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Abstract— Quality of Service (QoS) routing known as multi-
constrained routing is of crucial importance for the emerging
network applications and has been attracting many research
works. This NP-hard problem aims to compute paths that
satisfy the QoS requirements based on multiple constraints
such as the delay, the bandwidth or the jitter. In this paper,
we propose two fast heuristics that quickly compute feasible
paths if they exist. These heuristics are compared to the exact
QoS routing algorithm: Self Adaptive Multiple Constraints
Routing Algorithm (SAMCRA). For that, two main axes are
explored. In the first axis, we limited the execution time of
our heuristics. The simulation results show that the length of
the computed paths is very close to the optimal ones that are
computed by SAMCRA. Moreover, these heuristics satisfy
more than 80% of the feasible requests. In the second axis, to
enforce our hypothesis about the relevancy of the proposed
heuristics, we force our algorithms to compute paths until
a feasible path is found if such a path exists. The success
rate becomes then100%. Moreover, the qualities of found
solutions as well as the combinatorial complexity of our
heuristics are still attractive.

Index Terms— Routing, multi-constrained, quality of Ser-
vice, heuristic

I. I NTRODUCTION

Quality of Service (QoS) routing known as multi-
constrained routing, consists in computing paths that
meet a set of requirements such as delay, bandwidth,
and cost. Most of the emerging multimedia applications
become more stringent with QoS and require more guar-
antees. Wang and Crowcroft have proved that the multi-
constrained routing problem is NP-hard [1]. For solving
exactly or approximatively this problem, many solutions
are proposed in the literature. Among the exact solutions,
we mention the Depth First Search (DFS) approach which
returns a feasible solution to the problem if such a solution
exists [2]. Since the worst-case time complexity approach
is exponential, Shane et al. proposed in 2001 a heuristic
based on the DFS approach [3]. Another approach uses
the Constrained Bellman-Ford algorithm for the delay-
cost-constrained routing problem as done in [4]. The
main idea of this algorithm is at first find minimal cost
paths between the source and the other nodes. Then, the
algorithm maintains a list of paths that increase the cost
and decrease the delay. When the path with the smallest
cost and acceptable delay is found the algorithm returns
this path. However, in [5], it has been shown that a non-

linear length is necessary to solve the QoS routing prob-
lem, and the authors replace the cost function by a non-
linear length, and proposed the Self Adaptive Multiple
Constraints Routing Algorithm SAMCRA. SAMCRA is
an exact algorithm based on two main concepts: the use
of a non-linear length function and the non dominance
of paths. SAMCRA explores like Dijkstra’s algorithm all
nodes beginning by the source node and maintains a set of
non-dominated feasible paths at each node. The algorithm
stops when it computes the non dominated feasible path
with the smallest non-linear length between the source
and the destination nodes.

Since the optimal QoS routing with multiple constraints
is NP-hard, heuristics are required for real network ap-
plications. A heuristic version of SAMCRA is given by
TAMCRA [6], which was proposed earlier as a heuristic
to solve the unicast QoS routing. Unlike SAMCRA,
TAMCRA bounds the number of non dominated paths
that can be stored at each node by a predefined integerk.
Therefore, the found solution may not be the optimal one.
In 2001, Yuan and Liu proposed an extended version of
the Bellman-Ford algorithm that finds all optimal paths
then chooses a feasible one if such a path exists [7].
In [8], Jaffe defined an approximation algorithm, which
computes shortest paths based on a linear combination
of the weight values of each link in one new weight.
This algorithm was illustrated in the case of two metrics,
a generalization for multiple metrics was proposed in
[9]. H MCOP is one of the well-known multi-constrained
unicast algorithms that was introduced in [10]. This
algorithm is based on the execution of two modified
versions of Dijkstra’s algorithm in forward and backward
directions to compute the shortest paths between two
nodes. Other works aim to solve the multi-constrained
routing problem using Lagrange relaxation to mix the
metrics. In this category, we can cite the algorithms
proposed by Feng et al. in 2001 [11], 2002 [12], by Juttner
et al. in 2001 [13] and by Guo and Matta in 1999 [14].

Recently, the research community is exploring the
use of the metaheuristics to solve the multi-constrained
routing problem, such as genetic algorithms [15], tabu
search [7], and ant colonies [16].

Instead its effectiveness, the major drawback of SAM-
CRA resides in its complexity [17]. In this paper, we
investigate the possibility to replace SAMCRA by two



simple heuristics that efficiently reduce the execution time
and return satisfying solutions. These heuristics are based
on the computation of thek shortest paths. For this, we
adapt the Yen’s algorithm [18], which has the smallest
combinatorial complexity [19]. The difference between
the two heuristics lies in the metric used for shortest paths
computation. Hop Count Approach (HCA) considers the
hop count metric of a path, while the second heuristic
Metric Linearization Approach (MLA) combines the QoS
metrics into one weighted metric.

In the following, we first give a formal definition of
the multi-constrained routing problem. In Section III, we
outline SAMCRA algorithm. In Section IV, we give an
overview of the proposed algorithms for computing the
k shortest paths. Our heuristics are presented in Section
V. In Section VI, the performance of our heuristics is
investigated through a large number of simulations.

II. PROBLEM FORMULATION

A communication network is modeled as an undirected
weighted graphG(N,E), whereN is the set of nodes
andE the set of links. Each linke ∈ E of the network is
associated withm QoS parameters denoted by a weight
vector:

→

w (e) = [w1(e), w2(e), ..., wm(e)]T . The QoS
metrics can be classified into additive metrics such as
delay, multiplicative metrics such as loss rate or bottle-
neck metrics such as available bandwidth. The end-to-end
constraints of a given QoS request, from a source nodes

to a destination noded, are given by anm-dimensional
vector:

−→
L = [L1, ..., Lm]T . In general, bottleneck metrics

can be easily dealt with by pruning from the graph all
the links that do not satisfy the QoS constraints, while
the multiplicative metrics can be transformed into addi-
tive metrics by using a logarithm function. The additive
metrics cause more difficulties. Therefore, and without
loss of generality, we only consider additive metrics. The
length of a pathp(s, d) corresponding to the metrici is
given by: li(p(s, d)) =

∑
e∈p(s,d)

wi(e). Thus, we define
a feasible pathp(s, d) as follows:

li(p(s, dj)) ≤ Li, ∀i = 1, ...,m (1)

Using the Pareto dominance, a pathp(s, d) dominates
another pathp′(s, d) if:

{
li(p(s, d)) ≤ li(p

′(s, d)), ∀i = 1, ...,m

lj(p(s, d)) < lj(p
′(s, d)), for at least onej

(2)

In [5], the authors formulated the multi-constrained
routing problem in two different ways.
MCP problem The Multi-Constraint Path (MCP) prob-
lem consists in finding a pathp(s, d) that satisfies a given

constraint vector
→

L:

li(p(s, d)) ≤ Li, i ∈ {1, ...,m} (3)

MCOP problem Considering a length functionl (e.g.
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Figure 1. An example of SAMCRA

l(p(s, d)) = 1
m

∑m

1 li(p(s, d))), the Multi-Constraint Op-
timal Path (MCOP) problem consists in finding among the
feasible paths, the pathp∗(s, d) with the smallest length
l(p∗(s, d)).

To evaluate the quality of a pathp(s, d), an interesting
non-linear length function was defined in [5]:

l(p(s, d)) = maxi=1,...,m(

∑
wi(e)e∈p(s,d)

Li

) (4)

This length function considers the value of the most
critical constraint of a path regarding the end-to-end
requirements.

III. SAMCRA

SAMCRA [5] is an exact multi-constrained routing
algorithm that solves the MCOP problem using the non-
linear length function and the dominance of paths.

For a node pair(s, d), SAMCRA returns the shortest
path that satisfies the constraint vector if such a path
exists. Thus, SAMCRA begins by the source nodes.
At each iteration, the algorithm explores the neighbors
of the current node and chooses the closest node using
the non-linear length function defined in Equation 4. The
dominated paths are regularly dropped, while all non
dominated ones are memorized. SAMCRA ends when the
destinationsd is reached, and there is no possibility to find
a better path for this destination.

For instance, let us consider the example in Figure 1,
where SAMCRA computes the path with the smallest
non-linear length betweens and d. SAMCRA begins
by exploring the neighbors ofs {2, 4} , and chooses
the node4 with the smallest non-linear length. Then, it
explores its neighbors{2, 3, d}. The algorithm stops at the
4th iteration, when the noded is selected to having the
smallest non-linear length. In the same figure, we notice
that dominated paths like(s− 4− 3− d) are dropped as
well as the infeasible one(s− 2− 4).

IV. T HE k SHORTEST PATHS ALGORITHMS

Routing is usually associated with the computation of
shortest paths (in number of hops for example). However,

© 2012 ACADEMY PUBLISHER



when the shortest path does not satisfy the constraints
of QoS, it becomes necessary to compute a set ofk

shortest paths between a source node and destination node
to find a feasible path. Thek shortest paths problem is
a natural and long-studied generalization of the shortest
path problem in which not one but several paths in an
increasing order of length are required. Thek shortest
paths problem in which paths can contain loops turns out
to be significantly easier. An algorithm with a complexity
in O(|E| + k.|N |.log|N |) has been known since 1975
[20]; a recent improvement by Eppstein achieves the
optimal complexity in:O(|E| + |N |.log|N | + k) [21].
However, the problem of determining thek shortest paths
without loops has proved to be more challenging. The
problem was first examined by Hoffman and Pavley [22].
For undirected graphs, the most efficient algorithm was
proposed by Katoh et al. [23], which has a complexity
in O(k.(|E|+ |N |.log|N |)). Since undirected graphs can
be transformed on directed graphs, by replacing the undi-
rected link with two directed links with the same weights,
on the most general case, the best known algorithm is
that proposed by Yen in [18]. The Yen’s algorithm was
generalized by Lawler in [24] and has a complexity in
O(k.|N |(|E|+ |N |.log|N |)).

V. PROPOSEDHEURISTICS

A. Motivation

It has been proved that the multi-constrained routing
problem is NP-hard [1]. SAMCRA is an efficient algo-
rithm that exactly solves this problem. Although its effec-
tiveness, SAMCRA can be expensive with a combinatorial
complexity in:O(k|N | log(k|N |)+k2m|E|) [17], with k

the number of non dominated paths that can be stored at
each node queue. Therefore, it may be more interesting
to use an approximate algorithm with less combinatorial
complexity expecting a feasible path between the source
and the destination nodes. Reducing the execution time
while giving satisfying solutions is our main motivation
to propose our fast heuristics. These heuristics are based
on the computation of thek shortest paths. The idea of
applying such an algorithm is that the shortest paths may
be feasible. For that, we propose the modification of the
well-known algorithm of Yen [18] to compute the paths
between two nodes in increasing order of their length until
(i) a feasible path that satisfies all constraints is found, (ii)
or a given limitation of computed paths is reached.

To solve the multi-constrained unicast routing, we pro-
pose two heuristics based on the computation of shortest
paths. Indeed, we argue that one of these computed paths
will be feasible. Moreover, these heuristics have a com-
binatorial complexity that is bounded by the number of
allowed computed shortest paths. The proposed heuristics
are using one additive metric. The first heuristic computes
the paths with the smallest number of links. The second
heuristic uses a combination of the QoS metrics in a single
one, using an efficient technique that will be explained in
detail in Section V-C.

Figure 2. An example of Yen’s algorithm processing

Both the proposed heuristics are based on Yen’s algo-
rithm, which we outline in the following.

B. Yen’s Algorithm

As shown in many studies [19], Yen’s algorithm is the
most pertinent and fastk shortest paths algorithm that
was introduced in [18].

For a given node pair(s, d) and a given integerk, this
iterative algorithm computes, using one additive metric,
the k shortest paths between these nodes. For that, it
begins by computing the first shortest path using the
Dijkstra algorithm. At theith iteration, the algorithm
computes theith shortest path by considering all possible
paths that deviate from the(i−1)th shortest path that are
not already computed.

For instance, let us consider the example in Figure 2,
where the first two shortest paths between the nodes1
and 4 are required. The algorithm begins by computing
the shortest pathP1. Then, it computes all shortest paths
that deviate fromP1 at nodes1 and 2. Two paths are
computedP

′

, P
′′

. The shortest one, hereP ′′ with length
4, is the second shortest pathP2.

C. Algorithmic Description of the Proposed Approaches

In this paper, we propose two fast heuristics that
compute shortest paths in an increasing order, given an
additive length function. These heuristics stop when (i)
a path satisfying all the QoS constraints is found or (ii)
an upper bound of the number of computed pathskmax

is reached.kmax is an important parameter, since the
combinatorial complexity and so the execution time of
our heuristics depend on its value. Indeed, whenkmax

is small, these heuristics are fast, and the number of
satisfied request can be small. In parallel, whenkmax

increases, the number of satisfied requests increases too.
Furthermore, the proposed heuristics use a single additive
metric obtained by two ways:



Figure 3. Proposed heuristics diagram

Hop Count Approach (HCA): in this approach, the
algorithm searches for the shortest paths considering the
number of hops as the only metric to optimize.
Metric Linearization Approach (MLA) : at first, it sub-
stitutes the weight vector

→

w (e) = [w1(e), .., wm(e)]T ,
by a scalar weightw

′

(e) =
∑

i=1,...,m αiwi(e). To
calculate the parametersαi, the MLA approach computes
p∗i (s, dj), i = 1, ...,m, the shortest path that optimizes
the metric i. Then, the parameterαi is calculated as
follows:

αi =
li(p

∗

i (s, dj))

Li

(5)

αi can be namedthe criticality degree of the constraint
Li. Whenαi is close to1, that meansp∗i (s, dj) is very
close toLi. Consequently, it is necessary at first to satisfy
the constraintLi.

Figure 3 summarizes the process of our heuristics HCA
and MLA. For a given graphG, a given node pair(s, d),
with a constraint vector~L and a chosen approach, the
algorithm returns the fist feasible path betweens and
d, if such a path is one of thekmax shortest paths
that are allowed to be computed. For that, the algorithm
chooses the approach to use and compute the combined
link weights in case of MLA. Then, it computes shortest
paths in an increasing order. The process stops when a
feasible path is found, orkmax iterations are already done.
A more detailed meta-code is presented in Algorithm 1
for MLA approach.

D. Limitations of the Yen’s algorithm

The proposed heuristics MLA and HCA are based
on the computation of thek shortest paths using the
Yen’s algorithm. However, Yen’s algorithm computes the

2deviation is a function that returns the furthest node at which a path
P deviates from a set of paths

2prefix retuns the sub-path of a path P, between the source nodeand
a defined node v

Algorithm 1 MLA meta-code
for (i = 1, ...,m) do

Computep∗i (s, d)

αi =
li(p

∗

i (s,d))
Li

end for
for all e ∈ G do

w
′

i(e) =
∑

i=1,...,m αiwi(e)
end for
j ← 1, Find←false,k ← 1,
p1(s, d) = Dijkstra(s, d), P, P ′//paths
D = p1(s, d) // candidate set
X = φ //shortest paths set
while ((Find6=true) and (k ≤ kmax)) do

P ←shortest path inD

if (pj(s, d) is feasible)then
Find←true

else
j ← j + 1
v ← deviation1(pj(s, d), X)
while (v 6= d) do

P ← Dijkstra(v, d)
P ′ ← prefix2(pj(s, d), v) + P

D ← D + P ′

v ←successor(v, pj(s, d))
end while

end if
end while

k shortest paths without considering all the existing paths
as we will demonstrate it in Figure 4.

On the left side (a), at first HCA computes the three
shortest pathsP1,P2 and P3, that have the same hop
count. When computing the fourth shortest path using the
deviation concept at node2, the algorithm will choose one
of the two pathsP ′ and P”. As the algorithm chooses
one of the two latter paths, it can not choose the other one
at the next iteration. This can lead to some cases where
not all paths are explored and the feasible path can be
skipped. For instance, if the constraints are given by the
vector

→

L (3, 3), only the pathP ′ will be feasible, and this
path can be skipped by the original Yen’s algorithm.

On the right side (b), we suppose that
→

L= (4, 4).
MLA starts by computing the shortest paths considering
successively the two metrics. Here the path(s − 2 − d)
minimizes the first metric with the value2, and the path
(s − 1 − d) minimizes the second metric with the value
2. Then, MLA computes the parametersα1 = 2

4 = 0.5
andα2 = 2

4 = 0.5. After adding the new weights to the
links, MLA computes the first shortest pathP1. At the
second iteration, when computing the shortest path at the
deviation nodes, MLA can choosesP ∗ or P ∗∗ since they
have the same length4. However, onlyP ∗ is feasible.

This limitation prevents to compute feasible paths even
if this path is one of the shortest paths. To cure this,
we propose a modification of the Yen’s algorithm. We
replace the computation of the shortest path using Di-
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Figure 4. The relevance of enumerating all paths having the same length

jkstra’s algorithm by a modified version denoted Mod-
Dijkstra that computes all shortest paths that have the
same length at the same time, if more than one exist. For
this, instead of saving only one of the predecessors with
the smallest length at each node, the algorithm saves all
the predecessors that have the same smallest length.

E. Exact HCA and Exact MLA algorithms

Exact HCA (E-HCA) and exact MLA (E-MLA) are two
modified version of HCA and MLA respectively. These
algorithms are based ob three main modifications.

• at each deviation node, the algorithm of computation
of shortest paths computes all paths with the same
additive length (hop count for E-HCA and metric
linearization for E-MLA),

• the upper boundkmax of computed paths become
infinite (kmax →∞),

• the algorithm stops only when a solution is found
for feasible requests.

Considering the example of Figure 4, two iterations will
be sufficient for HCA to compute the feasible pathP”
without skipping this path. In the first iteration, Mod-
Dijkstra returns the setP1, P2, P3. Then, at the second
iteration it returns bothP ′ andP”. For MLA, the problem
is less recurrent because of the new weights computation.
Indeed, the paths have generally different lengths, and
MLA cannot skip paths that have the same length.

VI. PERFORMANCEEVALUATION AND SIMULATIONS

The performance of the two proposed heuristics and
SAMCRA are investigated through extensive simulations.
For that, we use a realistic network with50 nodes and
82 links denoted by Real-Topology [25]. Each link is
associated with two additive weights. These weights are

randomly generated using a uniform distribution in the
interval [1, 1024].

Different classes of constraints are also considered.
For each pair of nodes(s, d), the constraint vectors are
generated in a way that they browse a defined space gener-
ation by areas from the strictest constraints to the loosest
ones. In Figure 5, where only two metrics are considered,
P1 and P2 denote the shortest paths betweens and d

that minimizes the first and second metric respectively.
The shaded rectangle (B) delimited byl1(P1), l1(P2)
and l2(P2), l2(P1) circumscribes the region where the
constraints are selected. This region is divided in10 areas:
area 1, area 2,..., area 10 (also denoted in the simulation
figures by 1,2,...,10). The constraints are randomly se-
lected within these areas. Outside the specified region,
the QoS constraints are less interesting to be examined.
Indeed, all constraints that are generated within space (A)
are infeasible, while all constraints generated in space (C)
are trivial and any polynomial algorithm will be sufficient
to find solutions. We note that strict constraints are close
to l1(P1) and l2(P2) (area 1), while loose constraints are
close tol1(P2) and l2(P1) (area 10).

In the followings, two series of simulation are per-
formed.

A. HCA and MLA performance evaluations

In this part, several series of simulations have been
performed. We randomly generate100 instances of link
weights. For each instance of link weights,100 pair
of nodes are randomly selected. Thereafter,10 routing
requests are generated within each area, from the strictest
constraints (area 1) to loosest ones (area 10). After that,
the three algorithms: SAMCRA, HCA and MLA are exe-
cuted independently to find a solution. Four performance
measures are computed.

• Success rate: it is the number of satisfied routing
requests from100 generated requests,

• Quality of computed paths:it corresponds to two
lengths. The non-linear length and the average length
of computed paths. The non-linear length is used by
SAMCRA (Equation 4) and corresponds to the sat-
isfactory degree of the most critical constraint. The
average length (lavg(p(s, d)) = 1

m

∑m

1 li(p(s, d)))
equivalently considers all the metrics, and computes
the average quality of the computed paths.

• Relative complexity: it is the number of operations3

that are performed to find a feasible solution,
• Absolute complexity: it is the number of operations

that are performed before answering a given routing
request, instead the request is infeasible,

We note that all these performance measures have been
computed with95% confidence intervals according to the
ten constraint generation areas. The upper boundkmax of
the computed shortest paths in our heuristics is fixed to
three.

• Success rate

3an elementary operation corresponds to the visit of one node
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Figure 6 shows the success rate of the three algorithms:
SAMCRA, HCA and MLA. Foremost, we notice that
the success rate of the three algorithms is increasing. In
fact, for strict constraints there is few feasible requests,
and this number is increasing when constraints become
loose. Since SAMCRA is an exact algorithm, it gives the
highest success rate, while the upper bound of computed
paths in our heuristics is fixed to three. The success rate
of SAMCRA varies from29% for strict constraints to
100% for the loose ones. For strict constraints, the gap
between SAMCRA and our heuristics does not exceed
4% with MLA and 7% with HCA. For loose constraints
(area10), the difference becomes12% with MLA and
16% with HCA. Indeed, the area10 presents the trivial
constraints for which SAMCRA always finds a solution,
and the number of feasible requests is100%.

The execution time is an important parameter when
evaluating any routing algorithm. To evaluate more deeply
the three algorithms, two kinds of complexity metrics are
proposed. The relative complexity for feasible requests
and the absolute complexity for the total generated re-
quests.

• Relative complexity

Relative complexity is calculated only if a solution is
found by the three algorithms. In Figure 7, we notice
that the relative complexity of SAMCRA is significantly
larger than both of HCA and MLA. Indeed, when the
constraints are not strict, SAMCRA has more paths to
explore before returning the optimal solution according
to the non-linear length, while both approaches HCA and
MLA stop at the first feasible path they find. This reduces
their execution time.

• Absolute complexity
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In Figure 8, we can state that the absolute complexity
of both proposed heuristics HCA and MLA is greater
than SAMCRA complexity for strict constraints. Indeed,
when the constraints are strict, SAMCRA rapidly rejects
non feasible requests, while both approaches explore the
maximum number of paths (here fixed to three) without
finding solutions. When constraints become less strict; the
two proposed approaches find feasible solutions before
computing the three paths, which significantly reduces
their execution time.

• Quality of computed paths

In Figure 9, the solutions found by our approaches HCA
and MLA are a little bit worse than those found by
SAMCRA with 6.67% and 2.39% respectively. Obvi-
ously, SAMCRA finds the path with the smallest non-
linear length, while both heuristics HCA and MLA stops
at the first feasible path, which can be worse than the
optimal one. Moreover, for strict constraints, the solutions
computed by the three algorithms are significantly equal.
In fact, for strict constraints, the number of feasible paths
is very small, and if HCA or MLA computes a feasible
path, this path has big chances to be the optimal one.

In Figure 10, the average length of MLA is better than
that of SAMCRA with 1.59%, and the average length
of HCA is very close to that of SAMCRA. Indeed, the
linearization of the metrics involves the computation of
paths based on both metrics, unlike SAMCRA which
does not consider the variation between the metrics and
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HCA and MLA
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Figure 10. The average length of the paths computed by SAMCRA,
HCA and MLA

focuses on the most critical one. The following example
highlights the difference between non-linear length and
average length evaluation. For that, let us consider two
paths: the path computed by SAMCRAp1(s, d) : with
the lengths l1(p1(s, d)) = 0.6, l2(p1(s, d)) = 0.7
corresponding to the metrics1 and 2 respectively, and
the path computed by HCAp2(s, d) : with the lengths
l1(p2(s, d)) = 0.1, l2(p2(s, d)) = 0.9. It is clear that
the non-linear lengthl(p1(s, d)) = 0.7 < l(p2(s, d)) =
0.9, while the average lengthlavg(p1(s, d)) = 0.65 >

lavg(s, d) = 0.5.

B. Exact-HCA and Exact-MLA Performance Evaluation

In the second series of our study the exact version of
the algorithms E-HCA and E-MLA has been analyzed.
In fact, after the modification of the Yen’s algorithm in
order not to skip paths with the same length, E-HCA
and E-MLA will explore all existing paths(kmax →
∞) if necessary, between the source and the destination
nodes. For this, they compute the paths in an increasing
order according to the previously explained metrics. E-
HCA uses the hop count metric, while E-MLA uses
the linearization metric. In this series of simulations, the
requests as well as the constraints are generated similarly
to the first series of simulations. Two measure parameters
are evaluated:

• Number of computed paths: is the average number of
computed paths to find a feasible solution for feasible
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Figure 11. Number of computed paths before finding a solution by
E-HCA and E-MLA

requests,
• Exact complexity : is the number of operations that

are performed to find a solution for all feasible
requests.

• Number of computed paths
Figure 11 shows the number of computed paths by E-
HCA and E-MLA before finding a feasible path. For strict
constraints, E-HCA needs2.1 paths to find a solution
while E-MLA does not need more than1.13 paths.
The number of computed paths is decreasing when the
constraints are less strict. Instead numbers of computed
paths by E-HCA and E-MLA are lower than the upper
boundkmax of HCA and MLA, E-MLA as well as E-
MLA computes paths until a feasible one is found. In the
10% of cases where HCA and MLA do not find feasible
paths they need to compute more than3 paths. In the
other cases, the computed paths is almost the first or the
second one.

A simple demonstration can justify these small values.
Let us suppose that HCA needs1.5 paths to find solution
for 23% of the generated requests as shown in Figure 6.
In addition, E-HCA needs to compute5 paths for the5%
to reach the success rate of28% as SAMCRA. Since23%
presents82% of 28%, the average number of computed
pathsNp will be computed as follows:Np = 0.82∗1.5+
0.18 ∗ 5 = 2.13. A similar demonstration can be done for
MLA.

• Exact complexity
In Figure 12, the exact complexity of E-HCA is bigger
than SAMCRA for strict constraints. This is due to the
modified version of Yen’s algorithm and the computation
of additional paths. This high complexity can also be
explained by the increasing number of explored paths and
the small number of feasible ones. Let us suppose that the
only feasible path is the second shortest one and there are
10 first shortest paths, and10 second shortest paths. In
this case, at least10 paths and at most19 paths will be
explored before finding the feasible one. Since the number
of computed paths in E-MLA is less than1.13 paths,
its exact complexity still the smallest one for both strict
and loose constraints. Indeed, E-MLA computes paths
using the linearization metric that simultaneously takes
into account the two considered metrics.
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Figure 12. The exact complexity of SAMCRA, E-HCA and E-MLA

The exact complexity of E-MLA is very interesting
since it is still smaller than SAMCRA, while having
100% of success rate. However, the compromise done
is regarding the quality of found solutions by E-MLA
which may not be optimal but still feasible and this can
be sufficient for most requests.

VII. C ONCLUSION

To solve the QoS routing problem, we proposed two
fast heuristics HCA and MLA. These heuristics are simple
to implement and give attractive results regarding the
success rate, the quality of found solutions and they con-
siderably reduce the execution time. The execution time
is one of the most challenging parameters in the treated
NP-hard problem. For this, extensive simulations are
performed to compare our heuristics to the well-known
algorithm SAMCRA. Two main ideas are developed then
confirmed in this paper. The first idea is that HCA as
well as MLA have a bounded combinatorial complexity
that can be readjusted to reach a minimum success rate.
The second idea focuses on the combinatorial complexity
of HCA and MLA if they are transformed into exact
algorithms, and the obtained results are very satisfying.
Finally, since the current network applications become
more exigent, it is interesting to explore the heuristic
solutions to solve the NP-hard QoS routing problem.
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