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The construction of light-trees is one of the principal subproblems for multicast routing in sparse splitting Wavelength Division Multiplexing (WDM) networks. Due to the light splitting constraint and the absence of wavelength converters, several light-trees may be required to establish a multicast session. However, the computation of the cost-optimal multicast light-trees is NP-hard. In this paper, first we study the cost bounds of the light-trees built for a multicast session in unweighted WDM networks. Then, partially based on this result, the approximation ratios of some classical multicast light-tree computation algorithms, i.e., Reroute-to-Source (R2S) and Member-Only (MO) algorithms are derived in both unweighted and non-equally weighted WDM networks. Moreover, integer linear programming (ILP) formulations are introduced and carried out to search the optimal light-trees for multicast routing. The cost bounds and approximation ratios of R2S and MO algorithms in all-optical backbone networks are examined through simulations.

I. INTRODUCTION

A LL-optical multicast routing (AOMR) [1] is to determine a set of lightpaths from a source to the multicast members of the same session in a WDM network. The light-tree concept is introduced in [START_REF] Laxman | Light-trees: optical multicasting for improved performance in wavelengthrouted networks[END_REF] to minimize the number of wavelength channels and transceivers for all-optical multicasting. Branching nodes in a light-tree should be equipped with light splitters to support multicasting. However, in sparse splitting [START_REF] Malli | Benefit of multicasting in all-optical networks[END_REF] WDM networks, there are two kinds of nodes: multicast capable nodes (MC [START_REF] Malli | Benefit of multicasting in all-optical networks[END_REF], i.e. the nodes equipped with light splitters) and multicast incapable nodes (MI [START_REF] Malli | Benefit of multicasting in all-optical networks[END_REF], i.e. the nodes without light splitters). An MC node is able to replicate the data packets in the optical domain via light splitting and send Part of this work has been presented in [START_REF] Zhou | Cost Bounds of Multicast Light-trees in WDM Networks[END_REF] on IFIP Networking 2010 conference and in [START_REF] Zhou | Approximation Ratios of Multicast Light-trees in WDM Networks[END_REF] on IEEE GLOBECOM 2010 conference.
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the split light beam to all the outgoing ports. While an MI node cannot split but generally has the Tapand-Continue (TaC [START_REF] Ali | Cost-effective Implementation of Multicasting in Wavelength-Routed Networks[END_REF]) capability. The TaC permits to tap a small amount of optical power from the incoming light beam for local usage and forward the rest to only one outgoing port. Although one tree is sufficient to span all the multicast destinations in a network without constraints, minimizing the cost of the multicast tree is already a Steiner-Problem which is proven to be NP-complete. Due to sparse splitting, lack of wavelength converters, as well as continuous wavelength and distinct wavelength constraints [START_REF] Mukherjee | WDM optical communication networks: progress and challenges[END_REF], one light-tree may not be able to cover the entire multicast group members while several ones may be required, i.e., a light-forest [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF]. As a result, it is even harder to optimize the total wavelength channel cost for a multicast session.

Although many light-tree computation heuristics have been proposed recently [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF], [START_REF] Zhou | Avoidance of Multicast Incapable Branching Nodes in WDM Netwoks[END_REF], [START_REF] Zhou | Is light-tree structure optimal for multicast routing in sparse light splitting WDM networks[END_REF], [START_REF] Jia | Optimization of wavelength assignment for QoS multicast in WDM networks[END_REF], none of them has addressed the cost bound of multicast light-trees in sparse splitting WDM networks, let alone the approximation ratios 1 of the heuristic algorithms. Since the wavelength channel cost is a very important metric for the selection of the multicast light-trees, it is very critical to know at least the cost bound of the light-trees, which could be referenced when designing a WDM network. In [START_REF] Jia | Optimization of wavelength assignment for QoS multicast in WDM networks[END_REF], a heuristic is proposed to construct multicast light-trees with QoS guarantee and the cost upper bound of the light-trees is given. However, in [START_REF] Jia | Optimization of wavelength assignment for QoS multicast in WDM networks[END_REF] it is supposed that all the network nodes are equipped with costly light splitters, while it is not realistic in large WDM mesh networks due to the high cost and complex architecture of light splitters. Literature [START_REF] Lin | Splitter placement in alloptical WDM networks[END_REF] also gives a cost upper bound of N 2 4 for the multicast light-trees, where N denotes the number of nodes in the network. However, the cost bound in [START_REF] Lin | Splitter placement in alloptical WDM networks[END_REF] has the following two shortcomings. First it is derived on the hypothesis that the set of multicast light-trees computed for a multicast session still retain a tree structure in the IP layer (i.e., when all these light-trees are merged together). In fact, this hypothesis is not always held as demonstrated in the Fig. 1. An example sparse splitting WDM network following example. A multicast session with source s and destinations d 1 , d 2 and d 3 is required in a sparse splitting optical network shown in Fig. 1 with solid line. Since node d 3 is an MI node, two light-trees (i.e., LT 1 (dotted line) and LT 2 (dashed line)) on two different wavelengths may be computed. As we can see the IP layer of the merged LT 1 and LT 2 are drawn in Fig. 1 with solid line, which is the same as the network topology. Obviously, it is not a tree but a cycle. Second, the bound N 2 4 in [START_REF] Lin | Splitter placement in alloptical WDM networks[END_REF] seems to be too large for small size multicast sessions, e.g., a multicast session with a source and only two destinations.

For the above reasons, in this paper we give a more accurate bound for wavelength channel cost of multicast light-trees. It is valid for most of the multicast routing algorithms under sparse splitting constraint, even if the IP layer of the set of multicast lighttrees does not retain the tree structure (e.g, the iterative multicast routing algorithms as Member-Only [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF]). Costly and complex wavelength converters are supposed to be unavailable, and an equal cost of 1 unit hop-count cost is assumed over all the fiber links in the network. We prove that the total cost of a multicast session is upper bounded to (1)

K(N -K), when K < N 2 ; (2) ⌊ N 2 4 ⌋, when K ≥ N 2 ,
where K is the number of destinations in the multicast session and N is the number of nodes in the network. Besides, the wavelength channel cost is lower limited to K. Moreover, in unweighted WDM rings the optimal multicast light-tree has a total cost inferior to N -⌈ N K+1 ⌉. Solving the Steiner problem, the Shortest Path Tree algorithm approximates the optimal solution with a ratio of K, which is the number of destinations to be covered. A better heuristic algorithm named Minimum Path Heuristic [START_REF] Takahashi | An approximate solution for the Steiner problem in graphs[END_REF] guarantees the result cost with a ratio of 2(1 -1 K+1 ) [START_REF] Winter | Steiner Problem in Networks: A Survey[END_REF]. Solving the multicast routing problem in sparse splitting WDM networks, the Reroute-to-Source (R2S) and Member-Only (MO) algorithms are proposed in [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF]. These two heuristics are the variant algorithms of the Shortest Path Tree and Minimum Path Heuristic in WDM networks. Will they retain the same approximation ratios as for solving the Steiner problem? We investigate their approximation ratios in both equally weighted and nonequally weighted WDM networks. Reroute-to-Source algorithm (R2S) [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] achieves an approximation ratio ρ(R2S) equal to K in non-equally weighted WDM networks, while in equally weighted WDM networks ρ(R2S) is inferior to (1) K, when 1 ≤ K < N 2 ;

(2) N 2 4K , when N 2 ≤ K < N . Member-Only algorithm (MO) [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] approaches the optimal solution with a ratio ρ(M O) inferior to (K 2 + 3K)/4 for any WDM networks. More specially in equally weighted WDM networks, ρ(M O) is no bigger than (1) (K 2 + 3K)/4, when 1 ≤ K < √ 16N +49-7 2

;

(2) N -K, when

√ 16N +49-7 2 ≤ K < N 2 ; (3) ⌊ N 2 4 ⌋
K , when N 2 ≤ K < N . Moreover, cost bounds and approximation ratios of multicast light-trees in some candidate all-optical backbone networks are examined through simulations. Integer Linear Programming (ILP) formulations are proposed to find the optimal multicast light-trees. Member-Only and Reroute-to-Source [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] algorithms are also implemented in the simulation.

The rest of this paper is organized as follows. System model is given and the multicast routing problem is formulated in Section II. Then the cost bound of multicast light-trees in WDM mesh network is discussed in Section III. After that, the cost bound of multicast light-trees in WDM rings is investigated in Section IV. Furthermore, the approximation ratios of two classical multicast routing algorithms are derived in Section V. To search the optimal solution for sparse splitting multicast routing, the ILP formulations are introduced in Section VI-A. The proposed cost bounds and approximation ratios are evaluated in Section VII by extensive simulations. Finally, we conclude the paper in Section VIII.

II. MULTICAST ROUTING WITH SPARSE SPLITTING

A. Multicast Routing Problem

Multicast routing involves a source and a set of destinations. In sparse splitting WDM networks, a set of light-trees is employed to distribute messages from the source to all the group members simultaneously. The objective of studying multicast routing in WDM networks is to minimize the wavelength channel cost while fulfilling a multicast session. The computation of light-trees for a multicast session generally has the following principles.

1) Due to sparse splitting and absence of wavelength conversion, in a light-tree, the degree of an MI node cannot exceed two. In consequence some destinations cannot be included in the same light-tree. Thus, several light-trees on different wavelengths may be required for one multicast session. 2) Among the light-trees built for a multicast session, one destination may be spanned (used to forward the incoming light beam to other destination nodes) by several light-trees, but it should be served (used to receive messages from the source) by only one light-tree. (e.g., d 3 in Fig. 1 is spanned by both LT and can be served directly in LT 2 instead of using the tree LT 3 .

B. System Model

A sparse splitting WDM network can be modeled by an undirected graph G(V, E, c). V represents the vertex-set of G, |V | = N . Each node v ∈ V is either an MI or an MC node. E represents the edge-set of G, which corresponds to the fiber links between the nodes in the network. Each edge e ∈ E is consisted of two optical fibers for opposite direction communications. And e is associated with a cost function c(e). Function c is additive over the links of a lightpath LP (u, v) between two nodes u and v, i.e.,

c LP (u, v) = e∈LP (u,v) c(e) (1) 
We consider a multicast session ms(s, D), which requests for setting up a light distribution structure (i.e., light-forest) under optical constraint (i.e., wavelength continuity, distinct wavelength, sparse splitting and lack of wavelength conversion constraints) from the source s to a group of destinations D. Let K be the number of destinations, K = |D|. Without loss of generality, it is assumed that k light-trees LT i (s, D i ) are required to span all the destinations involved in a multicast session ms(s, D), where i ∈ [1, k]. It holds true that

1 ≤ k ≤ K ≤ N -1 (2) 
Although the i th light-tree LT i (s, D i ) may span some destinations already spanned in the previous lighttrees, D i is used to denote exclusively the set of newly served destinations in LT i (s, D i ). Since all the destinations in D are served by k light-trees and each destination should be served only once, we obtain

D = k i=1 D i (3) 
These k sets of destinations D i are disjoint, i.e., ∀i, j ∈ [1, k] and i = j, D i ∩ D j = Ø (4) Let a positive integer K i = |D i | denote the size of the subset D i , then we have

k i=1 K i = |D| = K (5) 
The total cost of a multicast session ms(s, D) is defined as the wavelength channel cost of the light-trees built to serve all the destinations in set D. It can be calculated by

c ms(s, D) = k i=1 c LT i (s, D i ) = k i=1 e∈LTi(s,Di) c(e) (6) 

III. COST BOUNDS OF MULTICAST LIGHT-TREES IN WDM MESH NETWORKS

In this section, we will study the cost bounds of lighttrees in unweighted WDM networks with two different light splitting configurations: full light splitting and sparse splitting. Let SR = N MC /N be the ratio of MC nodes in the network. For the full light splitting case SR = 1, and for the sparse splitting case 0 ≤ SR < 1.

In addition, we only investigate the cost bounds in link equally-weighted WDM networks. It is assumed that all links have the same cost function

c(e) = 1 unit hop-count-cost (7) 
Thus,

c ms(s, D) = k i=1 e∈LTi(s,Di) 1 (8) 

A. Full Light Splitting WDM Networks

In the case that all network nodes are equipped with light splitters, each node could act as a branching node in a light-tree. Hence, one light-tree is sufficient to span all the multicast members. It is a Steiner-problem which tries to find a minimum partial spanning tree covering the source and all the multicast members. In a light-tree, there are at most N nodes when all the network nodes are spanned (i.e., when {v|v ∈ LT } = V ), and at least K +1 nodes if and only if the light-tree just contains the source and the multicast members (i.e. when {v|v ∈ LT } = {s} ∪ D). So, the cost of the multicast light-tree is bounded to

K ≤ c ms(s, D) ≤ N -1 (9)
To minimize the total cost in full light splitting case, the Minimum Path heuristic [START_REF] Takahashi | An approximate solution for the Steiner problem in graphs[END_REF] and the Distance Network heuristic [START_REF] Kou | A fast algorithm for Steiner trees[END_REF] can be good choices, since they are guaranteed to get a light-tree with a total wavelength channel cost no more than 2 1-1 K+1 times that of the optimal Steiner tree [10], [START_REF] Kou | A fast algorithm for Steiner trees[END_REF]. i.e.,

c ms(s, D) ≤ 2 1 - 1 K + 1 × C Opt ( 10 
)
where C Opt denotes the wavelength channel cost of the Steiner tree.

B. Sparse Splitting WDM Networks

In the case of sparse splitting, only a subset of nodes can act as branching nodes in a light-trees. One light-tree may not be sufficient to accommodate all the group members simultaneously. Generally, several light-trees should be employed.

Lemma 1: ∀j ∈ [1, k], the cost of the j th light-tree holds

K j = |D j | ≤ c LT j (s, D j ) ≤ N -k (11) 
Proof: According to Eq. ( 4), all the k subsets of destinations D i , i ∈ [1, k], are disjoint. Based on the third assumption in subsection II-A, at leat k-1 destinations are not included in a light-tree. The number of nodes in a light-tree is consequently no more than N -(k-1). Furthermore, if no other nodes are included in the j th light-tree except the source s and the destinations in D j (i.e. {v|v ∈ LT j (s, D j )} = {s}∪D j ), then the number of nodes in the j th light-tree is minimal and equals K j + 1. Hence, the cost bounds of a light-tree can be obtained as

K j ≤ c LT j (s, D j ) ≤ N -k (12) 
Theorem 1: In sparse splitting WDM networks, the total cost of the light-trees built for the multicast session ms(s, D) satisfies

K ≤ c ms(s, D) ≤ K(N -K), K < N 2 ⌊ N 2 4 ⌋, K ≥ N 2 ( 13 
)
Proof: According to Lemma 1 and Eq. ( 6), the total cost of the light-trees built for a multicast session ms(s, D) holds

c ms(s, D) ≤ k i=1 (N -k) ≤ k(N -k) (14) ≤ -(k - N 2 ) 2 + N 2 4 
Regarding k is an integer and 1 ≤ k ≤ K, we obtain 

c ms(s, D) ≤    K(N -K), K < N 2 N 2 4 , K ≥ N 2 and N is even N 2 -1 4 , K ≥ N 2 and N is odd (15) 
K i = K (16) 
In fact the cost bounds given in T heorem 1 are tight. In the following we give two examples to show their accuracy. It is not difficult to imagine that the case with the minimal cost appears when all and only all the destinations are involved in the light-tree computed for multicast session ms(s, D), as shown in Fig. 2(a). That is to say {v|v ∈ LT } = {s} ∪ D. It is obvious that the lower bound K is tight.

The worst case depends on the relationship between K and N . In case that K < N 2 , the worst case may happen when the network topology is like that in Fig. 2(b), where K lightpaths on different wavelengths are needed to serve K destinations to the source. Here, it is observed that the cost of the optimal light-trees equals K(N -K). When K ≥ N 2 , the worst case may take place in the topology of Fig. 2(c). In this topology, ⌊ N 2 ⌋ lightpaths from the source to each of the destinations at the bottom are required to serve all the group members. The K -⌊ N 2 ⌋ destinations in the middle can be served in any one of them. As each lightpath has a cost of ⌈ N 2 ⌉, an exact total cost of ⌊ N 2 4 ⌋ should be consumed to establish the multicast session ms(s, D). This example verifies the accuracy of the upper bound given in T heorem 1.

IV. COST BOUND OF MULTICAST LIGHT-TREES IN UNWEIGHTED WDM RINGS

A. Multicast Light-tree in unweighted WDM Rings

In WDM rings, all the nodes are mandatorily equipped with TaC [START_REF] Ali | Cost-effective Implementation of Multicasting in Wavelength-Routed Networks[END_REF] capability, one light-tree is able to span all the multicast members. The multicast lighttree in a WDM ring consists of either a lightpath or two edge disjoint lightpaths originating from the same source. In an N -node WDM ring, the cost of the 

B. Optimal Multicast Light-tree in unweighted WDM Rings

Different from WDM mesh networks, minimizing the cost of the multicast light-tree in a WDM ring is very simple. The minimum spanning tree for the multicast members is the optimal solution. Here, we use the concept gap introduced in [START_REF] Scheutzow | Multicasting in a WDM-upgraded resilient packet ring[END_REF], [START_REF] Scheutzow | Shortest path routing in optical WDM ring networks under multicast traffic[END_REF]. A gap is a path between two adjacent multicast members in {s} ∪ D so that no other members are involved in this path. The optimal multicast light-tree can be obtained by removing the biggest gap from the ring [START_REF] Scheutzow | Multicasting in a WDM-upgraded resilient packet ring[END_REF].

Theorem 2: In a WDM ring, the cost of the optimal light-tree for multicast session ms(s, D) complies

K ≤ c ms(s, D) ≤ N -⌈ N K + 1 ⌉ ( 18 
)
Proof: Beginning from the source node s, we index the destination nodes from d 1 to d K in a clockwise manner. Let g 1 denote the length of the gap between the source s and d 1 , g i be the length of the i th gap, i.e., the gap between d i-1 and d i , and g K+1 be the gap between source s and d K as shown in Fig. 3. In a WDM ring of N nodes, we obtain

K+1 i=1 g i = N ( 19 
)
The cost of the optimal multicast light-tree for multicast session ms(s, D) can be determined by

c ms(s, D) = N -max 1≤i≤K+1 g i (20) 
In order to obtain the cost bound of the light-tree, we have to determine the value range of max 1≤i≤K+1 g i . Note that all g i are positive integers and satisfy Eq. [START_REF] Chen | Multicast routing and wavelength assignment with delay constraints in WDM networks with heterogeneous capabilities[END_REF]. We obtain the following inequality

max 1≤i≤K+1 g i ≥ ⌈ N K + 1 ⌉ (21) 
This result corresponds to the case that multicast members are evenly distributed in a WDM ring. Thus we obtain

c ms(s, D) ≤ N -⌈ N K + 1 ⌉ (22)
Besides, if all the multicast group members stick together one by one, the optimal light-tree thus only consists of the source and the destinations. Then, we can obtain the lower bound c ms(s, D) ≥ K.

(23)

V. APPROXIMATION RATIOS OF THE HEURISTIC ALGORITHMS FOR SPARSE SPLITTING MULTICAST ROUTING

Like the Steiner problem, it is NP-hard to find the light-trees with the optimal cost for multicast routing in sparse splitting WDM networks. This is why many heuristic algorithms have been proposed to solve this problem in polynomial time. In order to guarantee the quality of the resultant light-trees, it is imperative to determine the cost approximation ratios of the proposed heuristic solutions. The approximation ratio ρ(H) of a heuristic algorithm H in WDM network G can be defined as follows: for any possible multicast session ms(s, D) in G, let c(H) be the total cost of the multicast light-forest computed by H and let C Opt be the total cost of the optimal solution (the solution with the minimized cost), ρ(H) is the tight upper bound of the equation below

1 ≤ c(H) C Opt ≤ ρ(H), ∀ms(s, D) in G (24) 
Nevertheless, the approximation ratios of heuristic algorithms have not been investigated before. In this section, we try to deduce the approximation ratios of two classical light-trees computation heuristics namely Reroute-to-Source (R2S) and Member-Only (MO) [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF]. Define C Opt as the optimal cost of the light-trees fulfilling the multicast session ms(s, D), and let ρ(•) denote the cost approximation ratio of a heuristic solution. Specially, we discuss the approximation ratios of these algorithms in two types of WDM networks G(V, E): non-equally-weighted one and unweighted one. In the first case, the link cost can be an arbitrary positive number. While in the latter case, all the link costs are set to be 1 unit hop-count-cost as shown in Eq. [START_REF] Ali | Cost-effective Implementation of Multicasting in Wavelength-Routed Networks[END_REF].

At first, we study the approximation ratios in unweitghted WDM networks and some special network topologies.

Theorem 3: Given that the WDM network G(V, E) is unweighted, if an all-optical multicast routing algorithm AOM R follows the assumptions in II-A then its approximation ratio holds

ρ(AOM R) ≤ N -K 1 ≤ K < N 2 ⌊ N 2 4 ⌋ K N 2 ≤ K ≤ N (25) 
Proof: If G(V, E) is unweighted i.e., Eq. ( 7) is valid. As demonstrated in subsection III-B, the light-forest computed by the multicast routing algorithm following the assumptions in II-A has both a lower bound and an upper bound. Obviously, the optimal cost of lightforest should also be no less than the lower bound. Hence, the approximation ratio of the algorithm can not be greater than the value of the upper bound divided by the lower bound. According to T heorem 1, we obtain T heorem 3. It is obviously also valid for both Reroute-to-Source and Member-Only algorithms, since they respect the sparse splitting constraint and follow the aforementioned assumptions.

It should be also noted that any heuristic algorithm is capable of finding the cost-optimal light-forest in some special topologies, for instance the tree network, the line network, and ect.

Lemma 2: Given the WDM network G in which there is one and only one path between each pair of nodes, the approximation ratios of any heuristic algorithms are equal to 1.

Proof: As there is only one path between each pair of nodes, any solution will find the identical light-forest to realize a multicast session.

A. Reroute-to-Source Algorithm

Reroute-to-Source algorithm constructs the shortest path tree rooted at the source, then it checks the splitting capacity of the branching nodes. If a branching node is an MI node, the algorithm cuts all but one downstream branch. The affected leaf destinations rejoin the light-tree along a shortest path to the source on another wavelength.

Theorem 4: Given that the WDM network G(V, E) is non-equally-weighted, the Reroute-to-Source algorithm [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] provides an approximation ratio of ρ(R2S) = K for multicast routing with sparse splitting constraint.

Proof: Let r max be the cost of the shortest path from the furthest destination to the source s, i.e.

r max = max di∈D c SP (s, d i ) (26) 
Obviously, we have

C Opt ≥ r max (27) 
Hence, we can obtain

ρ(R2S) = c(R2S)/C Opt ≤ di∈D c SP (s, d i ) /C Opt ≤ |D| • r max /r max (28) ≤ K
Next, we will show that ρ(R2S) may tend to be K in a non-equally-weighted topology like Fig. 4, where r is a positive integer denoting the distance from s to d 1 and δ is a very small non-negative number. We can see the optimal solution for multicast communication while the shortest path tree is the set of direct paths from s to each destination. Then,

ms(s, d 1 -d K ) is the lightpath s → d 1 → d 2 ... → d K ,
c(R2S) = K r + K -1 2 (29) 
C Opt = r + (K -1)(1 + δ) (30) 
Thus, the approximation ratio of R2S algorithm is

ρ(R2S) = K 1 - 1 2r (K-1)(1+2δ) + 2(1+δ) 1+2δ (31) 
Since G(V, E) is non-equally-weighted and K is inferior to N , r can be arbitrarily large and independent of K and N . Thus, for any K ∈ (1, N ), when r N → ∞ and δ → 0, we obtain ρ(R2S) = K. Discussion: Obviously, T heorem 4, i.e. ρ(R2S) ≤ K is true for both unweighted and non-equally-weighted networks G. However, it should be noticed that ρ(R2S) = K is not valid for all possible 1 < K < N in unweighted WDM networks, especially when K is very close to N . Take the same example in Fig. 4, if G is unweighted, r is always below N -K and δ = 0, thus r K ≤ N -K K will never reach ∞ when K is close to N . As a result, Eq. (31) can not tend to K any more, and a better ratio should be found in this case.

Theorem 5: Given that WDM network G(V, E) is unweighted, ρ(R2S) ≤ K 1 ≤ K < N 2 ⌊ N 2 4 ⌋ K N 2 ≤ K ≤ N -1 (32) 
Proof: As proved in T heorem 4 that ρ(R2S) ≤ K is always true for any WDM networks. In addition, T heorem 3 is also valid for Reroute-to-Source algorithm in unweighted graphs. By combining these two results, the proof follows.

B. Member-Only Algorithm

According to Member-Only (MO) algorithm [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF], the shortest path between each pair of nodes is precalculated and stored in a table. Then, the computation of the light-trees for a multicast request is done iteratively as shown in Algorithm 1.

M C SET : includes source node, MC nodes and the leaf MI nodes. They may be used to span the light-tree LT and, thus are also called connector nodes in LT . At each step i + 1, try to find the shortest paths between the destinations d ∈ D and the connector nodes c ∈ M C SET of light-tree LT i , such that they do not involve any TaC capability exhausted nodes in M I SET . Among them, the constraint-satisfying shortest path SP (d, c) with the smallest cost is selected. Then generate LT i+1 by adding SP (d, c) to LT i . In case that no such destination can be found, begin a new light-tree rooted at the source. Member-Only algorithm is an adjustment of the famous Minimum Path Heuristic (MPH) proposed for the Steiner problem. As mention in Section III, MPH is able to approximate the Steiner tree with a ratio smaller than 2. However, by adjusting MPH for multicast routing under sparse splitting constraint (i.e., Member-Only algorithm), it is difficult to determine the approximation ratio. Next, Lemma 3: In Fig. 5, suppose P is a node in the shortest path SP (A, B) from node A to node B, and C is connected to P by the shortest path. We obtain

l CP ≤ 1 2 (l AB + l AC + l BC ) (33) 
Proof: Since node P is in SP (A, B), both paths AP and BP are the shortest paths, then

l AB = l AP + l BP ( 34 
)
As a result the graph in Fig. 5 is a distance network, where the triangle inequality is valid. Then,

l CP ≤ l AC + l AP (35) l CP ≤ l BC + l BP (36) 
Adding Eq. (35) to Eq. (36) gives

2l CP ≤ (l AP + l BP ) + l AC + l BC (37) 
By substituting Eq. (34) into the above equation, Lemma 3 follows. Theorem 6: Given any kind of WDM networks G(V, E), the Member-Only algorithm provides a cost approximation ratio ρ(M O) ≤ K 2 +3K 4 for sparse splitting multicast routing.

Proof: We use the proof by induction. Let l max be the cost of the shortest path between the furthest two members in a multicast session ms(s, D), i.e.

l max = max mi,mj∈s∪D c SP (m i , m j ) (38) 
Member-Only algorithm starts the multicast lighttree LT from the source s and spans the light-trees iteratively. Let l i denote the cost of the shortest path that connects the destination d i to the current LT , and l m i be its upper bound. In other words, the cost of LT increases by l i after spanning d i , and at most l m i . In the following, we are trying to determine the worst case of the upper bound l m i for each l i by applying the triangle inequality in Lemma 3. As shown in Fig. 6, the nearest destination node d 1 to the source s is first added to LT . Now, the cost of LT is l 1 ≤ l max and l m 1 = l max . Then in the second step, the nearest destination d 2 to LT is added using the shortest path. If d 2 is spanned via d 1 or s, then obviously l 2 ≤ l max . It should be noted that the worst case appears when d 2 is spanned via an intermediate node (say A 2 ) in SP (s, d 1 ). If this happens to be the case, we obtain l 2 ≤ 3 2 l max and l m 2 = 3 2 l max according to Lemma 3. In the third step, the nearest destination d 3 is added using the shortest path. It is evident that l m 3 is the largest when d 3 is spanned via an intermediate node (say A 3 ) in SP (A 2 , d 2 ). This can be explained as follows. If d 3 is spanned via any member node (i.e., s, d 1 or d 2 ), then obviously l 3 ≤ l max . Otherwise, d 3 must be connected via an intermediate node in the shortest path SP (s, d 1 ) or SP (A 2 , d 2 ). According to Lemma 3, l 3 ≤ 3 2 l max if d 3 connects to LT through a node in SP (s, d 1 ). In case that d 3 connects to LT through a node in SP (A 2 , d 2 ), the cost of SP (A 2 , d 3 ) should be calculated before using the triangle inequality. Similar to

SP (A 2 , d 2 ), c SP (A 2 , d 3 ) ≤ l m 2 .
Then, go back to l 3 , and we obtain:

l 3 ≤ 1 2 c SP (A 2 , d 3 ) + c(SP (d 2 , d 3 )) + l 2 ≤ 1 2 (l m 2 + l max + l 2 ) (39) ≤ l m 2 + 1 2 l max
Hence,

l m 3 = l m 2 + 1 2 l max (40) 
Suppose that Eq. ( 41) is obtained by applying Lemma 3

l m i = l m i-1 + 1 2 l max (41)
Next, we try to prove that it is also true for the case of l m i+1 . Since a Member-Only multicast light-tree is only consisted of the shortest paths, each node in the lighttree must be in the shortest path between two member nodes or between a destination and a joint node of two shortest paths. And, l m i is monotonically increasing. Consequently, the worst case of l m i+1 occurs when d i+1 connects to LT through an intermediate node in the shortest path between d i and a joint node A i . According to Lemma 3, c SP (A i , d i+1 ) ≤ l m i also holds. Then, applying the triangle inequality again in the distance network of G(A i , d i , d j ) leads to,

l i+1 ≤ 1 2 c SP (A i , d i+1 ) + c(SP (d i , d i+1 )) + l i = 1 2 (l m i + l max + l i ) (42) ≤ l m i + 1 2 l max
So, it is always valid for all the steps during the span of a light-tree that l m i+1 = l m i + 1 2 l max . Hence, we have l m i = i+1 2 l max . Assuming k light-trees are constructed for multicast session ms(s, D), and |D i | destinations are unique served in the i th light-tree. This also means that |D i | steps are processed in the i th light-tree. Thus, the total cost of the i th light-tree is upper bounded by

c(LT i ) = |Di| i=1 l i ≤ |Di| i=1 l m i (43) ≤ 1 4 |D i | 2 + 3|D i | l max
Then, the total cost consumed by ms(s, D) using Member-Only algorithm is

c(M O) = k i=1 c(LT i ) ≤ k i=1 1 4 (|D i | 2 + 3|D i |)l max ≤ 1 4 3|D| + k i=1 |D i | 2 l max (44) 
≤ 1 4 3|D| + |D| 2 l max
As C Opt ≥ l max , the following inequality can be obtained

ρ(M O) = c(M O)/C Opt ≤ c(M O)/l max (45) 
≤ 1 4 3K + K 2 Theorem 7: Given that the WDM network G(V, E) is unweighted, then ρ(M O) ≤      1 4 (K 2 + 3K) 1 ≤ K < √ 16N +49-7 2 N -K √ 16N +49-7 2 ≤ K < N 2 ⌊ N 2 4 ⌋ K N 2 ≤ K ≤ N -1 (46) 
Proof: If G(V, E) is unweighted, T heorem 3 is valid for the Member-Only algorithm. By merging two approximation ratios in T heorems 3 and 7, the proof follows.

VI. ILP FORMULATION

Since minimizing the total cost of the light-forest for a multicast session is NP-hard, the integer linear programming (ILP) method is applied to search the optimal solution.

Notations and Variables: W : The wavelengths supported per fiber. 

A. ILP Formulation

The objective of the studied sparse splitting multicast routing problem is to minimize the wavelength channel cost of the light-trees built for a multicast session ms(s, D). It can be formulated as follows:

M inimize : λ∈W m∈V n∈In(m) L n,m (λ) (47) 
The objective function is subject to a set of constraints, which are listed below: 1) Multicast Light-tree Constraints: Source Constraints:

λ∈W n∈In(s) L n,s (λ) = 0 (48) 1 ≤ λ∈W n∈Out(s) L s,n (λ) ≤ |D| (49) 
Constraints ( 48) and (49) ensure that the light-trees for multicast session ms(s, D) are rooted at the source node s. In a light-tree, s must not have any input link, but should have at least one output link. And the number of outgoing links from s should not go beyond the number of sink nodes, i.e., |D|. Destinations Constraints:

1 ≤ λ∈W n∈In(d) L n,d (λ) ≤ |D|, ∀d ∈ D (50) 
Constraint (50) guarantees that each destination node sinks at least one incoming light beam. Since some destinations, which act an intermediate node in a lighttree, will forward the incoming light beam to successor destinations, a destination node d can receive at most |D| light beams on all the wavelength layers. However, this constraint cannot ensure that destination d is reachable from the source s, which will be illustrated later.

Input Constraint:

n∈In(m) L n,m (λ) ≤ 1, ∀λ ∈ W, and ∀m ∈ V (51) 
Equation ( 51) indicates that each node (except the source s) in a light-tree has and only has one predecessor. Nevertheless, this constraint can not guarantee that the resultant structure is a set of light-trees, due to the fact that loops can not be avoided (refer to Fig. 7). Leaf Nodes Constraint:

n∈Out(m) L m,n (λ) ≥ n∈In(m) L n,m (λ) (52) 
∀λ ∈ W, ∀m ∈ V and m ∈ D Constraint (52) ensures that only the destination nodes can be leaf nodes in a light-tree while the nonmember nodes can not. Sparse Splitting Constraints:

n∈Out(m) L m,n (λ) ≤ R × n∈In(m) L n,m (λ) (53) ∀λ ∈ W, ∀m ∈ V and m = s where R = 1, if m is an MI node R = Deg(m) -1, if m is an MC node (54)
Constraint (53) together with constraint (52) indicates the splitting capabilities of the nodes. If a node m is spanned in a light-tree, then the number of outgoing links from m is equal to 1 for an MI node and less than Deg(m) -1 for an MC node. Otherwise, it must be 0.

Only with the light-tree structure constraints developed above [START_REF] Yu | Mathematical formulation of optical multicast with loss-balanced light-forest[END_REF], [START_REF] Chen | Multicast routing and wavelength assignment with delay constraints in WDM networks with heterogeneous capabilities[END_REF], one can not guarantee that each light-tree of the resultant light-forest should be connected and loop free. An contradictory example is given next. Suppose we just employ the light-tree constraints formulation to find the light-trees for a multicast session ms s, (d 1 -d 4 ) in topology Fig. 7(a). The result in Fig. 7(b) uses some wavelength λ 1 , where L s,d1 (λ 1 ) = 1, L d2,d3 (λ 1 ) = 1, L d3,d4 (λ 1 ) = 1, L d4,d2 (λ 1 ) = 1 and all the other variables L m,n (λ) are zero. It is true that all the constraints from (48) to (53) are satisfied in this result. Besides, the wavelength channel cost of the result is optimal. Unfortunately, this result has a loop d 2 -d 3 -d 4 -d 2 and three destinations are separated from the source node s. Thereby, the proposed lighttrees constraints are not sufficient to guarantee the resultant light-tree structure. This is why next the destinations reachability constraints are introduced to solve these problems.

2) Destination Nodes Reachability Constraints: Source node:

n∈In(s) U d
n,s (λ) = 0, ∀λ ∈ W, and ∀d ∈ D (55)

1 ≤ λ∈W n∈Out(s) U d s,n (λ) ≤ |D|, ∀d ∈ D (56) 
Similar to constraint (48), Eq. ( 55) gives the constraint that no link leading to the source will be employed to serve destinations in the light-trees.

Equation ( 56) ensures that all the destination nodes could be reached from the source node s in the lighttrees. By combining Eqs. ( 51) and (56), the loops can be avoided. Still refer to the contradictory example aforementioned, the result in Fig. 7 

U d n,d (λ) ≤ |D| -1, ∀d ∈ D (59) 
Constraint (57) avoids the loops of destinations, such as that in Fig. 7(b). Constraints (58) and (59) make sure that each destination has one and only one input link in a light-tree, which are equivalent to constraints (51) and (50) respectively.

Non-member nodes and destination nodes cross correlation:

n∈Out(m) U d m,n (λ) = n∈In(m) U d n,m (λ) ≤ 1 (60) ∀λ ∈ W, ∀d ∈ D, ∀m ∈ V and m = s, d λ∈W n∈Out(m) U d m,n (λ) ≤ |D| (61) ∀λ ∈ W, ∀d ∈ D, ∀m ∈ V and m = s, d
The distinct wavelength constraint is illustrated by Eq. (60). It ensures that one link can be used at most once on one wavelength, and will be used at most |D| times to establish multicast session ms(s, D) on all the wavelengths which is expressed by Eq. (61). In this section, simulations are conducted to compute the multicast light-trees in sparse splitting WDM mesh networks. ILP formulations are implemented by Cplex [20], while Member-Only and Reroute-to-Source are conducted in C++ with LEDA package [21]. Since the proposed cost bounds and the approximation ratios of Member-Only and Reroute-to-Source algorithms only correspond to the worst or extreme cases, they may only appear in special topologies with special configurations. Hence, here we do not mean to verify the accuracy of the proposed bounds and approximation ratios. Instead the numerical results are obtained to just show the quality of the resultant light-trees when applying the Member-Only and Reroute-to-Source algorithms in some popular candidate WDM backbone networks like 14 nodes NSF network and 28 nodes USA Longhaul network.

A. Cost Bounds of Multicast Light-trees

Member-Only (MO) and Reroute-to-Source (R2S) algorithms are conducted in unweighted NSF network and unweighted USA Longhaul network. All the links are associated an identical cost of 1 hop -count cost. Since the worst case of the cost bound occurs when there is no light splitters in the network, we configure the network without light splitters. The source and multicast members are assumed to be distributed uniformly over the topology. The cost bounds of the multicast light-trees computed by MO and R2S heuristics are demonstrated in Fig. 8 when the multicast group size (counting the source node) K + 1 varies from 2 (Unicast) to the nodes number of the network (Broadcast). 5000 multicast sessions are randomly generated for a given multicast group size, meanwhile, Member-Only and Reroute-to-Source algorithms are employed to compute the multicast light-forest for each session. Among 5000 light-forests, the biggest cost of the light-forests (denoted by R2S-Max and MO-Max) and smallest cost of the light-forests (denoted by R2S-Min and MO-Min) are figured out and plotted in Fig. 8. The lower bound and the upper bound provided in T heorem 1 are compared with the simulation result. According to the figure, it is observed that the proposed lower bound is covered by MO-Min since they are almost the same. The lower bound is also very near to R2S-Min. Meanwhile, we can also find that the upper bound is much bigger than the biggest costs obtained (MO-Max and R2S-Max) by the simulation. This can be explained by the fact thatthe simulation results depend on the simulation topology. The proposed upper bound is valid for all the algorithms which complies the three rules mentioned in section II. As discussed in subsection III-B, given the network topology in Fig. 2, both the lower bound and the upper bound are always tight.

|D| = K ρ ′ (MO) ρ(MO) ρ ′ (R2S) ρ(R2S) 2 

B. Approximation Ratio of Multicast Light-trees

ILP formulations are carried out in C++ with Cplex library in the NSF network to search for the optimal light-trees for each multicast session. We set NSF network to be an equally weighted graph, where each link has the same cost of 1 hop -count cost. Provided a multicast group size, 20 random sessions are generated. Hence, each cost is the average of 20 sessions with the same group size. The cost bounds (LB and UB) and the approximation ratios of the Reroute-to-Source and Member-Only algorithms are compared in tables I and II. ρ ′ (MO) denotes the upper bound of the approximation ratio given in T heorem 6 and ρ ′ (R2S) stands for the upper bound of the approximation ratio derived from T heorem 5, while ρ(MO) and ρ(R2S) indicate the approximation ratios obtained by c(M O)/c(ILP ) and c(R2S)/c(ILP ) respectively in the simulations. In addition, |D| = K is the number of destinations in the session. As shown in table I, Member-Only algorithm achieves a very near cost to the result of ILP solution. In table II, it is observed that Member-Only algorithm has a better approximation ratio than Reroute-to-Source algorithm in the simulation. However, the approximation ratio gotten from the simulations is much smaller than that derived from the proof. This result can be explained as follows.

First, the approximation ratio derived from the proof is the ratio of the worst case. Second, similar to the cost bound, the approximation ratio depends also on the network topology. Finally, the approximation ratios given in T heorems 4 and 6 are not tight enough. In fact, another important impact is the characteristic of unweighted NSF network, which plays an important role in helping Member-Only and Reroute-to-Source to get good performances. This can be explained by the following Lemma 4.

Lemma 4: Given that the WDM network G is unweighted, the approximation ratios of both Member-Only and Reroute-to-Source are inferior to the diameter of network Diam(G).

Proof: It is trivial. Any shortest path SP G (•) in the network G is always SP G (•) ≤ Diam(G). Both Reroute-to-Source and Member-Only algorithm exclusively make use of the shortest path in the network. Thus, the total cost c(LF ) of the resultant light-forest is

c(LF ) ≤ K × Diam(G) (64) 
Besides, there are K destinations in session ms(s, D) and G is unweighted, the optimal cost of multicast light-trees is always no less than K. Thus,

ρ(LF ) ≤ K × Diam(G)/K = Diam(G) (65) 
It is not hard to find that the diameter of the unweighted NSF network is Diam(N SF ) =3. By taking T heorems 6, 4 and Lemma 4 into consideration concurrently, pretty better approximation ratios ρ(M O) and ρ(R2S) can be found in Table III.

VIII. CONCLUSION

Multicast routing in all-optical WDM mesh networks is an important but challenging problem. It is NPcomplete to minimize the wavelength channel cost consumed per multicast session under the sparse splitting constraint. Although many papers have focused on the algorithms of multicast light-trees computation, neither the cost bounds of light-trees nor the approximation ratios of heuristic algorithms have been addressed. In this paper, we first investigate the bounds of wavelength channel cost consumed by a multicast session in equally weighted WDM networks, where an equal cost of 1 unit hop-count cost is associated over all the fiber links. We find that it is tightly lower limited to the number of destinations K, and strictly upper bounded to (1) K(N -K) when K < N 2 ;

(2) ⌊ N 2 4 ⌋, when K ≥ N 2 , where K is the number of destinations in the multicast session and N is the number of nodes in the network. Source-oriented multicast light-trees computation heuristic algorithms like Reroute-to-Source [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] and Member-Only [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] follow this cost bounds, as they respect the three principles for light-trees computation mentioned in Section II. In a particular situation, where the network topology is a WDM ring, the optimal multicast light-tree can be determined by removing the biggest gap from the ring. We find that its cost is inferior to N -⌈ N K+1 ⌉. Furthermore, some interesting results are found on the approximation ratios of some classical multicast light-trees computation algorithms in both unweighted and non-equally-weighted WDM networks. Reroute-to-Source algorithm (R2S) [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] achieves an approximation ratio ρ(R2S) equal to K in non-equally-weighted WDM networks, while in unweighted WDM networks ρ(R2S) is inferior to (1) K, when 1 ≤ K < N 2 ;

(2)

⌊ N 2 4 ⌋
K , when N 2 ≤ K < N . Member-Only algorithm (MO) [START_REF] Zhang | Constrained multicast routing in WDM networks with sparse splitting[END_REF] approaches the optimal solution with a ratio ρ(M O) inferior to (K 2 + 3K)/4 for any WDM networks. More specially in unweighted WDM networks, ρ(M O) is no bigger than (1) (K 2 + 3K)/4, when 1 ≤ K < √ 16N +49-7 2

;

(2) N -K, when √ 16N +49-7 2

≤ K < N 2 ;

(3)

⌊ N 2 4 ⌋ K , when N 2 ≤ K < N .
It is also reported that if WDM network is unweighted, the approximation ratios of R2S and MO are always inferior to the diameter of the network.

Simulation results illustrate that in popular candidate WDM backbone network topologies, the cost bounds and the approximation ratios of Member-Only and Reroute-to-Source heuristics are far from the worst case ones. This is due to the fact that unweighted NSF network has a very small diameter of three. In addition, the Member-Only algorithm achieves better cost than the Reroute-to-Source algorithm.
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 2 Fig. 2. (a) The best case; (b) The worst case when K < N 2 ; (c) The worst case when K ≥ N 2
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 3 Fig. 3. The gaps in a WDM ring
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 4 Fig. 4. Illustration of T heorem 4

Algorithm 1 4 : 6 :

 146 Member-Only Algorithm Input: A graph G(V, E, c, W ) and a multicast session ms(s, D 0 ). Output: A set of Light-trees LT k (s, D k ) each on a different wavelength w k for ms(s, D 0 ). 1: k ← 1 {k is the serial number of a light-tree} 2: D ← D 0 3: while (D = Ø) do LT k ← {s}, M C SET ← {s}, M I SET ← Ø 5: for (d ∈ D and c ∈ M C SET ) do Try to find the shortest path SP (d, c) which doest not involve any node in M I SET .

if 9 :

 9 Such a path SP (d, c) is found then LT k ← LT k ∪ SP (d, c) 10: M C SET ← M C SET ∪ {MC in SP (d, c)} ∪ {d} 11: M I SET ← M I SET ∪ {non-leaf MI in SP (d, c)} 12: if (c is an MI node) then 13: M C SET ← M C SET \ {c} 14: M I SET ← M I SET ∪ {c} 15: No such path could be found then 19: Assign wavelength w k to LT k 20: k ← k + 1 and goto step 4 to begin a new light-tree LT k+1 21: end if 22: end while M I SET : includes only the non-leaf MI nodes, whose splitting capability is exhausted. Hence, these nodes are not able to connect a new destination to the subtree LT . D: includes unserved multicast members which are neither joined to the current light-tree LT nor to the previously constructed multicast light-trees.
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 536 Fig. 5. Illustration of Lemma 3

  λ : A wavelength λ ∈ W . V : The set of nodes. In(m) : The set of nodes leading an edge to node m. Out(m) : The set of nodes to which m is connected. Deg(m) : The degree of node m. link(m, n) : The directed link from node m to node n. L m,n (λ) : Equals to 1 if multicast request ms(s, D) uses wavelength λ on link(m, n), equals to 0 otherwise. U d m,n (λ) : Equals to 1 if link(m, n) is used on wavelength λ in the lightpath from d to the source s, equals to 0, otherwise.

Fig. 7 .

 7 Fig. 7. A contradict example with a loop in the result light-tree: (a) The network topology; (b) The result

) 1 ≤

 1 (b) does not satisfy constraint (56), since destination nodes d 2 -d 4 can not be reached from the source node s. Destination nodes autocorrelation: n∈Out(d) U d d,n (λ) = 0, ∀λ ∈ W, and ∀d ∈ D (57) n∈In(d) U d n,d (λ) ≤ 1, ∀λ ∈ W, and ∀d ∈ D (58λ∈W n∈In(d)

3 )

 3 Relationship between L m,n (λ) and U d m,n (λ): In order to avoid loops in the resultant light-trees, variable U d m,n (λ) is employed to restrict variable L m,n (λ). Their relations are shown in Eqs. (62) and (63). L m,n (λ) ≤ d∈D U d m,n (λ), ∀λ ∈ W, and ∀m, n ∈ V (62) U d m,n (λ) ≤ L m,n (λ), ∀λ ∈ W, ∀m, n ∈ V, and ∀d ∈ D (63) VII. SIMULATION AND NUMERICAL RESULTS

Fig. 8 .

 8 Fig. 8. The Cost Bound of multicast light-trees when the number of destinations K varies

  1 and LT 2 to forward the incoming light beam to d 2 and d 1 respectively. This is because that destinations in D i could be served directly in LT 1 . For instance, three light-trees LT 1 , LT 2 and LT 3 are computed to serve d 1 , d 2 , d 3 respectively, where LT 1 only contains d 1 , d 2 , LT 2 only contains d 2 , d 3 and LT 3 only contains d 3 , d 1 . However, LT 3 , for instance, should be eliminated since d 3 is spanned in LT 2

	Thus, it must tap the light beam only once for
	recovering multicast messages either in LT 1 or
	in LT 2 ).
	3) Since the number of wavelengths supported per
	fiber link is limited, the maximum number of
	wavelengths required and the traffic congestion
	in a fiber link should be taken into account dur-
	ing the selection of multicast light-trees. Thus,
	if a set of destinations D have been spanned by
	a light-tree LT 1 , D ⊆ LT 1 , it is entirely useless
	to construct another light-tree LT 2 to serve and
	only serve the destinations in subset D i , with
	D i ⊆ D.

A heuristic algorithm has an approximation ratio of ρ in network G, if it can be guaranteed that for all possible multicast sessions in G the total cost of the multicast light-forest computed by the heuristic algorithm is at most ρ times worse than the total cost of the optimal solution.