
HAL Id: lirmm-00737617
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737617

Submitted on 2 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Less Hazardous and More Scientific Research for
Summation Algorithm Computing Times

Philippe Langlois, David Parello, Bernard Goossens, Kathy Porada

To cite this version:
Philippe Langlois, David Parello, Bernard Goossens, Kathy Porada. Less Hazardous and More Sci-
entific Research for Summation Algorithm Computing Times. [Research Report] RR-12021, Lirmm.
2012. �lirmm-00737617�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737617
https://hal.archives-ouvertes.fr

Less Hazardous and More Scientific Research
for Summation Algorithm Computing Times

Philippe Langlois, David Parello,
Bernard Goossens, Kathy Porada ∗

September, 29 2012

Abstract

Several accurate algorithms to sum IEEE-754 floating-point num-
bers have been recently published. The recent contributions by Rump,
Ogita and Oishi and the newest ones proposed by Zhu and Hayes are
examples of accurate summation algorithms. Some of these even com-
pute the faithful or the correct rounding of the exact sum, i.e. the
most accurate value with respect to the finite precision of the floating-
point arithmetic. This computed sum does not suffer anymore from
the condition number of the summation. In such cases, the run-time
performances and the memory prints become the discriminant proper-
ties to decide which algorithm is best.

In this paper we focus on the reliability of the run-time perfor-
mance measure of such core algorithms. We explain how right Rump
when he writes “Measuring the computing time of summation algo-
rithms in a high-level language on today’s architectures is more of a
hazard than scientific research.” Neither the classical flop count nor
hardware counter based measures are satisfactory here. We propose
to analyze the instruction level parallelism of these algorithms to re-
liably evaluate their performance potential. We use PerPI, a software

∗Univ. Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques, F-
66860, Perpignan , France. Univ. Montpellier II, Laboratoire d’Informatique Robotique
et de Microélectronique de Montpellier, UMR 5506, F-34095, Montpellier, France. CNRS,
Laboratoire d’Informatique Robotique et de Microélectronique de Montpellier, UMR 5506,
F-34095, Montpellier, France. first_name.last_name@univ-perp.fr

1

tool that automatizes an almost machine independent instruction-level
parallelism analysis. We study recent accurate summation algorithms
with a detailed focus on the two newest faithful ones. We illustrate
and discuss why PerPI provides a more reliable performance analy-
sis, the remaining weakness and how to improve confidence for future
contributions in this area.

Keywords: floating-point arithmetic, accurate summation, faithful sum-
mation, performance evaluation, reproducibility, instruction level parallelism,
PerPI.

The summation of an arbitrary number of floating-point values is a basic
but no so simple challenge for numerical software experts. Since 1965 numer-
ous papers have introduced new summation algorithms and at least one new
“better” algorithm has been published every year since 1999 – see Table 1.

The challenge is how to manage both the accuracy of the computed sum
and its computation speed?

This paper begins presenting why and how to measure the performance
of summation algorithms. In Section 2, we give an account of how difficult it
is to measure —and to publish— trustful run-times for such core algorithms.
Section 3 illustrates how an instruction level parallelism (ILP) analysis pro-
vides an insightful evaluation of their performance potential. In Section 4,
we use PerPI, a software tool for the ILP analysis of x86 binary codes, to
measure and analyze recent accurate and faithful summation algorithms.

1 Why should we measure the summation al-
gorithm performance?

In the following, u denotes the floating-point arithmetic precision. For in-
stance, u = 2−53 ≈ 10−16 in the binary64 format of the IEEE-754 standard
[6]. As usual and for any available rounding mode, fl(x) represents the
floating-point value which rounds the real value x at precision u —the over-
flow case is excluded.

2

1965 Møller, Ross
1969 Babuska, Knuth
1970 Linz, Nickel
1971 Dekker, Malcolm
1972 Kahan, Pichat
1974 Neumaier
1977 Bohlender
1981 Linnainmaa
1982 Leuprecht/Oberaigner
1983 Jankowski/Smoktunowicz/Wozniakowski
1985 Jankowski/Wozniakowski
1988 Pichat
1987 Kahan
1991 Priest
1992 Clarkson, Priest
1993 Higham
1997 Shewchuk
1999 Anderson
2001 Hlavacs/Ueberhuber
2002 Li et al.(XBLAS)
2003 Demmel/Hida, Nievergelt, Zielke/Drygalla
2005 Ogita/Rump/Oishi, Zhu/Yong/Zeng
2006 Eisinberg/Fedele, Klein, Zhu/Hayes
2008 Rump/Ogita/Oishi
2009 Rump, Zhu/Hayes
2010 Zhu/Hayes

Table 1: A search for optimal accuracy vs. speed trade off explains the
numerous summation algorithms published since 1965

3

1.1 floating-point summation accuracy

Classical recursive summation is a backward stable algorithm to compute∑n
i=1 xi. The computed sum accuracy is bounded by (n − 1) × cond × u.

This bound mainly depends on the condition number cond =
∑
|xi|/|

∑
xi|.

No more significant digits may be returned for large condition numbers. For
instance, this is the case when n × cond is larger than 1016 in the binary64
format.

Two straightforward solutions can be applied to improve accuracy. Firstly,
a larger precision can be simulated with a multiple precision arithmetic li-
brary. Twice (u2) or four times the u precision are implemented by the
double-double or the quad-double libraries [4]; arbitrary precision libraries
(uK) also exist, e.g. ARPREC [4] or MPFR [13]. Secondly, we can compen-
sate. Compensated algorithms calculate every intermediate sum rounding
error to improve the final result accuracy. Several compensation strategies
have been proposed since the famous Kahan’s one – see the survey [5, chap.
4]. We further pay more attention to the recent Sum2 algorithm and its
SumK generalisation proposed by Rump et al.[15].

Multiprecision arithmetic and compensation both lead to the same kind
of accuracy improvement: the computed sum error is now bounded by u +
O(nα)× cond× uK , with α ∈ [1, K]. This bound exhibits a better accuracy
than the previous one: the precision u is now an achievable accuracy. Nev-
ertheless this best accuracy is still constrained by the summation condition
number.

Much effort has been done to skip over this condition number limitation.
The major issue is to compute a faithfully or an exactly rounded sum for any
entry vector (of any reasonable length n).

1.2 Faithfully and exactly rounded sums

A faithful result is one of the two consecutive floating-point numbers en-
closing the exact sum, or the sum itself if it is a floating-point number. An
exactly (or correctly) rounded sum generalises to

∑
i the rounding model that

the IEEE-754 standard defines for the arithmetic operations +,−, The
exact sum is rounded according to a given rounding mode, i.e. as if the result
would be computed with an infinite precision and an unlimited range and
eventually rounded [14]. A significant over-cost should be paid to guarantee

4

an exactly rounded result when the sum is close to a rounding breakpoint.
As this difficult case is rather specific we will focus on the faithfully rounded
sums.

The algorithms presented next compute this faithful sum independently
of the entries (of any reasonable length n) condition number.

Distillation is an iterative technique which converges to the faithful (or
the exact) rounded value. The entry vector [x] is error free transformed
into vector iterates [x(1)], [x(2)], · · · , [x∗] such that

∑
xi =

∑
x∗i and [x∗]

provides the expected rounded value. Zhu and Hayes illustrate the distillation
technique clearly and apply it to their iFastSum algorithm [23]. They prove
the following property, which is useful to derive such an [x∗]: x∗i are the
non-overlapping components of [x∗] verifying |x∗1| < |x∗2| < · · · < |x∗n|, and
fl(x∗i + x∗i+1) = x∗i+1.

Another way to reach faithfulness is to enlarge the working space and
keep all the significant parts of the sum. Classical examples are Malcolm’s
or Kulish’s long accumulators [12, 7]. We may also cut the summands as
proposed in Rump et al.’s AccSum or FastAccSum algorithms [18, 17], or
sum exponent based partitions as done by Zhu and Hayes’HybridSum and
OnLineExact [23, 24]. These approaches all compute error-free partial sums.

1.3 Run-time efficiency becomes the discriminant factor

The previous algorithms all return the same best accurate computed sum for
a given computing precision. This property is hard to obtain and even harder
to prove: it definitely remains the main published contribution. Accuracy is
no more the discriminant feature between these summation algorithms. A
reliable evaluation of their run time and memory cost becomes here more
important than before. In practice, this issue helps to choose between these
accurately equivalent algorithms and in absolutes, it gives an appreciation
on how a new proposal improves the state of the art.

For these simple algorithms a reliable memory cost analysis is easy to
derive and present. In the next Section we show that we should not be so
confident with the published run-time efficiency analysis.

5

2 How to measure the summation algorithm
performance?

The classical way to evaluate the time complexity of a numerical algorithm
is a two step process. First, the number of floating-point arithmetic opera-
tions is counted (with no distinction of their elementary cost). This yields
a complexity exhibited as a function of the entry size1 taking care of the
multiplicative constant in the highest degree terms. Accurate and faithful
summation algorithms are linear. For instance, Rump’s AccSum and Fas-
tAccSum respectively cost 7n and 6n flops to return the faithful sum of n
entries with a given range of conditioning. Second, this theoretical count is
faced to run-time experimental measures; the run-time unit being seconds or
machine cycles. This experimental part gets more tedious as the computing
environment complexity increases.

Conclusions stated after such an analysis method are far from reliable.

2.1 Theoretical flop count vs. measured run-time

Theoretical flop count and measured run-time are not always proportional
and sometimes even not correlated.

We illustrate this first weakness with the two summation algorithms
DDSum and Sum2. DDSum is the classical recursive summation implemented
using double-double arithmetic [21, 10]. Sum2 is the compensated summa-
tion by Rump et al.[15]. These algorithms yield results of similar accuracy
simulating twice the computing precision, i.e. u +O(nα) × cond × u2, with
α equals to 1 or 2 for DDSum and Sum2 respectively. Table 2 presents the
theoretical flop counts and the measured numbers of cycles for these two
accurate algorithms. We compare them to the flops and cycles measured for
the classical recursive summation Sum run in precision u. The presented
ratios can be interpreted as the over-cost to double a length n computed
sum accuracy. The matching codes are presented in Section 3.2. The cycle
numbers are measured as detailed in A. To summarize these measures, we
extract a value exhibiting the average behavior of some considered comput-
ing environments. In the next Section we detail what these measures depend
on and how they may vary according to many parameters such as hardware,
compiler, sum length . . .

1Other parameters such as e.g. accuracy are not considered here.

6

Metric Sum Sum2 DDSum
Flop count n− 1 7n 10n
Flop count (approx. ratio) 1 7 10
Measured #cycles (approx. ratio) 1 2.5 7.5
Flop count / measured #cycles (approx.) 1 2.8 1.4

Table 2: Flop counts and measured run-times are not proportional

Table 2 shows that the time cost to be paid for accuracy is less than we
would expect from theoretical flop count. This has been identified in some
previous publications, e.g. [18], [24]. This gap from measured run-times to
flops increases as computing environments improve —compare for instance
[15] to [18].

Beside Sum, Sum2 and DDSum run respectively about 3 and 1.5 times
faster than what the flop count announces. Sum2 is three times faster than
DDSum, one half only coming from the flop count. The flop count is ap-
propriate neither to anticipate the improvement accuracy over-cost nor to
compare the two challenging accurate algorithms.

The last line in Table 2 exhibits that the flop counts and the measured
run-times are not proportional. Sum2 executes twice more floating-point
additions than DDSum and about three times more than Sum in a same time
unit. We claim that this is the significant property that reliably explains the
actual behavior of these implementations. Before describing how to provide
an automatic and reliable evaluation of this property we emphasize why
measuring run-times is a very difficult experimental process.

2.2 Timing measure is an ultimately difficult task

Measuring time has ever been a part of the numerical software developer’s
job. This task became ultimately difficult as the computing chain complexity
increased. Architecture, micro-architecture, compiler and operating system
interact and are the main parameters of this complexity.

We have already mentioned that the run-time measures yield non-reproducible
results. The execution time of a binary program varies, even using the same
data input and the same execution environment. This uncertainty has numer-
ous causes. Spoiling events such as background tasks, concurrent jobs or OS

7

interrupts are well-known factors. Modern processors include parts built to
run with a non-deterministic behavior: instruction scheduler, branch predic-
tor, cache management are examples of components implementing random-
ized algorithms. External conditions such as the room temperature modify
the clock frequency which invalidates second-based timings. Time measure
based on cycles is tricky with fixed duration bus cycles and variable duration
core cycles. Some timing functions provided by the OS are bus clock based
and others are core clock based. Both mix cycles coming from computa-
tion instructions which are core clock based and memory access instructions
which are bus clock based. The cycle can hardly be considered as a constant
duration unit on modern processors, e.g. Intel i7,. . .

It is wrong to assume that the hardware performance counters included
in these units manage this complexity and provide accurate and reliable
measures. Recent work from software and system performance experts em-
phasizes very well this bad news. Zaparanuks et al. caution performance
analysts to be suspicious of cycle counts gathered with performance counters
[22]. For example they exhibit that the cycle count depends on the measured
code memory placement. PAPI is one well-known interface library to these
hardware counters. Members of the PAPI team show that in practice coun-
ters that should be deterministic display variation from run to run on the
widely used x86_64 architecture. They also show variations from machine
to machine even when sharing the same architecture. Moreover, there is no
standard way to count floating-point or SSE instructions. Even the retired
instructions counters which only depend on the instruction set architecture
exhibit variations while they should keep stable from run to run and across
machines. In [20] they conclude that it is difficult to determine known “good”
reference counts for comparison.

Instruction and cycle counts are the key measures for performance eval-
uation in our scope. Cycle count is a non-deterministic value on the current
computing environments. Even the deterministic instruction count is hard
to measure with reliability on available hardware. Not surprisingly, it is very
hard to reproduce timings announced in publications.

2.3 How to trust not reproducible experimental results?

Run-time measures are mostly not reproducible even when the experimenters
do their best.

8

This important issue is also observable in a publication sequence about
summation by the same group of authors. Table 3 presents the amount of
numerical experiments in Rump et al. contributions between 2005 and 2009.

Year and Ref. 2005 [15] 2008 [18] 2008 [19] 2009 [17]
Algorithms Sum2 AccSum AccSumK FastAccSum

SumK NearSum FastPrecSum
AccSumHugeN

AccSign
% of numerical exper. 26% 20% 20% < 3%
Pages 9/34 7/35 6/30 1/37
% of timings 11% 100% 100% 100%
Pages 1/9 7/7 6/6 1/1
Tested environments 2 3 3 1
Timing tables 1 8 6 1
Timing figures 0 6 2 0

Table 3: Proportion of the numerical experiments reports in Rump et al.
publications. 2005: a picture, 2008: two movies, 2009: a slogan.

We identify two periods. First three articles are composed of 20-25% of
numerical experiments reports. These numerical experiments aim to illus-
trate the proposed algorithms accuracy and timings. As mentioned, these
experimental sections only countain timings for the faithful and correct sums
[18, 19]. The number of tested environments and reported tables and figures
increases significantly as shown with the last three lines of Table 3. Next
period: the latest published result also concerns mainly a faithful algorithm
[17]. The experimental part only includes timings. Less than 3% of this
paper is devoted to the experimental issue reduced to its minimum: a single
set of measures for a single computing environment. This brusque change is
indeed justified by the author: “Measuring the computing time of summa-
tion algorithms in a high-level language on today’s architectures is more of
a hazard than scientific research.” Yet, this paper is entitled Ultimately Fast
Accurate Summation.

In the recent papers by Zhu and Hayes, the experiments also suffer from
this unavoidable hazard. Some timing tables presented in [23] and [24] share

9

the same test environment (same computing system and input data). How-
ever the presented run-times vary significantly between the papers for some
algorithms: from -13% to +20% (Data no.3) and from -1.5% to +13% (Data
no.1) for iFastSum and HybridSum. It is also confusing that the ordinary
recursive summation Sum applied to several sums of the same length present
20% of run-time variation in the same result table [23, Table 4.1, Data no.3].

It is an open problem to measure and publish trustful run-times at least in
the area we study here. Theoretical flop count is indisputable but not signifi-
cant of the actual run-time efficiency on current computing units. Conversely
the experimental measure of computing run-times is a painful task yielding
at best a blurred picture of the performance limitations.

3 ILP and the PerPI tool
Langlois and Louvet showed in [9] that the instruction level parallelism (ILP)
explains the gap between the theoretical flop count and the running times for
this kind of core algorithms. PerPI is a software tool that automatizes this
ILP analysis proposed by Goossens et al. in [2]. In this Section we recall the
main principles of this ILP analysis and illustrate it with accurate algorithms
Sum2 and DDSum. We also briefly present the PerPI software tool we further
use to evaluate the performances of some accurate and faithful summation
algorithms.

3.1 ILP and the performance potential of an algorithm

We analyze the instruction level parallelism of a program run by simulating
it with a Hennessy-Patterson ideal machine [3]. This ideal machine executes
every program instruction as soon as possible, i.e. one cycle immediately
after the execution of the producers it depends on.

An ideal machine has infinite resources: infinite number of renaming reg-
isters, perfect branch predictor, perfect memory disambiguation. As a result,
running a code on an ideal machine is like having at hand the full execution
trace and picking up from this trace instructions as soon as their sources are
available. In such a way, the run is ordered according to the only producer-
consumer dependencies: the Read After Write true instruction dependency.

ILP represents the instruction potential of a program run to be executed

10

simultaneously. Every current processor, when running a program applied to
a data set, exploits a part of the ILP thanks to well-known techniques such
as pipelining, superscalar execution, out-of-order and speculative execution,
renaming, dynamic branch prediction or address speculation. . . In contrast,
the ideal machine exploits all the ILP.

Our main measure is the number C of cycles of such an ideal run. It
describes the best possible performance of the run when constrained by the
producer-consumer dependencies.

This measure does not depend anymore either on the machine or on the
conditions of the run (except the given program and data set). However,
this model still depends on the instruction set architecture (ISA) from which
is derived the cycle granularity, being the atomic time to execute a single
instruction. For instance, an ISA including a fused multiply and add (FMA)
instruction would count one less cycle to run a sequence of linked multipli-
cation and addition (as in a× b+ c) than an ISA without an FMA. This ISA
dependency will be presented and discussed in Section 4.3.

We also count the number I of executed instructions. The average number
of instructions executed per cycle I/C is the classically denoted ILP of a run.
In a way, ILP helps to get rid of the mentioned architectural dependency.
For instance in the previous FMA example, the ILP is the same in both
architectures. It may be used to compare programs rather than runs when the
data set which is used has no influence either on the number of instructions
run or on the number of cycles of the run.

In practice we count C and I for a given machine language. The smaller C
the potentially faster the algorithm thus explains the actually measured run-
times. The PerPI tool provides these measures for any program compiled
to run on a x86_64 machine. Before we start at the algorithmic level to
illustrate the principle of the analysis.

3.2 ILP analysis of Sum, Sum2 and DDSum

We study the ILP of the Sum, Sum2 and DDSum algorithms.

3.2.1 Sum

The following tables present the ideal executions of these algorithms, i.e. their
executions on the Hennessy-Patterson ideal machine. We apply the previ-

11

ously described model to identify the execution cycle k of every instruction
and exhibit the total number of cycles C = max k. Instructions are pre-
sented in the second leftmost column. The main part of these three sum
algorithms is a loop iterated n − 1 times. We denote every iteration index
i with i=1..n-1. The n− 1 rightmost columns contain the cycle number k
of the line-corresponding instruction for the column-corresponding iteration.
Cycles start at 0 executing all the possible initialisations.

Sum iter. 1 2 3 . . . n− 1
s = x[0]; 0
for(i=1; i<n; i++)

a s = s + x[i]; 1 2 3 · · · n-1
return(s); n

Table 4: The ideal execution of Sum takes n cycles

Table 4 shows the well-known sequential behavior of the classical recursive
summation. The core loop contains only one instruction. Iteration i has to
wait for the value of s computed at the previous iteration i−1 to be executed.
Sum takes n− 1 cycles to complete its loop and returns its result at cycle n.
The total cycle count for its ideal execution is CSum = n.

During these n cycles, I = n instructions are executed. Hence the aver-
age ILP of the classical recursive summation equals 1 confirming that this
algorithm has no instruction parallelism.

3.2.2 Sum2

The intermediate variables of the Sum2 and DDSum algorithms are explicit
in Tables 5 and 7. We do not mentioned associated initialisations.

The core loop of Sum2 contains 8 instructions executable in 6 cycles: as
t2 and t3 are independent variables instructions d and e are executed in
the same cycle. Two consecutive iterations of the core loop are linked by
the value of s (instruction b) and c (instruction h). Square boxed values
in Table 5 exhibit these two iteration dependencies. As for Sum, these two
accumulations are executed one cycle after the availability of the previous
iteration value. Yet, the whole iteration critical path does not suffer from
these dependencies: a new iteration starts every cycle and two consecutive
iterations overlap during 6 cycles. This is illustrated by Table 6. The n− 1

12

Sum2 iter. 1 2 3 . . . n− 1
s = x[0]; 0
for(i=1; i<n; i++){

a s_ = s; 1 2 3 · · · n-1
b s = s + x[i]; 1 2 3 · · · n-1
c t = s - s_; 2 3 4 · · · n
d t2 = s - t ; 3 4 5 · · · n+1
e t3 = x[i] - t; 3 4 5 · · · n+1
f t4 = s_ - t2; 4 5 6 · · · n+2
g t5 = t4 + t3; 5 6 7 · · · n+3
h c = c + t5; 6 7 8 · · · n+4

}
return(s+c); n+6

Table 5: The ideal execution of Sum2 takes n + 7 cycles. The rightmost
columns display the execution cycle of the corresponding line instruction for
iterations 1, 2, · · · , n− 1.

6a 7a 8a 9a 10a 11a 12a
5a 6b 7b 8b 9b 10b 11b 12b

4a 5b 5c 6c 7c 8c 9c 10c 11c
3a 4b 4c 4d 5d 6d 7d 8d 9d 10d
3b 3c 3d 4e 5e 6e 7e 8e 9e 10e

2a 2c 2d 3e 3f 4f 5f 6f 7f 8f 9f
1a 2b 1d 2e 2f 2g 3g 4g 5g 6g 7g 8g
1b 1c 1e 1f 1g 1h 2h 3h 4h 5h 6h 7h

| | | | | | | | | | | | |
Cycle 1 2 3 4 5 6 7 8 9 10 11 12

Table 6: Sum2 loop iterations during the 13 first cycles of its ideal execution
(including starting cycle 0). Instruction α of iteration i is iα (α = a, b, · · · , h).
7 iterations over the 12 started ones are completed. Sum2 ideally runs 8
instructions per cycle – after 6 initialising iterations.

iterations complete in n + 4 cycles. The final correction s+c adds one cycle

13

to the return statement. The total cycle count of the Sum2 ideal execution
is CSum2 = n+ 7 including the initialisation step.

Sum2 executes I = 8n − 5 instructions. The ILP tends to 8 executed
instructions per cycle for large n. Compared to Sum, Sum2 executes 8 times
more instructions (to double the accuracy of the computed result) but with-
out introducing any significant cycle over-cost on the ideal machine.

3.2.3 DDSum

DDSum iter. 1 2 3 . . . n− 1
s = x[0]; 0
for(i=1; i<n; i++){

a s_ = s; 1 8 15 · · · 7n-13
b s = s + x[i]; 1 8 15 · · · 7n-13
c t = s - s_; 2 9 16 · · · 7n-12
d t2 = s - t ; 3 10 17 · · · 7n-11
e t3 = x[i] - t; 3 10 17 · · · 7n-11
f t4 = s_ - t2; 4 11 18 · · · 7n-10
g t5 = t4 + t3; 5 12 19 · · · 7n-9
h s_l = s_l + t5; 6 13 20 · · · 7n-8
i s_ = s; 2 9 16 · · · 7n-12
j s = s + s_l; 7 14 21 · · · 7n-7
k e = s_ - s; 8 15 22 · · · 7n-6
l s_l = s_l + e; 9 16 23 · · · 7n-5

}
return(s); 7n-4

Table 7: The ideal execution of DDSum takes 7n − 5 cycles. The rightmost
columns display the execution cycle of the corresponding line instruction for
iterations 1, 2, · · · , n− 1.

The core loop of DDSum contains 12 instructions executable in 9 cycles:
t2 and t3 are again independent variables and the two copies of s (instruc-
tions a and i) can be executed as soon as the sources are updated (resp.
instructions j and b). Two consecutive iterations of the core loop are linked
by the values of s and s_l (resp. instructions j and l). Square boxed values
in Table 5 exhibit the longest iteration dependency on s. This dependency

14

introduces a 7 cycles delay between two consecutive iterations (while only
4 cycles are introduced by the s_l update). A new iteration starts every 7
cycles and two consecutive iterations overlap during 2 cycles.

2a 2c 3a 3c
1a 1c 1d 2b 2i 2d 3b 3i
1b 1i 1e 1f 1g 1h 1j 1k 1l 2e 2f 2g 2h 2j 2k 2l
| | | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 8: DDSum loop iterations during the 17 first cycles of its ideal execution
(including starting cycle 0). Instruction α of iteration i is iα (α = a, b, · · · , l).
2 iterations over the 3 started are completed. DDSum ideally runs about 1.7
instructions per cycle.

DDSum consists in n− 1 loop iterations. Hence the total cycle count for
its ideal execution is CDDSum = 7n − 5. Compared to Sum, the accuracy
improvement of DDSum increases the cycle count by a factor of 7.

DDSum executes I = 12n − 10 instructions. Its ILP tends to about 1.7
executed instructions per cycle for large n. DDSum exhibits about 4.5 less
instruction level parallelism than Sum2 as illustrated by Table 8.

3.2.4 ILP explains Table 2

In next Table 9, we recall the measures from Table 2 and summarize the
previous ILP analysis for Sum, Sum2 and DDSum programs.

The DDSum ILP analysis exhibits nearly the same cycle over-cost than
the measured one (resp. 7.5 and 7). It means that in the real machine used
for the cycle measure, the available computing units have been able to fully
exploit the DDSum ILP, running it at more than 90% of its performance
potential. However, DDSum ideally runs 7 times slower than Sum since its
ILP is low. Sum2 exhibits more ILP than DDSum, explaining its better
measured performances on current computing units. Sum2 presents such a
good ILP that it has the potential to run as fast as the original Sum program
while computing at a doubled precision. Table 6 exhibits the very good

15

Metric Sum Sum2 DDSum
Flop count (approx. ratio) 1 7 10
Measured #cycles (approx. ratio) 1 2.5 7.5
Flop count / measured #cycles (approx.) 1 2.8 1.4
Ideal C (approx. ratio) 1 1 7
Ideal I / C (approx.) 1 8 1.7

Table 9: ILP analysis explains Table 2 measures

regularity of its execution parallel flow: 8 floating-point additions can be
performed at every cycle. This parallelism is exploitable only when enough
floating-point units are provided. As this is not yet true on actual processors,
only 30% of the ILP is exploited by current SIMD units (SSE, AVX).

In both cases, the ideal cycle ratio C (compared to Sum) is more signif-
icant than the theoretical flop count to explain and strengthen the experi-
mental measures.

3.3 The PerPI tool automatizes this ILP analysis

In [2], Goossens et al. present the software tool PerPI which automatizes the
ILP analysis. PerPI measures and visualises the ILP of x86-coded algorithms.

The measuring part of PerPI is a Pin tool [16]. Pin [11] is an Intel (R) free
programmable tool. Pin consists of an engine which instruments any code at
run time with user-defined measurement routines. PerPI is a set of routines
aiming at computing the run code ILP. The ILP is computed while the real
code is run. The examining routine gives the control to the examined code
for a single instruction run and recovers control to update its examination
statistics. This back and forth execution is continued until the examined code
has been fully scanned. At each step of the examination, PerPI computes the
run cycle of the examined instruction, increments the number of instructions
run so far and possibly updates the highest run cycle. In such a way, PerPI
computes the ratio I/C, where I is the number of machine instructions run,
and C is the number of cycles needed to complete the run.

In practice, any x86 binary file may be measured with PerPI. PerPI also
outputs histograms of instructions per cycle and data-dependency graphs.
Histograms are similar to Tables 6 and 8. Measured instructions are x86

16

machine code ones. More details are presented in [2].

PerPI provides reproducible results for a given x86 binary file run on any
sample of a given data set. Only one run is sufficient to reliably measure
the performance potential of one implementation, and the analysis is also
automatic. For instance one run on one summand vector of a given length and
condition number yields the expected measure for (most of) the summation
algorithms. This is the main and significant contribution this tool allows us.
This simplifies very much the workload and avoids the previously described
experimental uncertainties.

PerPI measures the Henessy-Patterson ideal run of a x86 binary file. This
ideal run may suffer from some compiler choices. We have sometimes ob-
served that some compiler options or versions could degrade the instruction
level parallelism of the binary program. This allows the user to focus and to
understand how the algorithm, the compiler and the architecture interact.
Hence the implementation’s experimental measures are also explained and
strengthened, or put into perspective.

The next Section is devoted to this reliable run-time analysis for recent
accurate and faithful summation algorithms.

4 ILP analysis of recent summation algorithms
We consider seven recent and fast summation algorithms. Two are the previ-
ous Sum2 and DDSum accurate ones —the returned sum is as accurate as if
computed with twice the precision. The five faithful summation algorithms
are iFastSum, AccSum, FastAccSum, HybridSum and OnLineExact. We briefly
describe the principles of these latter ones to justify how to choose the test
data sets.

4.1 Some recent faithful and fast summation algorithms

We already mentioned Zhu and Haye’s distillation iFastSum which is a SumK
algorithm with a clever dynamic error control [23].

AccSum and FastAccSum are two adaptative summation algorithms pro-
posed by Rump et al. in [18, 17]. They split the summands into chunks that
sum exactly and then they carefully sum as many chunks as necessary. The

17

chunk width depends on the total number of summands n. To satisfy the tar-
geted accuracy constraint, this latter n has to be less than about the square
root of the precision, e.g. 226 ≈ 6.7 · 107 in the binary64 format. The chunk
position is set in AccSum, depending on the maximum absolute value of the
summands; it is more dynamic in FastAccSum. The latter choice also reduces
the number of floating-point operations by 30% which explains Rump’s de-
nomination. Rump measures better than expected run-times he attributes
to ILP quoting previous results of one of this paper’s author [8, 9]. The com-
putational effort of these three algorithms is proportional to the conditioning
of the sum.

Zhu and Hayes’ HybridSum and OnLineExact rely on the exponent ex-
traction of the summands [23, 24]. This allows to carefully accumulate the
summands in one or two short vectors (resp. for HybridSum and OnLineEx-
act) whose length depends on the exponent range, e.g. 2048 in the binary64
format. So the initial sum of length n is transformed into the distillation of
this short length vector (with iFastSum).

Zhu and Hayes optimize the final distillation step in OnLineExact, re-
moving all the zero components of the exponent indexed vector. The new
computational effort is mainly the n summands exponent extraction step.
For large n, Zhu and Hayes claim that neither the short vector distillation,
nor the actual exponent range of the summands significantly over-cost the
first step [24, p.7]. They also observe a significant difference between the
asymptotic flop count (5n) and the running times they measure for OnLine-
Exact. The authors argue that OnLineExact improves HybridSum thanks to
more ILP: two sequences of 4 floating-point operations seem to be optimized
for the considered implementation [24, p.4]. PerPI will automatically high-
ligth and justify these claims.

To conclude, the computational cost of these algorithms at least depends
on three parameters: the sum length n, its condition number cond and its
summand exponent range δ. Corresponding test data are detailed in A.1.

4.2 PerPI measures of summation algorithms

We mentioned that PerPI allows us to produce reliable results only running
the program once for a given value set of the parameters.

Figure 1 is a screen copy of PerPI results. It presents three runs of two
sample summation algorithms for a given vector of summands. First three

18

Figure 1: Reproducibility: one run is enough

runs of Sum share the same number of instructions I and cycles C, resp.
I = 13781 and C = 10000. Thanks to the previous ILP analysis of Sum
presented in Section 3.2.1, this latter value exhibits that the tested sum
length was n = 10000 here.

Next three runs are iFastSum ones. Surprisingly, the number of instruc-
tions run is not constant, ranging from 696076 to 696088. We do not have the
exact explanation of such a variation. However, it is always tiny (0.0012%
here) and never impacts the number of cycles C. Neither PerPI nor Pin are
responsible for this. The program applied to a unique data set really ran 12
more x86 machine instructions in the first run than in the two next ones.

The last lines in Figure 1 illustrate two nested measures: OnLineExact
calls iFastSum to distillate the short vector after the exponent extraction
step. PerPI measures OnLineExact whole execution and also provides the
local iFastSum internal run measure.

This reproducibility improves the reliability of the testing step and sim-
plifies it.

4.3 PerPI result analysis for the summation algorithms

For the considered summation algorithms we measure the minimum num-
ber of cycles C running binaries generated by three recent versions of gcc
described in Figure A.2. In the next figures, we present it as ratios com-
pared to Sum, i.e. CSum = 1; in other words the over-cost for accuracy or
faithfulness measured as a multiplicative factor of the number of cycles. The
(absolute) PerPI measure for the classic n length summation is Cabs

Sum = n.
Hence, these ratios also equal C/n, the average number of cycles for accu-
rately or faithfully add each summand of a n length entry.

19

 0

 1

 2

 3

 4

 5

 6

 7

 8

Sum(1)

Sum2(7)

DDSum(10)

1000

10000

100000

1000000

Figure 2: Number of cycles: ratios vs. Sum for cond = 1032 and n =
103, 104, 105, 106. (x-axis value in parenthesis is the flop count over n)

4.3.1 Accurate summations

Accurate Sum2 and DDSum are presented in Figure 2 while the five faithful
algorithms in next Figure 3 for varying n length sums of the same condition
number 1/u2. To compare the PerPI measures with the classic flop count, the
flop count ratio over n is the value in parenthesis recalled for every algorithm.

Compensated Sum2 is definitely the proper choice to compute a twice
more accurate sum. As expected from the algorithmic level ILP analysis
presented in Section 3.2, Sum2 benefits from a high ILP and so (ideally)
introduces no significant timing over-cost compared to original Sum. On the
contrary, DDSum takes 8 times more cycles to (ideally and actually) return
the accurate sum —which here nearly equals the full computing precision u.
Neither n nor cond impact these over-costs.

The ratio PerPI measure for DDSum is one unit larger than the one in
Table 9 derived from our algorithmic level analysis —we also recall that the
measured one is 7.5 in Table 9. As already mentioned it is not surprising
since PerPI measures the code actually generated by the compiler: the one
which is actually run by the computer. This one unit difference comes from

20

 0

 0.5

 1

 1.5

 2

 2.5

 3

Sum(1)

AccSumIn(7)

FastAccSumIn(6)

iFastSumIn(6)

HybridSum(6)

OnlineExact(5)

1000
10000
100000
1000000

Figure 3: Number of cycles: ratios vs. Sum for cond = 1032 and n =
103, 104, 105, 106. (x-axis value in parenthesis is the flop count over n)

the x86 instruction structure and so illustrates the ISA dependency. In next
three lines from Figure 7, s value is used twice and s_ has to be conserved
until instruction f. The compiler introduces one intermediate copy after in-
struction c to fit the x86 instruction structure that modifies one of the two
source registers.
c t = s - s_;
d t2 = s - t ;
f t4 = s_ - t2;

To conclude about accurate summations, PerPI results are broadly con-
sistent with the algorithmic level ones and confirm the analysis of Section 3.2.

4.3.2 Faithful summations

The ratios for the faithfully rounded sums are presented on Figure 3. All
of them are significantly smaller than the flop count ones. These algorithms
benefit from an important ILP that justifies better than expected measured
timings. The rightmost algorithms —the newest ones— are the potentially
fastest ones. Oldest FastAccSum and AccSum roughly double the cycle over-

21

cost compared to the newest ones. Nevertheless, the FastAccSum flop count
improvement (3n flop inner loop) does not provide a faster ideal execution
than AccSum(4n flop inner loop). The ideal execution of both iFastSum and
these two algorithms does not significantly depend on the sum length n.

4.3.3 A focus on HybridSum and OnLineExact

HybridSum and OnLineExact exhibit a very impressive and interesting behav-
ior. For larger n their ideal executions return a faithfully rounded value in
about half less cycles than the original Sum (which here returns a computed
sum with no significant digit). PerPI measure highlights this property but
how justify it?

The first step of HybridSum and OnLineExact is the extraction of the
summand exponents that generates a shorter vector whose length is bounded
by the exponent range (which is independent of n). It is clear that this
extraction part represents the main computational cost of their executions.
The assembly code study provides a two step explanation.

The first point comes from Sum that ideally runs in about C = n cycles.
The compiler unrolled the Sum inner-loop, e.g. gcc did it 8 times, and so im-
proves its control part: the number of control instructions is roughly divided
by 8. Nevertheless this loop unrolling does not shorten the longest depen-
dency chain made of the sequence of floating-point accumulations (actually
a scalar addition performed by the vector unit). We assume that no new
intermediate variable has been introduced by the compiler to hold the initial
order of the floating-point operations2. Hence the ideal execution of Sum for
a length n summation is forced to n cycles. On the contrary HybridSum and
OnLineExact do not suffer from such a long constraint since they only sum
the short vector(s) of length set produced by the exponent extraction step.
This step is basically one run through the n length entry vector (to extract
every summand exponent and actualize the corresponding cell of the short
vector). This extration step fully benefits from loop unrolling the compiler
introduces: here gcc unrolls it twice and so reduces by a factor 2 the run
through the n length vector. This explains that PerPI mesures about twice
less cycles than Sum for both HybridSum and OnLineExact (as soon as n is
large enough compared to the exponent range).

2In the integer summation case, the loop unroll is fully beneficial. The length of the
longest dependency chain is divided by the unrolling factor.

22

 0
 1
 2
 3
 4
 5
 6
 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=103

HybridSum, dU
HybridSum, dD

OnLineExact, dU
OnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=104

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=105

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=106

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

Figure 4: The dD exponent distribution impacts more OnLineExact than
HybridSum whereas it behaves similarly for dU and n ≥ 104.

Let us mention that in our case, the gcc compiler was able to automat-
ically transform HybridSum but not OnLineExact. It has been necessary to
rewrite OnLineExact in a form inspired by the HybridSum one to finally ben-
efit from the same compiler optimization.

How does the actual exponent range of the entry vector, i.e. the difference
between the larger and the smaller exponent, affect HybridSum and OnLine-
Exact? Zhu and Hayes denote it δ and mention that it “does not influence
the running time much except . . . for real sum equals zero” [24, p.7]. A larger
exponent range increases the short vector length and the final distillation
too. We have already mentioned that this step computational cost is not
significant compared to the extraction one. Indeed Figure 4 illustrates that
the execution lengths of HybridSum and OnLineExact (here normalized by n)
are constant while delta varies.

Nevertheless these ideal timings actually vary with factors of 4 and 6
(resp.) for two data despite sharing the same exponent range δ. More expla-
nation is necessary.

23

start : <HybridSum>
start : <iFastSumIn>
stop : <iFastSumIn> I[62719]::C[2580]::ILP[24.3097]

stop : <HybridSum> I[267980]::C[20020]::ILP[13.3856]
start : <OnlineExact>

start : <iFastSumIn>
stop : <iFastSumIn> I[334]::C[32]::ILP[10.4375]

stop : <OnlineExact> I[229263]::C[30026]::ILP[7.63548]

Figure 5: Final iFastSum runs more cycles in HybridSum than in OnLineExact
(2580 vs. 32) for data dD contrary to the whole summation process (20020
vs. 30026) —here n = 104 and δ = 500.

The exponents of the length n entry vector dU are uniformely randomized
in the range [−δ/2, δ/2] —U stands for uniform. Conversely vector dD has
n−1 entries with the same exponent−δ/2, and the last one with the exponent
δ/2 —D stands for Dirac. The exponent distribution modifies the instruction
level parallelism of HybridSum and OnLineExact. HybridSum and OnLineExact
have very similar execution lengths for data with uniformly distributed expo-
nents while OnLineExact suffers more than HybridSum from highly repetitive
exponents. This point is surprising since OnLineExact includes a concatena-
tion step that produces a very short vector in the latter case (actually about
twice the number of different value exponents, e.g. about 4 for dD). Hence the
final distillation step (with iFastSum) is definitely reduced to the minimum.
In comparison this final step in HybridSum distills one vector whose length is
set to the exponent range (independently of δ, e.g. 2048 here). PerPi actu-
ally measures it as presented in Figure 5. Nevertheless these two treatemnts
actually contribute very similarly to the ideal execution length of the whole
sum: added cycles are of the order of the non zero summand number. In the
ideal model every instruction is executed as soon as its sources are available.
Since the zero components of dD do not contribute to the final step sum all
the instructions using it are run very early in the ideal computation chain.
The difference comes from the extraction step loop as we explain it now.

Figure 6 is HybridSum extraction core loop. It contains 8 instructions
(a),. . . ,(h) run in 6 cycles. Two consecutive iterations are linked only if they
contain the same index jh or jl: accumulation is sequential in the matching
component a[]. Hence these iterations are highly parallel in general (thanks
to index loop k independency), and for dU in particular. In this case the

24

Cycle
1 (a) as = x[k]×split_constant
2 (b) t = as − x[k]
3 (c) h = as − t
4 (d) jh =exponent(h) (e) l = x[k]− h
5 (f) a[jh] = a[jh] + h (g) jl =exponent(l)
6 (h) a[jl] = a[jl] + l

Figure 6: HybridSum extraction step loop: only one cycle delay from the a[jh]
and a[jl] iteration dependency.

critical path becomes the loop control and so the dU extration step takes
about n/2 cycles since the loop is actually unrolled twice —see Figure 4. On
the contrary for data dD this extraction loop is fully sequential: exponent jh is
shared by n−1 iterations. Since two linked iterations could start every cycle,
the dD extraction step should take about n cycles. It is necessary to study the
assembly code to justify why we measure about 2n cycles for this latter case
—see Figure 4 or Figure 5. Two consecutive linked iterations actually start
every two cycles. Every accumulation (f) and (h) (a[jz] = a[jz] + z, with
z equals h or l resp.) is translated in two consecutive and linked assembly
instructions: i) store in a temporary register the result of one add between
one register value (h or l) and one memory value (matching a[]), then ii)
move the temporary register value back to the memory (a[]). The availability
of an instruction that could add register and memory values and store the
result back in the memory would overcome this ISA limitation. This explains
the previously mentioned 4 factor between dU and dD with a same exponent
range δ summed with HybridSum.

Figure 7 exhibits more dependency between the iteration loops through
linked accesses of table a1 produced by the extraction step in OnLineExact.
Instructions (c-c’) rewrite the table update a1[j] = a1[j] + x[k] in such a
way that its values remains in cu —and so avoid the table access, i.e. mem-
ory access, in next instructions (d-e). Let us remark it minimizes the delay
between the implicit read-update-store within a1[j] = a1[j]+x[k]. The linked
instruction chain (b-c-c’) introduces a 3 cycles delay between two consec-
utive starts of iterations that share the same a1[j]. The whole computing
chain while summing dU is not significantly enlarged by such a delay: the
high parallelism (with respect to the index loop k) of the whole extraction
step is dominant compared to few a1[j] conflicts. Again the dU extraction

25

Cycle
1 (a) j =exponent(x[k])
2 (b) c = a1[j]
3 (c) cu = c+ x[k]
4 (d) h = cu − c (c’) a1[j] = cu
5 (e) t1 = cu − h (f) t3 = x[k]− h
6 (g) t2 = c− t1
7 (h) l = t2 + t3
8 (i) a2[j] = a2[j] + l

Figure 7: OnLineExact extraction step loop: instruction chain (b-c-c’),
i.e. a1[j] = a1[j] + x[k], introduces a 3 cycles delay between two consecutive
starts of iterations that share the same a1[j] .

step by OnLineExact takes about n/2 cycles for the same reasons than for Hy-
bridSum. Conversely the critical computing chain is significantly impacted by
the 3 cycles delay when summing dD with OnLineExact. Now the dD extrac-
tion step needs about 3n cycles to be completed. So OnLineExact algorithmic
constraints explain the previously mentioned 6 factor between summing dU
and dD having the same exponent range δ.

To finish we mention that OnLineExact extraction step loop in Figure 7 in-
lines Knuth’s 2Sum (instructions (d-e-f-g-h). This latter can be replaced
by Dekker’s Fast2Sum, a similar error-free transformation of the floating-
point addition. It does not improve OnLineExact here. Fast2Sum also suffers
from the previously identified 3 cycles delay and includes branches that pre-
vent the compiler to unroll the extraction loop. In this case PerPI measures
more than n cycles for dU (compared to n/2), and the same 3n for dD since
loop unroll does not improve this summation case.

Figure 8 shows the PerPI histograms of the ideal runs of HybridSum and
OnLineExact. It display the instructions (y-axis) run for every cycles (x-axis);
colors differ according to the instruction type, e.g. SSE instructions are or-
ange while data transfer ones are purple. This illustrates again the exponent
distribution effect while summing dU and dD. The dD case run exhibits two
phases. In the first phase HybridSum and OnLineExact runs start globally
replicating the whole dU run, resp. about the first 5000 and 6000 cycles.
The exponent extraction step runs during this n/2 length step: shift (cyan)
and logical (blue) instructions applied to identify the binary exponent field

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

I
L
P

cycles

HybridSum d_U

BINARY

CALL

CMOV

COND_BR

CONVERT

DATAXFER

LOGICAL

MISC

NOP

POP

PUSH

RET

SEMAPHORE

SHIFT

SSE

UNCOND_BR

WIDENOP

 0

 10

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000

I
L
P

cycles

HybridSum d_D

BINARY

CALL

CMOV

COND_BR

CONVERT

DATAXFER

LOGICAL

MISC

NOP

POP

PUSH

RET

SEMAPHORE

SHIFT

SSE

UNCOND_BR

WIDENOP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

I
L
P

cycles

OnlineExact d_U

BINARY

CALL

CMOV

COND_BR

CONVERT

DATAXFER

LOGICAL

MISC

POP

PUSH

RET

SEMAPHORE

SHIFT

SSE

UNCOND_BR

WIDENOP

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

I
L
P

cycles

OnlineExact d_D

BINARY

CALL

CMOV

COND_BR

CONVERT

DATAXFER

LOGICAL

MISC

NOP

POP

PUSH

RET

SEMAPHORE

SHIFT

SSE

UNCOND_BR

WIDENOP

Figure 8: Ideal run histograms of HybridSum (top) and OnLineExact (down)
for dU (left) and dD (right), n = 104.

disapear after 5000 cycles. HybridSum ends in few more cycles in the dU case:
every summation of the exponent indexed table entries starts as soon as all
extractions and accumulations of the matching entries have been processed.
Since dU exponents are uniformely distributed the whole final summation
step (with iFastSum) runs actually in parallel with the extraction step. For
dD, the HybridSum histogram second phase, i.e. after cycle 5000, is the re-
maining part of the 2n long extraction step previously identified. It contains
only SSE and data transfert instructions. Similarly the last histogram ex-
hibits the 3n long extraction step in OnLineExact for data dD.

To conclude HybridSum and OnLineExact both benefit from about the
same ILP in general. We have explained how the exponent distribution,
more than the exponent range, may degrade this performance potential. On-
LineExact suffers more than HybridSum from algorithmic constraint which
may benefit the latter in practice. Nevertheless these faithful algorithms
both exhibit significantly better ideal performance than the classic inaccu-

27

rate summation thanks to a highly parallel extraction step that yields a very
short final faithful sum step.

This long discussion illustrates how tedious is the detailed analysis of
these performance issues, even in the simplified ideal model PerPI imple-
ments. It highlights how the compiler and the targeted ISA condition these
measures and the benefit of analyzing both the algorithmic and assembly
code levels.

5 Conclusion
Highly accurate algorithms need reliable performance evaluation. The classi-
cal flop count is no more significant enough for core algorithms and modern
computing units. The measures based on the hardware counters suffer from
uncertainty and non reproducibility. This important issue is reported in re-
cent publications proposing accurate summation algorithms aiming to always
faster run.

In this paper we detailed how the analysis of the instruction level paral-
lelism (ILP) of these algorithms provides a reliable and significant measure
of their performance potential. PerPI is a software platform to analyze and
visualise the ILP of programs compiled for the very common x86 based com-
puting units. We used PerPI to analyze recent accurate and faithful summa-
tion algorithms. Presented results are reliable and reproducible both in time
and location. The ideal execution analysis helps the user to draw up realistic
correlations with the measured ones. PerPI automatically justifies the ILP
effect some authors previously claim in this scope. It also gives a better un-
derstanding of the intrinsic behavior of the algorithm, how it interacts with
the compiler and the ISA and how it benefits from the underlying microar-
chitecture. This analysis may provide optimisation ideas as illustrated for
AccSum and FastAccSum in [2].

The paper is a first step toward more science and less hazard when
analysing the computing time of such core numerical algorithms. In this
scope PerPI results are still not always abstract enough. We have shown
that they may depend both on the instruction set and on the compiler, its
versions and its options. Defining the good abstraction level for such an
analysis is not an easy task. How choose between the algorithmic level ana-
lyis and the assembly language level one? The former is more abstract and

28

generic, the latter is more pragmatic and realistic. In our experience both
are fruitful and have been necessary to yield presented results.

While being reliable and reproducible these results suffer from one analy-
sis bias. Our approach is rather significant of the summation algorithm devel-
oper work. We focus these algorithms in themselves, i.e. without encompass-
ing them in applications using them, e.g. integration schema, linear algebra
subroutines. . . Such larger evaluation frames may reduce the global gain the
previously identified fastest summation algorithms introduce. Choosing a
significant benchmark set for these accurate summation algorithms is a first
issue to consider in the future.

We aim to guarantee reproducibility to improve the reliability of accurate
floating-point summation. The PerPI results presented here provide a refer-
ence for evaluating future contributions. The next step is the development
of an open and dynamic website repository satisfying the two main follow-
ing characteristics. First the website gathers and shares all the resources
that yield to a result it presents: tested and test files, make and program
source files, data files and data generators, real and ideal associated measures,
. . . The website also provides an open interaction that can be described such
as: upload your new algorithm, upload your new data, run them, compare it
to the state of the art and so let’s reliably contribute.

Acknowledgment. Authors thank Dr. Nicolas Louvet for his very first
and significant contributions to this work. Authors also thank Prof. Siegfried
M. Rump and Dr. Takeshi Ogita for their fruitful and incentive discussions.
Thanks to Prof. Denis Bonnecase for having checked the english language
used in this paper.

29

A The measure experimental process

A.1 How to choose the test data?

As mentioned in Section 3.2, the time complexity parameters vary according
to the summation algorithms. These parameters and corresponding tested
values are presented in next Tables A.1 and A.1. Parameter n is the sum
length and cond is the condition number of the summation as defined in Sec-
tion 1.1. The difference between the maximum and the minimum exponent
of the summands is denoted δ as in [23].

Algorithm Parameters Accuracy
Sum n Classic summation
Sum2, DDSum n, cond Twice more precision
AccSum, FastAccSum, iFastSum n, cond Faithful summation
HybridSum, OnLineExact n, cond, δ Faithful summation

Table 10: Timing parameters of the sum algorithms. n: sum length, cond:
condition number, δ: summand exponent length.

Parameter Tested values
n 103, 104, 105, 106

cond [108, 1040] ≈ [u−1/2,u−2.5]
δ 10, 100, 500, 1000, 1500, 2000

Table 11: Parameters value set.

We use the Rump et al.’s generator of arbitrary ill-conditioned dot prod-
uct [15] we modified such that it generates summands that cover an arbitrary
exponent range [−δ/2, δ/2]. Special entries dD of Section 4.3 are derived from
this generator slightly modified to match the desired data shape.

A.2 Our fuzzy PAPI picture

As explained in Section 2, we present as few as possible results of measured
run-times. Table A.2 only aim to present the general tendency of observed re-
sults. They should be analysed more qualitatively than quantitatively. These

30

cond Sum2 DDSum AccS. FastAccS. iFastS. HybridS. OnLineE.
10 8 2–3 7–8 4–5 4–5 7–8 5* 4*
1016 2–3 7–8 5–6 5–6 7–8 5* 4*
1024 – – 7–8 7 13 5* 4*
1032 – – 8–9 7–8 18 5* 4*
1040 – – 10-12 9–10 18+ 5* 4*

Table 12: Tendencies of the measured run-time ratios (Sum=1); * for n > 105.

Intel(R) Core(TM) i7 CPU870 2.93GHz, x86_64
GNU/Linux kernel 2.6.38-8-generic
gcc (4.6.3) -std=c99 -march=corei7 -mfpmath=sse -O3 -funroll-all-loops
icc (12.0.4_20110427) -std=c99 -mtune=corei7 -xSSE -axsse4.2 -O3 -funroll-all-
loops

Figure 9: Computing environment for measured run-times

tendencies summarize several set of experiments that have been realised as
carefully as possible.

Timings rely on the hardware performance counters mainly using the
PAPI library. In this case, the counter delays have been evaluated and taken
into account. Direct access to some hardware performance counter (e.g. the
time-stamp counter) with assembly language call gives the same tendencies.
For every set of parameter values, timing is the average of reliable 50 runs.

Binary code were generated by two compilers with options that provide
as fast as possible reliable runs. These computing environment details are
presented in Figures A.2 and A.2.

Intel(R) Core(TM)2 Duo CPU P8800 @ 2.66GHz, x86_64
Linux version 3.2.0-3-amd64 (Debian 3.2.23-1)
gcc-4.7 (Debian 4.7.1-7) 4.7.1
gcc-4.6 (Debian 4.6.3-8) 4.6.3
gcc-4.5 (Debian 4.5.3-12) 4.5.3
gcc -std=c99 -march=core2 -msse2 -mfpmath=sse -O3 -funroll-all-loops

Figure 10: Computing environments for PerPI measures

31

References
[1] D. H. Bailey. Twelve ways to fool the masses when giving performance

results on parallel computers. Supercomputing Review, pages 54–55,
Aug. 1991.

[2] B. Goossens, P. Langlois, D. Parello, and E. Petit. PerPI: A tool to mea-
sure instruction level parallelism. In K. Jónasson, editor, Applied Par-
allel and Scientific Computing - 10th International Conference, PARA
2010, Reykjavík, Iceland, June 6-9, 2010, Revised Selected Papers, Part
I, volume 7133 of Lecture Notes in Computer Science, pages 270–281.
Springer, 2012.

[3] J. L. Hennessy and D. A. Patterson. Computer Architecture – A Quan-
titative Approach. Morgan Kaufmann, 2nd edition, 2003.

[4] URL = http://crd.lbl.gov/~dhbailey/mpdist, .

[5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2nd edition, 2002.

[6] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arith-
metic. Institute of Electrical and Electronics Engineers, New York, Aug.
2008.

[7] U. W. Kulisch and W. L. Miranker. Computer Arithmetic in Theory
and in Practice. Academic Press, New York, 1981.

[8] P. Langlois. Compensated algorithms in floating point arithmetic. In
12th GAMM - IMACS International Symposium on Scientific Com-
puting, Computer Arithmetic, and Validated Numerics, Duisburg, Ger-
many, Sept. 2006. (Invited plenary speaker).

[9] P. Langlois and N. Louvet. More instruction level parallelism ex-
plains the actual efficiency of compensated algorithms. Research Report
hal-00165020, DALI Research Team, July 2007. http://hal.archives-
ouvertes.fr/hal-00165020.

[10] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskan-
dar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson,
T. Tung, and D. J. Yoo. Design, implementation and testing of extended

32

and mixed precision BLAS. ACM Transactions on Mathematical Soft-
ware, 28(2):152–205, June 2002.

[11] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood. Pin: Building customized program anal-
ysis tools with dynamic instrumentation. In PLDI ’05: Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation,, pages 190–200. ACM, 2005.

[12] M. A. Malcolm. On accurate floating-point summation. Comm. ACM,
14(11):731–736, 1971.

[13] The MPFR library. URL = http://www.mpfr.org/, .

[14] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010.

[15] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[16] URL = http:www.pintool.org, .

[17] S. M. Rump. Ultimately fast accurate summation. SIAM J. Sci. Com-
put., 31(5):3466–3502, 2009.

[18] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
– part I: Faithful rounding. SIAM J. Sci. Comput., 31(1):189–224, 2008.

[19] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
– part II: Sign k-fold faithful and rounding to nearest. SIAM J. Sci.
Comput., 31(2):1269–1302, 2008.

[20] V. Weaver and J. Dongarra. Can hardware performance counters pro-
duce expected, deterministic results? In 3rd Workshop on Functionality
of Hardware Performance Monitoring, 2010, pages 1–11, Atlanta, USA,
2010.

[21] A reference implementation for extended and mixed precision BLAS.
http://crd.lbl.gov/~xiaoye/XBLAS, .

33

[22] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance
counter measurements. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS 2009, April 26-28,
2009, Boston, Massachusetts, USA, pages 23–32, 2009.

[23] Y.-K. Zhu and W. B. Hayes. Correct rounding and hybrid approach
to exact floating-point summation. SIAM J. Sci. Comput., 31(4):2981–
3001, 2009.

[24] Y.-K. Zhu and W. B. Hayes. Algorithm 908: Online exact summation of
floating-point streams. ACM Transactions on Mathematical Software,
37(3):37:1–37:13, Sept. 2010.

34

