutting or link-removing.
Moreover, there are chances for other adjacent nodes of v to
be end-nodes of other fringe links.

To do it, we define a new concept corresponding to fringe
links and call them bud-links. A bud-link is similar to a fringe
link except that from an MI node there is only one possible
bud-link (whereas there may be more than one in term of
fringe links). Formally, given a network (G,S), a session
multicast (s,D) and a tree T , a bud-link is an edge {x, y}
such that x ∈ VT and y /∈ V (T) and if x /∈ S (i.e. x is
MI) then the degree of x in T is 1. Besides, at any time, a
bud-link {x, y} is the link that has the highest priority among
those possible links leading to node y. Thus, when updating a
bud-link {x, y}, if there are links {xi, y} already in the bud-
link set (BLs), the selected link is the one that has highest
priority, the other must be removed from the set. In addition,
from an MI node (x), the only selected bud-link is the link
with highest priority among possible adjacent links ({x, yi})
of it.

Using the new concept of bud-links and applying the way
they are updated as mentioned above to the network in Figure
6, the resultant light-forest including a single light-tree with
the total cost of 9, the maximum delay of 3 and the average

delay of 1.875 is created as shown in Figure 9.
However, like all the greedy heuristics, among many pos-

sible choices, only one that meets a specific condition can be
chosen. Thus, this heuristic can lead to useless branches in
the computed light-tree from MI nodes. These unnecessary
branches need to be resolved by a special mechanism that is
detailed in the next subsection.

D. Pruning Useless Branches

As mentioned above, with the defined priority of the bud-
links, in many cases our heuristic could direct the tree fol-
lowing the same route for different loops for constructing
light-tree, even though the algorithm can go to an unlimited
loop with the useless route. To be clearer, let us consider
the example in the topology in Figure 11. For the topology
shown in Figure 11(a), according to the new definition priority
described in section IV-B, the algorithm in turn selects bud-
links (0,1), (0,2), (1,4), (2,5), (4,8), (4,9) for the first tree as
shown in Figure 11(b). If nothing is done, the algorithm will
stops and the first tree after pruning will be {0, 1, 4, 8}, and it
is the only tree can be computed although there are two more
destinations yet to be spanned. Because according to Member-
First, the graph remains unchanged after each tree has been
computed, just change the membership of destinations that
have been spanned. Thus, in many cases, for the next tree
formation, the tree is still grown in the same route as before,
because there is no mechanism to change the route if it is still
better under the control of priority.

Realizing the situation, we equip an efficient technique to
re-direct the tree in such cases: when the tree cannot grow
more, all the useless branches (branches that do not lead to
any member) in the current tree as well as in the graph must be
pruned. When affected branches cannot be pruned (e.i. when
it reaches to a destination, or a MC branching node in the
current tree, or a MI node that can lead to other nodes in the
graph), we re-update the BLs from MI nodes (if any) at which
these branches cannot be pruned.

Return to the above example, suppose that the algorithm
chooses bud-link (1,4) before (2,5). After the algorithm selects
bud-link (1,4), from node 4, links (4,8) and (4,9) can be added
to the BLs, whereas from node 5, there is no more bud-link
can be updated (the link (5,9) cannot be updated because its
priority is not higher than bud-link (4,9) that is already in BLs).
Besides, node 5 is not a destination, so node 5 and its adjacent
links must be pruned from the tree as well as the graph. After
pruning node 5, node 2 is taken into consideration, but from
node 2 there is an other possible bud-link (2,6), so node 2
cannot be pruned. Besides, because node 2 is MI, the algorithm
re-updates the BLs from it and hence bud-link (2,6) is added.
The algorithm then adds bud-links (2,6), and (6,10) to the tree.
It then chooses bud-links (4,8) and then (4,9) to add to the tree.
Similarly, node 9 and its adjacent links are pruned from the
tree and the graph. After all, the algorithm stops with the first
tree as shown in Figure 11(c).

In order to compute the next tree, after constructing a tree,
the algorithm must prune some parts of the graph that cannot

8

grow any tree. For example, the sub-graph corresponding to
the first tree in Figure 11(c) must be pruned. This can be
described as follows: first, remove from the graph the nodes
that are leaves in the current tree; after that, while there exists
a leaf in the current tree, and it is also a pendent node of the
graph, then remove it from the graph and the tree. Applying
this to the example, nodes 8, 10, 4, 6, 2 (and their adjacent
links) are in turn removed from the graph. The remaining
part of the graph is shown in Figure 11(d). Thus, the second
tree is then created as shown in Figure 11(e). This point is
implemented as procedure PruneGraph as shown in the next
section.

Fig. 11. Demonstration of pruning useless branches

E. Member-Splitter First algorithm

Combination of the above improvements results in the new
algorithm, and we call it Member-Splitter First, or MSF in
short. The resultant forest obtained when applying MSF to the
network in Figure 6 is shown in Figure 10. As it is shown, this
light-forest includes a single light-tree with the total cost of
10, the maximum delay of 2 and the average delay of 1.75. It
is the best trade-off in comparison to the previous light-forests.

Our proposal can be described as below:

MEMBER-SPLITTER FIRST ALGORITHM

Input: A network (G,S) and a multicast session (s,D)
Output: A light forest F satisfying (s,D) in (G,S)

1: F ← ∅; G′ ← G; D′ ← D; {D′ is set of destinations yet
to be included}

2: while D′ 6= ∅ do
3: T ← ({s}, ∅)
4: while a bud-link exists do
5: Choose a bud-link e = {u, v} with highest priority
6: Add {u, v} and v to T
7: if u ∈ D′ then D′ ← D′ − {u}
8: while there exists a dead-vertex2 vd in T do
9: remove vd and its adjacent edges from T and G

10: end while
11: end while
12: add T to F
13: T ′ ← T
14: PruneGraph(G′, T ′);
15: end while

Procedure PruneGraph(G′, T ′) {prune graph G′}
delete from T ′ and G′ the vertices that are leaves of T ′

while ∃l such that l is a leaf of T ′ and l is also a pendant
vertex of G′ do

delete l from T ′ and from G′

end while
In the loop of line 4 the tree T grows as much as possible

in the graph G′ by choosing a highest priority link among all
possible edges (the bud-links). The procedure UpdateBL for
updating bud-links is described right away. During this time,
the loop of line 8 prunes unnecessary branches of the tree that
cannot grow more. Finally, when the tree is constructed and
added to the forest, the procedure PruneGraph is invoked to
delete vertices and edges from G′ (and T ′) that are no longer
necessary to continue the computation of the forest.

The correctness of the algorithm
The algorithm is correct and deterministic. Indeed, during

the execution of the algorithm, the graph G′ remains
connected, since each deleted vertex is either a leave of a
maximal branches of T ′ or a pendant vertex of G′. This
ensures the correctness of the light-tree creation in each turn
of the main loop. Moreover, every tree built has at least two
vertices (s and a destination). Thus, at least one vertex of G′

is deleted by the call of procedure PruneGraph in line 14.
Since D′ ⊂ V ′

G and that |V ′
G| strictly decrease, it is eventually

empty and the algorithm stops.

Updating bud-links
The bud-link set is computed for each addition or removal of

a vertex of the tree. The procedure UpdateBL can be described
as follows. It is invoked whenever a new vertex is added to the
tree, or from a vertex that cannot be removed when pruning
useless branches.

2dead-vertex is a leaf of T that is not a destination nor end-node of any
possible bud-links.

9

Procedure UpdateBL(v, L){update bud-link set L from v}
for every adjacent link e = (v, u) do

if ∃u /∈ T and 6 ∃e′ = (v′, u) ∈ L
or ∃e′ ∈ L has lower priority then

if v is MC then
L← L ∪ {e};
if ∃e′ ∈ L has lower priority then L← L− {e′};
else find e∗ with highest priority among e;

end if
end for
if v is an MI node then
L← L ∪ {e∗};
if ∃e′ ∈ L has lower priority then L← L− {e′};

end if
An example and explanation of the execution of the algo-

rithm is shown in Figure 12.

Fig. 12. Fig(a) represents a network and a multicast session. Fig(b) shows
the first tree in which vertices 3, 1, 4 and 5 are not destinations. These vertices
have been removed by the loop of line 8. Then the procedure UpdateBL is
invoked to re-update the bud-link from MI node 2. The light-tree continue
to cover 8, 9, 10 and 11 as shown in Fig(c). It is the actual first light-tree.
After that, vertices 9, 11 and then 10 are deleted by procedure PruneGraph.
Finally, a second tree including 0, 2, 6, 7 and 8 is created as shown in Fig(d).

V. SIMULATION RESULTS

To evaluate the proposed algorithm in comparison to the
other classical ones, we carry out series of simulations with
well-known networks: USA NSF network (Figure 1), USA
Longhaul network (Figure 13) and European Cost-239 network
(Figure 14). The fact that these networks are the testbeds of
many studies ([1], [9], [11]) is the reason for our selection.

In our simulation, each node of the network is in turn
selected as the source for a multicast session. Because the
source can inject data traffic using multiple transmitters, hence
it can transmit to as many of its out-ports on the same
wavelength even if it is an MI node. Similarly, the source can
also transmit traffic to its children on different wavelengths
even if it has no wavelength conversion. Consequently, we
will consider the source to be capable of both splitting and
wavelength conversion [10]. Besides, although the source can
be considered as a multicast member, it is not a destination.

Fig. 13. USA Longhaul network topology

Fig. 14. European Cost-239 network topology

For these reasons, in our simulations, the source will not be
counted in the group size nor in the fraction of MC nodes.
In other words, given an N-node network, the group size and
MC nodes are selected from N-1 remaining nodes. For a given
source, a given multicast group size, and a given fraction of
MC nodes, 100 random multicast sessions are generated. (The
destinations and MC nodes are distributed randomly through
the network.) Hence, the result of each point in the simulation
figures is the average of 100 × |V | computations on the four
metrics mentioned above: link stress, total cost, maximum
delay and average delay.

Effect of Group Size (the fraction of destinations)
Firstly, we study the performance of the proposed algorithm

versus multicast group size: the number of MC nodes is set
fixed while the group size varies. For the sparse splitting
capacity of network, a few MC nodes can be set.

For 14-node NSF network, the number of MC nodes is set
at 3 nodes (˜23%) and the group size is varied from 1 to 13
nodes. MC nodes and destinations are distributed randomly
in the network. The performance metrics are calculated and
plotted in Figure 15. When the group size varies, the link
stress (Figure 15(a)) achieved by MSF remains flat around the
value of 1. It is much better compared to MF, especially when
the group size becomes large. As shown in the Figure 15(a),
when the group size is 100%, the difference between the two is
maximal at about 50%. In Figure 15(b), the total cost produced
by all the algorithms increases when the group size increases.
In particular, MSF provides a better total cost than MF. When
group size becomes larger, MSF is close to the optimal resulted
from MO. In Figure 15(c) and Figure 15(d), the end-to-end
delay (maximum deday and average delay) resulted from MSF
is also lower than that from MF (as well as Re2A and MO).

In 28-node USA Longhaul network, the fraction of MC
nodes is set as 30% and the group size is varied from 10% to

10

100%. As shown in Figures 16, the results achieved with this
network topology is quite the same that with NSF network.
In particular, the link stress is minimal (the same MO’s), the
total cost is slightly better then MF, the maximum delay and
the average delay are better than MF when the group size is
high.

In 11-node European Cost-239 network, it is very dense
when all the nodal degrees are higher or equal to 4. Like
other network topologies, we set a few nodes as MC nodes (2
nodes, or 20%) and set the group size changing from 1˜10, or
10%˜100%. In Figure 19, the link stress resulted from MSF
is minimal, similar to that from MO and Re2A, the maximum
delay and average delay is close to the optimal delay of Re2S
and much better than MF while the total cost is the same as
MF.

In short, with the sparse splitting capacity, when the group
size varies, MSF algorithm outperforms MF. Among all the
algorithms, it produces the lowest link stress, a low total cost
and a low end-to-end delay. Especially, its performance is
better when the group size is large. Moreover, MSF is more
advantageous with dense networks (like European Cost-239
network).

Effect of Splitting Capacity (the fraction of MC nodes)
We also study the performance of the proposed algorithm

versus the number of MC nodes. Previously, we see that MSF
works better with the large group size. Thus, the group size
is set at high value. In NSF network, the group size is set at
10 nodes (˜77%) while the number of MC nodes varies from
1 to 13 nodes. The simulation results with NSF network are
shown in Figure 17.

According to Figure 17(a), while the link stress of the other
algorithms converge to 1 in skew lines from left to right, MSF
and MO keep the link stress flat at the value around 1, in
which MSF is better than MO when the number of MC nodes
is very sparse. For the total cost and the end-to-end delay,
(Figure 17(b), 17(c)), while MO achieves the lowest total
cost but the highest delay and Re2S, in contrary, produces the
lowest delay but the highest total cost, MSF provides a good
trade-off between the two metrics when always ranking second
in those metrics. Compared to MF, it is always better, and the
difference between the two is clearer when the number of MC
nodes is sparse.

In Figure 18, almost the same result above can be seen with
USA Longhaul network, except that the end-to-end delay of
Re2A is better than MSF when the fraction of MC nodes is
very small. It is because there are 7 nodes in this network
with degree of 2. These nodes are useless in term of splitting
capacity even though they are set as MC nodes, but the setting
probably reduces the fraction of MC nodes reserved for the
other nodes. The worst situation can be happened when all
of these 2-degree nodes are set as MC nodes in very sparse
splitting settings (less than or equal to 7 MC nodes or 25%).

In European Cost-239 network, the result is better as shown
in Figure 20. As we can see, with the large group size (8
nodes or 80%), MSF appears the best one when achieving
the minimal link stress (the same as MO and Re2A, Figure

20(a), slightly better total cost than MF (Figure 20(b), nearly
the optimal end-to-end delay as Re2S (Figure 20 c,d).

In short, when the group size is set at high value, MSF
achieves the best link stress, a good total cost and end-to-end
delay. Especially, MSF works best in dense networks (e.g.
European Cost-239 network).

VI. CONCLUSION

In this paper the multicast routing problem in sparse
splitting WDM networks are investigated and well-known
algorithms for light-tress construction and their performance
are also reviewed. The comparison results show that the
algorithms offer various performance on the important metrics
as cost, delay and generated link stress. To ensure a best
trade-off among these metrics, we proposed a new algorithm
called Member-Splitter First (MSF in short). It is based on
the framework of the known Member-First algorithm. Our
proposal exploited the two very important elements in MF: the
priority definition of network links and the way of constructing
light-tree. MSF associates higher priority to MC nodes and
avoids MI nodes with high degree. To compare and evalu-
ate the performance of our proposed algorithm, number of
simulations have been carried out with all the algorithms.
Simulation results show that MSF outperforms MF in all the
performance metrics. Particularly, MSF achieves the lowest
link stress (among all the algorithms), a low total cost (ranks
second below the optimal produced by MO) and a low end-
to-end delay (also ranks second below the optimal resulted
from R2S). In general, MSF provides a good trade-off among
performance metrics in sparse splitting WDM networks and
with the large number of destinations. Besides, MSF works
better in dense networks (like European Cost-239 network).

REFERENCES

[1] M. Ali and J. S Deogun. Allocation of splitting nodes in all-
optical wavelength-routed networks. Photonic Network Communica-
tions, 2:247265, 2000.

[2] M. Ali and J. S Deogun. Cost-effective implementation of multicas-
ting in wavelength-routed networks. EEE/OSA Journal of Lightwave
Technology, 18:16281638, 2000.

[3] J. Elmirghani and Mouftah. All-optical wavelength conversion: tech-
nologies and applications in DWDM networks. IEEE Communications
Magazine, 38:8692, 2000.

[4] A Hamad. All optical multicasting in wavelength routing mesh networks
with power considerations: design and operation. PhD thesis, Iowa State
University, 2008.

[5] Xiao-Hua Jia, Ding-Zhu Du, and Xiao-Dong Hu. Integrated algorithms
for delay bounded multicast routing and wavelength assignment in all
optical networks. Computer Communications, 24:1390–1399, 2001.

[6] Hwa-Chun Lin and Sheng-Wei Wang. Splitter placement in all-optical
wdm networks. In GLOBECOM’05, pages 306–310, 2005.

[7] Biswanath Mukherjee. Optical WDM Networks. Springer, 2006.
[8] D. Nesset, T. Kelly, and D Marcenac. All-optical wavelength conversion

using SOA nonlinearities. IEEE Communications Magazine, 36:5661,
1998.

[9] Xiong Wang, Sheng Wang, and Lemin Li. A novel efficient multicast
routing algorithm in sparse splitting optical networks. Photon Netw
Commun, 14:287295, 2007.

[10] Xijun Zhang, John Wei, and Chunming Qiao. Constrained multicast
routing in WDM networks with sparse light splitting. IEEE/OSA Journal
of Lightwave Technology, 18:1917–1927, 2000.

[11] Fen Zhou. Routage multicast tout optique dans les rseaux WDM. PhD
thesis, INSA-UR1, 2010.

11

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12

L
in

k
st

re
ss

Group size

Topo: NSF. Number of MC nodes: 3

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Group size

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12

T
ot

al
 c

os
t

Group size

Topo: NSF. Number of MC nodes: 3

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Group size

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Group size

Topo: NSF. Number of MC nodes: 3

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Group size

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12

A
ve

ra
ge

 d
el

ay

Group size

Topo: NSF. Number of MC nodes: 3

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Group size

Fig. 15. Performance of algorithms vs. Group size in NSF network with 3
random MC nodes

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
in

k
st

re
ss

Group size

Topo: USA Longhaul. Fraction of MC nodes: 30%

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Group size

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 c

os
t

Group size

Topo: USA Longhaul. Fraction of MC nodes: 30%

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Group size

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 d
el

ay

Group size

Topo: USA Longhaul. Fraction of MC nodes: 30%

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Group size

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
el

ay

Group size

Topo: USA Longhaul. Fraction of MC nodes: 30%

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Group size

Fig. 16. Performance of algorithms vs. Group size in USA Longhaul network
with 30% random MC nodes

12

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12

L
in

k
st

re
ss

Number of MC nodes

Topo: NSF. Group size: 10

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Number of MC nodes

 10

 11

 12

 13

 14

 15

 16

 17

 2 4 6 8 10 12

T
ot

al
 c

os
t

Number of MC nodes

Topo: NSF. Group size: 10

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Number of MC nodes

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

M
ax

im
um

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Number of MC nodes

 2.5

 3

 3.5

 4

 2 4 6 8 10 12

A
ve

ra
ge

 d
el

ay

Number of MC nodes

Topo: NSF. Group size: 10

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Number of MC nodes

Fig. 17. Performance of algorithms vs. Number of MC nodes in NSF network
with group size of 10

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
in

k
st

re
ss

Fraction of MC nodes

Topo: USA Longhaul. Group size: 80%

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Number of MC nodes

 25

 30

 35

 40

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 c

os
t

Fraction of MC nodes

Topo: USA Longhaul. Group size: 80%

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Number of MC nodes

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 d
el

ay

Fraction of MC nodes

Topo: USA Longhaul. Group size: 80%

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Number of MC nodes

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 d
el

ay

Fraction of MC nodes

Topo: USA Longhaul. Group size: 80%

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Number of MC nodes

Fig. 18. Performance of algorithms vs. Number of MC nodes in USA
Longhaul network with group size of 80%

13

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 1 2 3 4 5 6 7 8 9 10

L
in

k
st

re
ss

Group size

Topo: European Cost-239. Number of MC nodes: 2

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Group size

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 c

os
t

Group size

Topo: European Cost-239. Number of MC nodes: 2

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Group size

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 d
el

ay

Group size

Topo: European Cost-239. Number of MC nodes: 2

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Group size

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 d
el

ay

Group size

Topo: European Cost-239. Number of MC nodes: 2

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Group size

Fig. 19. Performance of algorithms vs. Group size in European Cost-239
network with 2 random MC nodes

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8 9 10

L
in

k
st

re
ss

Number of MC nodes

Topo: European Cost-239. Group size: 8

Re2S
Re2A
MSF
MO
MF

(a) Link Stress vs. Number of MC nodes

 8

 8.5

 9

 9.5

 10

 10.5

 11

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 c

os
t

Number of MC nodes

Topo: European Cost-239. Group size: 8

Re2S
Re2A
MSF
MO
MF

(b) Total Cost vs. Number of MC nodes

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 d
el

ay

Number of MC nodes

Topo: European Cost-239. Group size: 8

Re2S
Re2A
MSF
MO
MF

(c) Maximum delay vs. Number of MC nodes

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 d
el

ay

Number of MC nodes

Topo: European Cost-239. Group size: 8

Re2S
Re2A
MSF
MO
MF

(d) Average delay vs. Number of MC nodes

Fig. 20. Performance of algorithms vs. Number of MC nodes in European
Cost-239 network with group size of 8

14

