
HAL Id: lirmm-00737656
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737656v1

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tension Distribution Method with Improved
Computational Efficiency
Johann Lamaury, Marc Gouttefarde

To cite this version:
Johann Lamaury, Marc Gouttefarde. A Tension Distribution Method with Improved Computational
Efficiency. Cable-Driven Parallel Robots, 12, Springer, pp.71-85, 2013, Mechanisms and Machine
Science, 978-3-642-31988-4. �10.1007/978-3-642-31988-4_5�. �lirmm-00737656�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737656v1
https://hal.archives-ouvertes.fr


A Tension Distribution Method with Improved
Computational Efficiency

Johann Lamaury and Marc Gouttefarde

Abstract This paper introduces a real-time capable tension distribution algorithm
for n degree-of-freedom cable-driven parallel robots (CDPR) actuated by n+2 cables.
It is based on geometric considerations applied to the two-dimensional convex poly-
tope of feasible cable tension distribution. This polytope is defined as the intersection
between the set of inequality constraints on the cable tension values and the affine
space of tension solutions to the mobile platform static or dynamic equilibrium.
The algorithm proposed in this paper is dedicated to n degree-of-freedom CDPR
actuated by n + 2 cables. Indeed, it takes advantage of the two-dimensional nature
of the corresponding feasible tension distribution convex polytope to improve the
computational efficiency of a tension distribution strategy proposed elsewhere. The
fast computation of the polytope vertices and of its barycenter made us successfully
validate the real-time compatibility of the presented algorithm.

1 Introduction

A cable-driven parallel robot (CDPR) mainly consists of a base, a mobile platform
connected in parallel to the base through flexible cables and motorized winches. The
cable lengths can be modified by means of the winches thereby allowing the motion
control of the platform. Contrary to common parallel robot architectures, CDPR
with large to very large workspaces can be designed as cables can be unwound over
great lengths. Moreover, their light weight, fast motion, heavy payload capabilities
and high reconfigurability potential make these robots good candidates for large-

J. Lamaury (B) · M. Gouttefarde
Laboratoire d’Informatique, de Robotique et de Micro-électronique de Montpellier,
161 rue Ada, 34392 Montpellier Cedex 5, France
e-mail: johann.lamaury@lirmm.fr

M. Gouttefarde
e-mail: marc.gouttefarde@lirmm.fr

71



72 J. Lamaury and M. Gouttefarde

dimension applications, for example pick-and-place tasks across a manufacturing
plant.

CDPR are generally classified as fully constrained or else under-constrained.
Examples of fully constrained CDPR are the FALCON robot [6], the SEGESTA
[4] and the KNTU [10]. A well-known under-constrained CDPR is the NIST
ROBOCRANE [1]. In both cases, the number of cables driving the mobile plat-
form can be greater than its number of degrees of freedom (DOF). When controlling
such redundantly actuated CDPR, the issue of cable tension distribution is to be dealt
with. Indeed, at any point along a trajectory, there exists an infinity of possible sets
of cable tensions and one generally wants to find a feasible one, possibly satisfying
some optimality criterion. A cable tension vector is feasible when all its components
are contained between minimal and maximal tension values tmin and tmax. The max-
imum tmax is notably given by the maximal admissible cable strain whereas tmin is
usually set as the lowest acceptable tension with the goal of avoiding slack cables
(tmin ≥ 0).

Several methods have been proposed, mainly for fully constrained CDPR, in
order to find (optimal) feasible tension distributions among the infinite number of
possible ones. Fang et al. [4] put forward an optimal tension distribution algorithm
that uses a 1-norm linear programming method (LPM) for configuration with one
degree of redundancy (DOR), i.e. in the case m = n + 1 where m and n are the
number of cables and of DOF, respectively. LPM was also used to solve higher
DOR in [2, 10]. However, LPM does not guarantee the continuity along a given
trajectory which may result in high mechanical loads and vibrations. To avoid them,
quadratic programming methods (QPM) may be used [3, 5] but they are suffering
from non-predictable worst-case runtime as specified in [3]. For suspended CDPR,
Oh and Agrawal [8] proposed to plan the robot trajectory to stay into the feasible
tension space by describing this latter as a set of linear inequalities. Yu et al. [11]
applied QPM for the control of suspended CDPR with redundant cables, coupling
basic tension optimization problem to an active stiffness control scheme.

Nevertheless, all these methods are using optimization procedures, which are most
of the time expensive in terms of computation time and against real-time control con-
straints because of their iterative nature. Consequently, for real-time control needs, a
deterministic non-iterative method is highly preferable. Mikelsons et al. [7] proposed
such a method in which the barycenter of the polytope of feasible tension distrib-
utions is determined. To deal with the case of redundant under-constrained CDPR
(crane-like configuration), the method proposed in [7] has the additional interest
of providing a tension vector contained within the polytope of feasible tension dis-
tributions “far” from the polytope boundaries. However, this method requires the
computation of all the vertices of this polytope which takes a lot of time if a brute
force method, such as the one proposed in [7], is used.

The contribution of this paper is a fast algorithm aiming at a real-time imple-
mentation of the barycentric approach proposed in [7]. The proposed algorithm is
dedicated to CDPR with two DOR, i.e., actuated by m = n+2 cables. Indeed, it takes
advantage of the two-dimensional nature of the corresponding polytope of feasible
tension distributions which is in fact a convex polygon. The idea consists essentially



A Tension Distribution Method with Improved Computational Efficiency 73

in computing a first vertex of this polygon and, then, in finding the others by “mov-
ing” from one vertex to the next one while following the polygon one-dimensional
boundary which is made of straight line segments. Once all the polygon vertices are
determined, the barycenter (centroid) is simply obtained by well-known closed-form
formulas. Therefore, in the case of CDPR with two DOR, this paper complements
[7] by providing an efficient means of implementing the tension distribution strategy
proposed therein.

This paper is organized as follows. Section 2 details the proposed real-time capable
algorithm. A brief description of our prototype is given in Sect. 3. Some preliminary
simulation results are reported in Sect. 4. Finally, conclusions and future works are
addressed in the last section.

2 A Fast Tension Distribution Algorithm

2.1 Mikelsons’ Barycenter Approach

The wrench f applied by the cables on the mobile platform is given by [9]

Wt = f (1)

where W is the wrench matrix and t = [t1, ..., tm]T ∈ R
m is the cable tension vector.

The challenge lies in the cable inability to transmit compressive forces, which means
that t has to remain non-negative. This paper deals with n-DOF CDPR driven by
m = n + 2 cables, i.e., with r = 2 DOR. Consequently, the n × m wrench matrix
W is non-square and, assuming that W has full rank, (1) is equivalent to

t = W+f + Nλ = tp + tn (2)

where W+ is the Moore-Penrose pseudo-inverse of the wrench matrix, N = null(W)

= [k1 k2] is a full rank m×2 matrix and λ = [λ1 λ2]T is an arbitrary 2-dimensional
vector. The two columns of N form a basis of the nullspace of W. tp is the particular
minimum-norm solution of (1) and tn is the homogeneous solution that maps λ to
the nullspace of W.

Let us define Σ ⊂ R
m the r -dimensional affine space (r = 2 in this paper) of the

solutions to (1)
Σ = {t | Wt = f} (3)

whose points are given by (2). Let us also define Ω ∈ R
m as the m-dimensional

hypercube of feasible cable tensions

Ω = {t | tiε [tmin, tmax] , 1 ≤ i ≤ m} (4)



74 J. Lamaury and M. Gouttefarde

Fig. 1 Preimage of � in the plane (λ1, λ2) for the pose [0.9 1.2 1 10 10 20]T (units: meters
and degrees) with a 6.34 kg total mass (XYZ Euler angle convention)

where we assume that the tmin and tmax limiting tension values are the same for the
m cables. The intersection � = Ω ∩ Σ of the hypercube Ω and the affine space Σ

is a convex polytope [12]. This feasible tension distribution polytope � represents
the set of tension solutions t to (1) satisfying the inequalities tmin ≤ ti ≤ tmax. The
preimage of � under the affine mapping (N, tp) is also a convex polytope which,
according to (2), is defined by the following set of 2m linear inequalities

tmin − tp ≤ Nλ ≤ tmax − tp (5)

In this paper, since r = 2, the feasible tension distribution convex polytope � is
two-dimensional and its preimage under the affine mapping (N, tp) is thus a convex
polygon.

For example, Fig. 1 shows the preimage of � obtained for a static equilibrium
pose of the mobile platform of ReelAx8, a CDPR prototype briefly described in
Sect. 3. In (5), each of the 2m inequalities defines an halfplane. Each of the 2m lines
bounding these halfplanes corresponds to values of λ for which one of the cable
tension is equal to tmin or to tmax. Figure 1 shows some of these lines together with the
preimage of �.

In order to select a “safe” tension distribution, i.e. one which is far from the
boundaries of the polytope �, Mikelsons et al. [7] proposed to find � barycenter.
Their method consists essentially in computing all the vertices of the preimage of �.
To this end, all the 2 × 2 subsystems of linear equations obtained by selecting two of
the 2m inequalities of (5) are solved. A solution λ of one of these systems is a vertex
if it verifies (5). Once all the vertices of the preimage of � are known, in [7], its
barycenter λc is determined by means of a triangulation. Finally, the barycenter of �

is calculated as the image of λc under the affine mapping (N, tp), i.e., as tp + Nλc.



A Tension Distribution Method with Improved Computational Efficiency 75

The computational burden of the method presented in [7] is thus mainly deter-
mined by the number of non-singular 2 × 2 subsystems of linear equations drawn
from (5). In the case n = 6 and m = 8, there are C2

16 = 120 such subsystems. But,
as noted in [2], since each line of (5) defines two halfplanes bounded by two parallel
lines, the number of non-singular ones is equal to C2

16 − 8 = 112.
The method of Mikelsons et al. provides a continuous tension distribution with

a predictable worst-case runtime. However, because of the high number of linear
systems that must be solved, the computation time is too high to fit our real-time
controller loop time so that we were not able to implement it on our prototype
ReelAx8. Besides, to the best of our knowledge, no real-time implementation of this
method has been reported.

The present paper proposes a strong decrease of the computational time of this
method by finding a first vertex of the convex polytope � and then moving along the
polytope hull in order to determine the other vertices. An efficient implementation of
this idea is discussed in Sect. 2.2. It is dedicated to CDPR with 2 DOR as it requires
the feasible tension distribution convex polytope to be two dimensional. Simulation
results show that the proposed improvement provides a real-time compatibility.

2.2 Detailed Description of the Proposed Algorithm

2.2.1 Initialization

Let us consider the intersection point, represented by the two-dimensional column
vector λi j , between two lines Lib and L jb , {i, j} ∈ {1, . . . , m}, i �= j . Lib and L jb are
obtained by taking two inequalities among the 2m of (5) and replacing the inequality
signs by equalities. These two lines are thus defined by the following equations

{
bi − tpi = niλi j

b j − tp j = n jλi j
(6)

where each one of bi and b j is equal either to tmin or to tmax depending on which
inequalities are being considered. The two-dimensional line vectors ni and n j denote
the lines i and j of N, respectively. Examples of such Lib and L jb lines and intersec-
tion points λi j can be seen in Fig. 1. Furthermore, λi j is a vertex vi j of the preimage
of � if

tmin − tp ≤ Nλi j ≤ tmax − tp (7)

which means thatλi j is included intoΩ . The algorithm proposed in this paper consists
in first finding a vertex vini t of the preimage of �, which is a convex polygon, and,
then, in moving along one of the two lines Lib or L jb intersecting at vini t until a new
vertex of the polygon is reached. This process continues until it reaches the polygon



76 J. Lamaury and M. Gouttefarde

vertex which belongs to the other line intersecting at vini t , i.e, when all the vertices
of the convex polygon have been found.

The first step is thus the calculation of the first vertex vini t . To this end, we are
looking for an intersection point λi j which satisfies the following requirements

⎧⎨
⎩

bi − tpi = niλi j

b j − tp j = n jλi j

tmin − tp ≤ Nλi j ≤ tmax − tp

(8)

By taking a couple i and j of cables among the C2
m available and taking tmin or tmax

as the value of bi and of b j , the two equalities of (8) are solved (if the corresponding
linear system is not singular), and the resulting vector λi j is the searched vini t vertex
if the two inequalities of the last line of (8) are verified. From a general point of view,
it may be necessary to consider many couples i and j of cables and combinations of
tmin and tmax values before such a first vertex of the polygon can be found. However, in
practice, let us note that the computation of the first vertex vini t should generally not
be an issue since the first point of a trajectory is generally a known (static equilibrium)
mobile platform pose at which the preimage of � is already determined. Indeed, this
first pose is typically either the home starting pose of the CDPR for which all the
computations can be done offline and once and for all, or else the end point of a
previous trajectory for which the preimage of � has been calculated previously. For
any other point of the trajectory at hand, since the preimage of � evolves continuously
in time, the first vertex vinit is easily obtained from the first vertex or any of the other
vertices of preimage of � associated with the previous point of the trajectory.

2.2.2 From One Vertex to the Next One

Once the first vertex vini t is known, the second step consists in moving along one of
the two lines Lib or L jb intersecting at vini t until a new vertex v of the convex polygon
(preimage of �) is found. Let us arbitrarily choose Lib . The points p belonging to
this line are given by

p = vini t + αnT
i⊥ (9)

where α is a scalar and ni · nT
i⊥ = 0, i.e., the line vector ni⊥ is orthogonal to ni and

thus defines the direction of the line Lib . With ni = [a b], there exists two possible
vectors ni⊥ which are ni⊥1 = [b − a] and ni⊥2 = [−b a]. Care must be taken in
the choice between these two possible vectors. Indeed, the goal is to move along
the boundary of the convex polygon and not to follow Lib while moving away from
the polygon. Let us decide that α ≥ 0 in (9) so that ni⊥ must be directed toward the
interior of the polygon in order to move along the polygon boundary. Two cases have
to be distinguished.



A Tension Distribution Method with Improved Computational Efficiency 77

• Case 1: b j = tmin. In this case, moving along line Lib from its intersection point
with line L jb while staying on the polygon boundary requires

tmin − tp j ≤ n j p ⇔ tmin − tp j ≤ n j vini t + αn j nT
i⊥⇔ n j nT

i⊥ ≥ 0
(10)

The last equivalence is true because α ≥ 0 and also because, vini t lying on line
L jb , we have tmin − tp j = n j vini t . Therefore, among the two possible vectors
ni⊥ , the good choice in order to stay on the polygon boundary is the one such that
n j nT

i⊥ ≥ 0.

• Case 2: b j = tmax. In this second case, moving along line Lib from its intersection
point with line L jb while staying on the polygon boundary requires

n j p ≤ tmax − tp j ⇔ n j vini t + αn j nT
i⊥ ≤ tmax − tp j

⇔ n j nT
i⊥ ≤ 0

(11)

since α ≥ 0 and n j vini t = tmax − tp j . This time, among the two possible vectors
ni⊥ , the good choice is the one such that n j nT

i⊥ ≤ 0.

Now that we know along which direction to move along line Lib in order to follow
the polygon boundary from vertex vini t , we aim at finding the other polygon vertex
v belonging to Lib . In fact, this other vertex is the point p in (9) corresponding to the
maximal value of α ≥ 0 such that all the inequalities of (5) are verified. Equivalently,
this maximal value is equal to the smallest α ≥ 0 such that one of the inequalities of
(5) apart from inequalities i and j becomes an equality. Therefore, let us consider
line k of (5), k ∈ {1, . . . , m}\{i, j}, and let us substitute λ by the point p of Lib given
by (9), i.e.

{
tmin − tpk ≤ nkp ≤ tmax − tpk

p = vini t + αnT
i⊥

(12)

which is equivalent to

tmin − tpk ≤ nkvini t + αnknT
i⊥ ≤ tmax − tpk (13)

Let us assume that none of the two Lkb lines, the two lines bounding the halfplanes
defined by the two inequalities of line k of (5), crosses line Lib at vini t . This amounts
to assuming that

tmin − tpk < nkvini t < tmax − tpk (14)

The particular case in which three lines are crossing at the same point (here lines
Lib , L jb and Lkb crossing at the current vertex) is addressed in Sect. 2.3.

Now, let us consider (13) and (14).



78 J. Lamaury and M. Gouttefarde

• If nknT
i⊥ = 0 then ∀α ≥ 0 the inequalities of the system (12) cannot become

equalities (which means that Lib is parallel to the two Lkb lines).
• If nknT

i⊥ > 0 then ∀α ≥ 0,

nkvini t + αnknT
i⊥ ≥ nkvini t > tmin − tpk (15)

Consequently, (13) could only become an equality by its right side when α ≥ 0,
i.e., nkvini t + αnknT

i⊥ = tmax − tpk , which is satisfied by the following value of
α ≥ 0

αk = tmax − tpk − nkvini t

nknT
i⊥

(16)

• If nknT
i⊥ < 0 then ∀α ≥ 0,

nkvini t + αnknT
i⊥ ≤ nkvini t < tmax − tpk (17)

Consequently, (13) could only become an equality by its left side when α ≥ 0,
i.e., nkvini t + αnknT

i⊥ = tmin − tpk , which is satisfied by

αk = tmin − tpk − nkvini t

nknT
i⊥

(18)

As a consequence, the sign sk = Sign(nknT
i⊥) indicates which side of inequality

(13) can become an equality for α ≥ 0. Moreover, since vini t is the intersection
of lines Lib and L jb , the line Lkb must be found for k belonging to the index set
{1, . . . , m}\{i, j} that leaves 2(m − 2) possibilities (two possible line equations per
line of (5)). By computing sk , the previous analysis allows us to reduce this number
to m − 2 possibilities.

In order to find the next vertex of the polygon, i.e., the second polygon vertex
belonging to Lib , the m αk are thus computed by means of (16) or (18) and the one,
denoted αv, which will determine the next vertex is the smallest, that is

αv = min
k,nk nT

i⊥ �=0

(
bk − tpk − nkvini t

nknT
i⊥

)
(19)

where bk = tmin or tmax despite of the value of sk . The next vertex v is thus given by

v = vini t + αvnT
i⊥ (20)

and the line Llb which crosses Lib at v while supporting the polygon along one of
its edge is the set of point p verifying bl − tpl = nlp where bl = tmax if nlnT

i⊥ > 0

and bl = tmin if nlnT
i⊥ < 0 and



A Tension Distribution Method with Improved Computational Efficiency 79

l = argmin
k,nk nT

i⊥ �=0

(
bk − tpk − nkvini t

nknT
i⊥

)
(21)

Starting from this newly found polygon vertex v, which is the intersection point
between Lib and Llb , and moving along line Llb (in the appropriate direction), the
next polygon vertex is found in exactly the same way as vertex v has been found.
This process continues until the newly found vertex lies on the same line as vini t

(L jb in our example), at which point the research stops since all the vertices of the
convex polygon, preimage of �, have been determined.

2.2.3 The Barycenter Calculation

The final step is the calculation of the barycenter vc of the preimage of � whose
q vertices vp = [vp1 vp2 ]T , p ∈ {1, . . . , q} have just all been determined. The
preimage of � is a convex polygon which is not self-intersecting. Therefore, its
centroid vc = [vc1 vc2 ]T is given by the following well-known formulas

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vc1 = 1
6A

q−1∑
p=0

(vp1 + v(p+1)1)(vp1 v(p+1)2 − v(p+1)1 vp2)

vc2 = 1
6A

q−1∑
p=0

(vp2 + v(p+1)2)(vp1 v(p+1)2 − v(p+1)1 vp2)

(22)

where A is the area of the polygon given by

A = 1

2

q−1∑
p=0

(vp1 v(p+1)2 − v(p+1)1 vp2) (23)

Finally, the polygon barycenter vc is mapped into R
m in order to find tc = tp+Nvc,

the barycenter of � which is the desired feasible cable tension distribution.
As an example, Fig. 1 shows vc as the dark dot into the polygon. The points

indicated with crosses correspond to some intersection points between lines bounding
the halfplanes defined in (5). The four clear dots are the vertices of the preimage of �.

2.3 Case of Three (Ore More) Concurrent Lines

In the algorithm proposed in Sect. 2.2, let us assume that we have to move from a
vertex vi j to the next one v jk along line j . In order to compute v jk , the algorithm
calculates m − 2 values of α as given by (16) or (18) and retains the minimal one.
If this minimal value of α is obtained for two indices k and l [i.e., both k and l



80 J. Lamaury and M. Gouttefarde

Fig. 2 Illustration of the case
of three concurrent lines

verify (21)], it means that the vertex v jk is the intersection of three concurrent lines
(here, lines j , k and l). This particular case is illustrated in Fig. 2. In such a case,
the determination of the vertex v jk is not a problem but care must be taken in the
determination of the next line that will be followed in order to find a new polygon
vertex. Indeed, this next line has to support the polygon along one of its edges and
not only at v jk . As illustrated in Fig. 2, moving from v jk along line l instead of line k
is a bad choice as we then leave the polygon boundary. Consequently, the algorithm
must be able to select the edge supporting line which is either line k or else line l.
As along a trajectory new polygon vertices are generally coming with this particular
case, it should be addressed in order to ensure robustness of the algorithm.

In order to select the appropriate edge supporting line, a simple geometric analysis
can be used. Vector n j is normal to line j and chosen to be directed outward of the
polygon. In our current implementation of the algorithm detailed in Sect. 2.2, as
soon as two equal α are calculated, say αk and αl , the vectors nk and nl are drawn
from lines k and l of N and chosen to be directed outward of the polygon. Then, we
check if nl is included in the cone spanned by n j and nk as shown in Fig. 2. If nl

is strictly included inside this cone, line l supports the polygon at a vertex only. It
is thus discarded and line k is selected as the next line to follow since it is an edge
supporting line of the polygon. This is the case illustrated in Fig. 2. Otherwise, when
nl is not included inside the cone spanned by n j and nk , line l supports the polygon
along one of its edge and it will be the next line followed in the quest of a new vertex.
Note that in the very particular case in which nl and nk are collinear, any of the two
lines k or l can be followed.

Finally, in the cases in which more than three lines, say h > 3 lines, are all concur-
rent at the same vertex of the polygon, the determination of the edge supporting line
to be followed during the next algorithm step can be done by sequentially considering
sets of three lines among the h concurrent ones and, for each such set, discarding
one of the three lines as explained in the previous paragraph.



A Tension Distribution Method with Improved Computational Efficiency 81

Fig. 3 The prototype ReelAx8 in suspended under constrained (a) and fully constrained (b) con-
figurations

Fig. 4 Suspended ReelAx8
basic PID-control scheme

3 ReelAx8 Prototype

The prototype ReelAx8 has 6-DOF and is driven by 8 cables so that it is redun-
dantly actuated with two 2 extra cables (2 DOR). These two extra cables signifi-
cantly improve the ratio between the workspace and the whole robot footprint. The
workspace is defined as the set of feasible static equilibrium mobile platform poses.
A pose is said to be feasible when there exists a set of non-negative cable tensions
satisfying the platform equilibrium and when there are no cable interferences. Two
different configurations have been experimented: suspended and fully constrained,
shown in Fig. 3a and b, respectively.

Let us note that redundantly actuated suspended (under constrained) CDPR have
rarely been studied [8, 11]. However, this configuration may be required in some situ-
ations as all the cable drawing points are located above the workspace. Consequently,
the space located below the mobile platform is free of cables. Suspended CDPR have
thus the potential of operating in presence of human workers and good transits and
are suitable for crane-like applications. ReelAx8 is currently set in its suspended
configuration shown in Fig. 3a. As we have not yet implemented an effective control
scheme able to use tension distribution strategies for this suspended configuration,
the next section gives some preliminary simulation results. Therefore, the real-time
compatibility has been established by executing on the real-time controller the algo-
rithm proposed in Sect. 2.2 in parallel of the basic articular PID control scheme,
shown in Fig. 4, presently in used on ReelAx8.



82 J. Lamaury and M. Gouttefarde

Fig. 5 Cable tensions obtained with the proposed algorithm for ReelAx8 in suspended configuration

Fig. 6 Cable tensions obtained with the proposed algorithm for ReelAx8 in fully constrained
configuration

4 Simulation Results

Figure 5 shows the evolution of the tension into the cables, obtained by means of
the algorithm introduced in Sect. 2.2, of the suspended ReelAx8 (Fig. 3a) for a
given trajectory of the mobile platform. The trajectory starts at the platform ref-
erence pose [0 0 0.25 0 0 0]T , goes up to [0.8 (−0.9) 1 0 0 0]T , passes through
[0.9 0.9 1 0 0 0]T and [0 0 1 0 0 45]T , where a non-zero orientation is accom-
plished, and finally returns to the reference pose (units are meters and degrees;
XYZ Euler angle convention is used to define the platform orientation). Figure 6
shows the evolution of the cable tensions of ReelAx8 in fully constrained configu-
ration (Fig. 3b) along the same trajectory. As observed, all cables are tensed along
the whole trajectory and the tension curves are continuous. Let us note that in fully
constrained configuration, the choice of the polytope centroid may results in high
tension values.

In MATLAB simulations along the same trajectory, the use of the brute force
method suggested in [7] which consists in computing all the intersection points
between all the lines drawn from (5) results in an average computation runtime of
1.9152 ms against 0.638 ms with our algorithm. This significant improvement should
make our algorithm suitable for a future real-time use on ReelAx8.



A Tension Distribution Method with Improved Computational Efficiency 83

Fig. 7 Workable part of the constant-orientation static workspace of ReelAx8 without and with a
tension distribution algorithm. a Without any tension distribution. b With the barycenter tension
distribution strategy

Furthermore, in order to apply the proposed method experimentally on ReelAx8,
the currently used basic control scheme has to be improved. Meanwhile, the algorithm
of Sect. 2.2 has been compiled and tested in real-time in parallel of our current control
scheme on a target computer using MATLAB/Simulink language. It appeared to be
real-time compatible with an average Task Execution Time of 0.156 ms.

Let us note that, compared to the basic PID control of Fig. 4, which outputs
negative tension set points in a large part of ReelAx8 workspace, the barycenter
tension distribution strategy should increase the practical workspace of ReelAx8
in suspended configuration from 7.58 to 18.9 m3, i.e. 78.18 % of the overall robot
occupied volume, as shown in Fig. 7b. These values are obtained for the unloaded
platform mass which is of 6.34 kg. The influence of the total mass (loaded platform)
on the workspace volume is depicted in Fig. 8. The maximum cable tension considers
in this figure is 350 N.

5 Conclusions and Future Works

A real-time capable algorithm for tension distribution of cable-driven parallel robots
was presented in this paper. This algorithm efficiently implements the barycenter
approach of [7] which leads to safe and continuous cable tension distribution. Simu-
lation results showed that it is faster than a brute force implementation of the barycen-
ter approach. The proposed algorithm is dedicated to n-DOF parallel robots driven
by n + 2 cables as it takes advantage of the 2-dimensional nature of the polytope of
feasible tension distributions.



84 J. Lamaury and M. Gouttefarde

Fig. 8 Influence of the platform and payload total mass on the suspended ReelAx8 workable
workspace volume

We believe that the barycenter cable tension distribution approach is appropriate
to deal with the case of redundantly actuated suspended (under constrained) cable-
driven parallel robots since it provides a tension distribution set point far from the
boundaries of the polytope of feasible tension distributions. However, in the case
of fully constrained robots, using the centroid of this polytope as the desired cable
tension distribution might not be the better choice as it can lead to large cable tensions
and consequently limit the robot workspace and leads to high energy consumption.

The proposed algorithm, tested in real-time on our embedded computer in parallel
of our current basic control scheme, must now be implemented within a suitable
control scheme. The realization of this latter is part of our future works.

Acknowledgments The financial support of the ANR (grant 2009 SEGI 018 01), of the Région
Languedoc-Roussillon (grants 115217 and 120218) and the financial contribution of Tecnalia are
greatly acknowledged.

References

1. Albus, J., Bostelman, R., Dagalakis, N.: The NIST robocrane. J. Robot. Syst. 10(2), 709–724
(1993)

2. Borgstrom, P.H., Jordan, B.L., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Rapid computation
of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. Robot.
25(6), 1271–1281 (2009)

3. Bruckmann, T., Andreas, P., Hiller, M., Franitza, D.: A modular controller for redundantly
actuated tendon-based stewart platforms. EuCoMeS, Obergurgl, Austria, In (2006)

4. Fang, S., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based
parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9,
561–568 (2004)

5. Hassan, M., Khajepour, A.: Analysis of bounded cable tensions in cable-actuated parallel
manipulators. IEEE Trans. Robot. 27(5), 891–900 (2011)



A Tension Distribution Method with Improved Computational Efficiency 85

6. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven
robots. Robotica 18, 13–21 (2000)

7. Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation
algorithm for redundant tendon-based parallel manipulators. IEEE International Conference
on Robotics and Automation, May, In (2008)

8. Oh, S.-R., Agrawal, S.K.: Controllers with positive cable tensions. IEEE International Confer-
ence on Robotics and Automation, Cable-Suspended Planar Parallel Robots with Redundant
Cables, In (2003)

9. Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance
of cable-suspended robots. J. Robot. Syst. 15(10), 581–597 (1998)

10. Vafaei, A., Aref, M.M., Taghirad, H.D.: Integrated controller for an over constrained cable
driven parallel manipulator: KNTU CDRPM. In IEEE 2010 International Conference on Robot-
ics and Automation, pp. 650–655. Anchorage, Alaska, USA (2010).

11. Yu, K., Lee, L., Krovi, V.N.: Simultaneous trajectory tracking and stiffness control of cable
actuated parallel manipulator. International Design Engineering Technical Conference and
Computers and Information in Engineering Conference, In (2009)

12. Ziegler, G.: Letures on Polytopes. Springer, Heidelberg (1994)


	5 A Tension Distribution Method with Improved Computational Efficiency
	1 Introduction
	2 A Fast Tension Distribution Algorithm
	2.1 Mikelsons' Barycenter Approach
	2.2 Detailed Description of the Proposed Algorithm
	2.3 Case of Three (Ore More) Concurrent Lines

	3 ReelAx8 Prototype
	4 Simulation Results
	5 Conclusions and Future Works
	References


