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Abstract

Answering a question of Adrian Bondy [4], we prove that every strong digraph has a spanning
strong subgraph with at most n + 2a — 2 arcs, where « is the size of a maximum stable set of D.
Such a spanning subgraph can be found in polynomial time. An infinite family of oriented graphs
for which this bound is sharp was given by Odile Favaron [3]. A direct corollary of our result is that
there exists 2o — 1 directed cycles which span D. Tibor Gallai [6] conjectured that « directed cycles
would be enough.

1 Introduction and known results.

In this paper, cycles of length two are allowed. Since loops and multiple arcs play no role in this topic,
we will simply assume that our digraphs are loopless and simple - when performing a contraction, we will
implicitely delete the cycles of length one and reduce the multiple arcs to simple one. Let D = (V, E)
be a strong digraph. We are mainly concerned in this paper by the following problem: What is the
minimum number of arcs of a strong spanning subgraph of D? This classical problem is known as the
MSSS-problem, see for instance [1] for a survey on this topic, see [7] and [11] for its relationship with
connectivity and [8], [12] for some approximation algorithm. Let us say that a strong digraph D = (V, E)
is a k-handle if k = |E|—|V|+1 (a 0-handle is simply a single vertex). We want to find the minimum k, for
which there exists a k-handle which is a spanning subgraph of D. We introduce now the key-definitions
in this topic: a handle is a directed path H := z1,...,x; in which we allow ;1 = 2;. We denote the

restriction of H to {x;,%iy1,...,2;} by H[z;,x;], and Hi= H\ {z1,z;}. The vertex z; is the head of
H and z; is the tail of H. If A and B are subgraphs of D, an (A, B)-handle of D is a handle with its
head in V(A), its tail in V(B) and its internal vertices and arcs disjoint from AU B. We simply write
(A)-handle instead of (A, A)-handle. A handle basis of D (or ear decomposition, see [1]) is a sequence
Hy, Hy,...,H} of handles of D such that Hy is a single vertex, H; is a (U{H; : j < i})-handle for all
i=1,...,kand D =U{H; :i=0,...,k}. Clearly, a digraph has a handle basis Hy,...,H} if and only



if D is a k-handle. Moreover, if D’ is a minimum strong spanning subgraph of D, every H; in any handle
basis of D' has at least 2 arcs. It follows directly that D is spanned by a k-handle with ¥ < n — 1. Our
goal in this paper is to prove the following theorem, where «(D) is the number of vertices of a maximum
stable set of D, called the stability of D:

Theorem 1 Every strong digraph D is spanned by a k-handle, with k < 2a(D) — 1.

To motivate this result, we invite the reader to check that the bound is sharp when D is chosen in
the following family of examples due to O. Favaron and drawn for the illustrative case a = 4.

Theorem 1 is one of the corollary of the following conjecture of Chen and Manalastas, which is
explicitely stated in [1] and [3].

Conjecture 1 Every strong digraph with stability « is spanned by the disjoint union of some k;-handles,
where k; > 0 for all i and the sum of the k; being at most a.

To see that Conjecture 1 implies Theorem 1, observe that such a disjoint union has exactly n + k — ¢
arcs where ¢ is the number of components and k is the sum of the k;. Consequently, making this disjoint
union strong requires at most 2c — 2 new arcs, and thus D is spanned by a strong digraph with at most
n+k+c—2<n+2a—2 arcs, since a > ¢. Conjecture 1 also implies the following result [9], once
conjectured by Las-Vergnas:

Theorem 2 FEvery strong digraph with stability o > 1 is spanned by the disjoint union of a — 1 paths.

But the real motivation of Conjecture 1 is to prove the following long-standing conjecture of Gallai [6]:
every strong digraph is spanned by the union of « cycles. For all these reasons, Conjecture 1 seems to
be the very challenge of this topic. It is verified for & = 1, this is the well-known result of Camion:
every strong tournament has a hamilton cycle. The case a = 2 is the following theorem of Chen and
Manalastas [5]: Every strong digraph with stability 2 is spanned by two cycles, intersecting one another
on a (possibly empty) path. The case @ = 3 can be found in [10]. The link between the MSSS-problem
and the stability number is the classical Gallai-Milgram’s theorem: every digraph D is spanned by the
disjoint union of a(D) directed paths. It suggests that the involved number of handles in a handle basis
should be related to a. In [3], Bondy proposed the following refinement of Gallai-Milgram’s theorem.
The proof is by induction on k, and can also be found in [1] and in [2].

Theorem 3 Let D be a digraph and {P; : 1 < i < k} be a spanning set of disjoint directed paths of D.
If k > a(D), there exists a spanning set of disjoint paths {P} : 1 <1i <k — 1} of D such that every head
(resp. tail) of a P; is the head (resp. the tail) of a P;.

K2

This theorem provides the key-operation of this paper - the main snag being that strong connectivity
is certainly not preserved under such a path exchange. The difficult part of the proof is to find some
structures (the so-called tree-handle systems) on which we can perform Theorem 3.



2 Completion.

An out-arborescence is an oriented tree in which every vertex has indegree at most 1. The one vertex
with indegree 0 is called the root. The vertices with outdegree 0 are the leaves. The dual definitions hold
for in-arborescence. A bi-arborescence A is a tree obtained by identifying the root of an in-arborescence
A_ and the root of an out-arborescence A;. The vertices of A_ (resp. A.) are the in-vertices (resp.
the out-vertices) of A. The vertices of A with indegree 0 (resp. outdegree 0) are the in-leaves (resp. the
out-leaves) of A. The common root is both an in-vertex and an out-vertex of A, we call it the center of
A. Observe that the center of A can also be a leaf of A, when A_ or A, is a single vertex. The vertices
of A which are not leaves are the internal vertices of A. A bi-arborescence is plain if it has at least two
in-leaves and two out-leaves. Let D = (V, E) be a strong digraph and S a subset of V. We denote by
D[S] the induced restriction of D on S. If A and B are two nonempty subsets of V', an (A4, B)-completion
is a set {Ai,..., A} of bi-arborescences such that:

i) Every A; is a subgraph of D.

ii) The internal vertices of A; do not belong to AU B.

iii) For all i # 7, V(4;) NV(4;) C AUB.

iv) In the graph D[AU B]U A; U...U A, (called completed graph), every vertex a € A is the head of
an (a, B)-path and every vertex b € B is the tail of an (A4, b)-path.

An (A, B)-completion C' is minimum if 3] |V (4;)| is minimum. Observe that if C is minimum, every
leaf f of A; belongs to AU B. Indeed, if f ¢ AU B, the vertex f only belongs to one bi-arborescence A;
and thus (C'\{4;})U{A4;\ f} is still a completion, a contradiction to the minimality of C'. It follows from
this observation that every vertex v ¢ AU B in the completed graph of a minimum (A, B)-completion
is the head of a (v, B)-path and the tail of an (A, v)-path: indeed the vertex v is certainly in a unique
bi-arborescence A;, therefore there exists a path from v to an out-leaf [ of T'. If [ € B we are done, and
if | € A, by iv), there is a path from [/ to B in the completed graph. Similarly, an (A, v)-path exists.

Lemma 1 Let C be a minimum (A, B)-completion of a strong digraph D = (V, E). If a bi-arborescence
T of C has more than one out-leaf, all the out-leaves of T belong to B\ A. Similarly, if T has more than
one in-leaf, all the in-leaves of T belong to A\ B.

Proof. Suppose that T has one out-leaf f € A and another out-leaf ¢ € B. We consider C' =
(C\{T}H U{T\ f}. Since T'\ f has an out-leaf in B, the completed graph of C' still satisfies the first
part of iv). Also, since f belongs to A, deleting f from T does not affect the second part of iv). Now we
suppose that all the out-leaves of T belong to A \ B. In the completed graph, consider a path P from
the center ¢ of T to a vertex b of B. We call f the last out-leaf of T' on the path P. We claim that
C'= (C\{T})u{T"}, where T' :=T_UT|c, f], is an (A, B)-completion. Indeed, in the completed graph
of C', every in-leaf of T" is still the head of a path with tail in B. The second part of iv) is still satisfied
since we deleted out-leaves of T" which belong to A. We again contradicts the minimality of C, therefore
the leaves of T form a subset of B\ A. The proof for the in-leaves follows by directional duality. O

Lemma 2 If D = (V,E) is a strong digraph and A, B are two nonempty subsets of V, D admits an
(A, B)-completion.

Proof. We proceed by induction on |4|. If A = {a}, there exists a spanning out-arborescence T rooted
at a. Now we consider the set of sub-arborescences A; of T which have no internal vertices in AU B and
are maximal with respect to inclusion for this property. This set is clearly an (A, B)-completion since it
satisfies i), ii) and iii) by construction, and its completed graph contains T as a subgraph, therefore it
satisfies iv). Now, we suppose that |A| > 1, and, for some a € A, we apply the induction hypothesis in
order to find an (A \ {a}, B)-completion {44,...,A4,}. We assume without loss of generality that this



completion is minimum and denote its completed graph by D.. If the vertex a is a vertex of D., we
are done since every vertex x of D, is the head of an (z,B)-path. Otherwise, we consider a shortest
directed (a, D.)-path P in D. We denote by t the tail of P. If t € AU B, the set {Ay,...,A,, P} is an
(A, B)-completion. If ¢ is an in-vertex of A;, the set {Ay,..., 4; 1,A; UP, Ajy1,..., A} is an (4, B)-
completion. If ¢ is an out-vertex of A; and A; U P is a bi-arborescence (with new center ¢, this can only
happen when A; is the union of an in-arborescence and a path which contains ¢ as an internal vertex),
{A41,...,4;_1,A;UP, A;y1,..., An} is an (A, B)-completion. If ¢ is an out-vertex of A; and A; U P is not
a bi-arborescence, A; has more than one out-leaf, and thus, by Lemma 1 all its out-leaves belong to B.
We denote by (A4;); the sub-out-arborescence of A; with root ¢, and by A} the bi-arborescence 4; \ (4;);.
Finally, {A1,..., A1, AL, (Ai)t UP, Aiyq,...,Ap} is an (A, B)-completion. O

3 Spanning a neighbourhood.

In this part, we show that, given a vertex w of a strong digraph D, there exists a k-handle which spans
w and the neighbours of w, where k is at most the stability of the neighbourhood of w. This result is the
core of our proof, we introduce for this the notion of tree-handle system. Given a vertex v in a digraph
D, we denote by Nj;(v) the set of out-neighbours of v in D, and by Np (v) the set of in-neighbours of v
in D. We write also the df;(v) := [N}, (v)| and d;(v) := |[Np(v)|-

Theorem 4 If D = (V, E) is a strong digraph and w is a vertez of D, the set {w} U N} (w) U Ny (w) is
contained in a p-handle D', where D' is a subgraph of D and p < a(D[{w} U N} (w) U N, (w)]).

Proof. We will simply denote N} (w) by w*, N, (w) by w™ and a(D[{w}Uw* Uw~]) by a. We proceed
by induction on E. To simplify a bit, we first treat the case wt Nw~ # (). Assume for this that a vertex
v belongs to wT Nw™, and that strong connectivity is lost when the arc vw or the arc wv is deleted
(otherwise we simply remove the arc - the stability is unchanged). In this case, D consists of the union
of two strong digraphs D; and Ds, such that w € D; and v € Dy and the unique arcs between D; and
D, are vw and wv. By the induction hypothesis, {w} U Nj (w) U Np, (w) is spanned by at most an
(a — 1)-handle, to which we add the handle wvw.

From now on, we suppose that wt and w™ are disjoint sets. Let C':= {By,..., B,} be a minimum
(wtu{w},w™ U{w})-completion. Observe that the completed graph is strong, therefore, we may suppose
that the completed graph is exactly D, otherwise we apply the induction hypothesis. If one of the B; is
an out-arborescence, say with root r and set of leaves L. We construct a digraph D* by removing from
D the internal vertices of B; and adding the set S consisting of all (r, L)-arcs. Observe that B; has at
least one internal vertex, otherwise {Bi,...,B;} \ {B;} would be a (wt U {w},w™ U {w})-completion
since the leaves of B; belong to {w}Uw™ Uw™. Thus, we can apply the induction hypothesis to D* and
span {w} Uwt Uw™ by a k-handle H, where k < a(D*[{w} UwT Uw]) < a. Since H is strong and C
is minimum, the set of arcs S is included in the arc set of H, thus H' := (H \ S) U B, is a k-handle and
satisfies the conclusion of Theorem 4. We can now assume that every B; is a plain bi-arborescence. If
for some ¢, B; has at least two internal vertices, we can consider instead of D the digraph D* in which
all the internal vertices of B; are contracted to a single vertex. Again, we apply the induction hypothesis
to D* to conclude. From now on, we assume that every B; is plain and has a single internal vertex b;.
From Lemma 1, it follows that the out-leaves of B; belong to w™ and the in-leaves of B; belong to w™.

We introduce the notion of tree-handle system of D. We define it as a set
TH ={W,A;1,A,...,A;|P1, Ps,..., P}

where W and A;, 1 <14 < k, are some bi-arborescences whose centers are respectively w and a;, and Fj,
1 < j <, are some handles (possibly arcs) with the additional conditions:



i) The sets V(W),V(A1),...,V(Ax),V(P1),...,V(F,) are pairwise disjoint.

ii) The digraph J{W, A1, As,..., Ak, P1,Ps,..., P} is a spanning subgraph of D. We call it the
realization of TH, and we denote it by R.

iii) The head (resp. the tail) of P;, 1 < j <1, is an out-vertex (resp. an in-vertex) of an A; or W.

iv) Every vertex x of D, except possibly w, verifies dj.g(:v) > 1and dg(z) > 1.

v) For all 4, 1 <4 < k, the out-neighbours (resp. the in-neighbours) of a; in R are in-neighbours (resp.
out-neighbours) of w in D.

We call [ and k the handle index and the tree index of TH, respectively. Observe that in R, every
vertex z different from w is the tail of an (w™,z)-path and the head of an (x,w™)-path. Thus, by
the minimality of the completion C, every arc of B;, 1 < ¢ < r, must be an arc of R. In particular,
every center of B; is also the center of an A;. We will call special such a bi-arborescence 4; (to say it
differently, A; is special if its center does not belong to {w}Uw™ Uw™, and, conversely, if a vertex is not in
{w}UwtUw™, it is the center of a special bi-arborescence). Keep in mind that a special bi-arborescence
is necessarily plain. Let us prove now that D admits a tree-handle system:

An out-fork is an out-arborescence with height exactly 1 (i.e. consists of one root and a non empty
set of leaves), an in-fork is defined analogously. We denote by X the subset of vertices of w™ which have
an out-neighbour in w~ and by Y the subset of vertices of w~ which have an in-neighbour in wt. In
particular, every vertex of X has an out-neighbour in Y, and every vertex of Y has an in-neighbour in
X. It is routine to check that X UY is spanned by a disjoint union of out-forks with root in X and leaves
in Y and in-forks with root in Y and leaves in X. We denote by F' this union of forks. Since D is strong,
for every vertex y € w™, there exists an (u,y)-path in D[w™] with u € Y or u is an out-leaf of some B;.
Equivalently, there exists a disjoint union O of out-arborescences with set of roots Y U {b; :i =1,...,7}
and set of vertices w~ U {b; : ¢ = 1,...,r}. By a similar argument, there exists a disjoint union I of
in-arborescences with set of roots X U{b; : 4 =1,...,7} and set of vertices wt U {b; : i =1,...,r}. Now
F UOUI is a disjoint union of bi-arborescences whose centers are the roots of the forks of F' and the
{bj:i=1,...,7}. We denote by Ay,..., A the subset of these bi-arborescences whose center is not a
leaf. We denote by Aj,... A} the bi-arborescences whose center is a leaf. Every in-leaf of A; or Aj is in
wt, and every out-leaf of A; or Aj is in w™. We denote by IL the set of wl arcs where [ is an in-leaf of
A; and by OL the set of lw arcs where [ is an out-leaf of A;, for all i = 1,..., k. We also denote by IL'
the set of wl arcs where [ is an in-leaf but not the center of A; and by OL' the set of lw arcs where [
is an out-leaf but not the center of A;-, for all j = 1,...,p. Finally, we denote by C1I the set of wl arcs
where [ is an in-leaf and the center of A’ and CO the set of lw arcs where [ is an out-leaf and the center
of A}. Observe that W := {w} U Aj U...U A, UCIUCO is a bi-arborescence with center w. We have
the tree-handle system TH = {W, A;,..., Ax|[ILUOLUIL'JUOL'}, all the handles of which are arcs.

Our next goal is to prove that there exists a tree-handle system with handle index at most . We con-
sider for this a tree-handle system TH = {W, Ay, Ay, ..., Agx| Py, P, ..., P;} which satisfies the following
conditions:

a) [ is minimum.
b) Subject to a), k is minimum.

¢) Subject to a) and b), |V(P)| + |[V(P2)| + ...+ |[V(F)]| is maximum.

Let us prove that TH is complete, that is, it verifies the property:



vi) Except in the case z = w, every out-leaf z of A; or W satisfies df;(z) > 2 and every in-leaf = of
A; or W satisfies di () > 2. In other words, x is the head or the tail of at least two handles of TH.

Consider for this an out-leaf x of a bi-arborescence of TH and assume that x is the head of a unique
handle P of TH. Without loss of generality, we can suppose that P = P;. We consider several cases:

1. Assume that = belongs to the bi-arborescence W. If z = w, the condition vi) holds vacuously. If
x # w, = has an in-neighbour ' in W which is an out-vertex of W. In this case, we extend P with
x', i.e. we consider TH' = {W\ {z}, A1, 4s,..., Ax|z'cU Py, Pa,..., P;}. Note that the realization
of TH is exactly | JTH', thus TH' is still a tree-handle system. However the total length of the
handles of TH' has increased, a contradiction to the condition c).

2. Now, assume that z belongs to a bi-arborescence A; for some i, say A;. If x # a1, we conclude as
previously in the case z # w. If x = a1, we denote by ¢ the tail of P;:

- The simplest case arises when ¢t does not belong to Ay, say t € A;. Note that the bi-arborescence
A; has no out-vertex except a; and that a; is the head of the unique handle P;. Consider
TH' = {W,A; UP, U Ay, As,...,Ai|Ps,..., P} and observe that TH and TH' have the same
realization which implies, as previously, that TH' is a tree-handle system. However, the handle
index has strictly decreased and this contradicts the condition a). The same argument holds if
te A;,3<i<korifteW.

- Suppose now that ¢ belongs to Aj, in particular ¢ is an in-vertex of A;. Again, we modify TH in
order to find a contradiction. There exists a path @ from ¢ to a; in A;. The union Q U P; forms
a cycle C in R which contains a;. Note that, by the property v) in the definition of tree-handle
systems, the in-neighbour and the out-neighbour of a; in C respectively belong to w™ and to w™.
Since wT Nw~ = 0, it follows that C has at least three vertices, all of these apart possibly a;
being neighbours of w. Indeed, the vertices of D \ ({w} Uw™ Uw™) are the centers of special
bi-arborescences, so C'\ {a1} C w~ Uw™. Thus, we can exhibit two vertices y and 2z in C'\ {a1}
such that yz is an arc of C, y € w™ and z € w*. To conclude, observe that A = (4; UP; Uyw) \ yz
is an in-arborescence rooted at w and that wz forms a handle from W to A. Now, we consider
TH' ={WUA,As,...,Ar|lwz, Py ..., Pr} and check that TH' is a tree-handle system. Conditions
i) and ii) clearly hold. The unique added handle is the arc wz, since w is an out-vertex of W U A
and z is an in-vertex of W U A, the property iii) is satisfied. To check property iv), observe that z
is the unique leaf possibly created by our modifications, and in this case z is an in-leaf of W U A
and the tail of the handle wz. Finally, we have not created new arborescence, which implies that
property v) still holds. Consequently, TH' is a tree-handle system with the same handle index than
T H but with lower tree index, a contradiction to the condition b).

We proceed similarly if z is an in-leaf of a bi-arborescence. Since all these cases give a contradiction,
TH ={W,A;,As,...,Ai|P1, Pa,..., P} is a complete tree-handle system. Now we want to achieve our
bound, that is we want to prove that [/, the handle index of TH, is at most «. First observe that if one
of the handles P; is an arc, we can simply remove it from T'H and still have a tree-handle system: the
reason for this is simply that removing P; cannot harm the condition iv) in the definition of tree-handle
system since T'H is complete. By minimality of I, all the handles have length at least 2. Suppose for
contradiction that | > «. Since P is a subset of wt U w™, its stability is at most «, therefore we can

apply Theorem 3 to the set of disjoint paths P := { ]gl, 132, ceey lgl}, in order to get a set of disjoint paths
P':={P,P;,...,P/_,}. Since the head of P; is the head of some Iga and the tail of P/ is the tail of some



ng, the path P/ extends naturally to a handle H; := hP/t where h is the head of P, and ¢ is the tail of
Py. Let us show that TH' := {W, A1, As, ..., Ax|H1,Ha,...,Hj_1} is a tree-handle system. Conditions
i) and ii) are still satisfied. Since the sets of heads and tails of P’ are subsets of the sets of heads and
tails of P, the condition iii) holds for TH'. Since TH is complete and exactly one head and one tail of
P are lost, the condition iv) holds. Finally, no new out or in-neighbours of any a; is created in TH',
so the condition v) still holds. Thus T'H' has handle index [ — 1, a contradiction to the condition a).
Consequently, the handle index [ of TH is at most a. Our last step is to span D with an [-handle. By
minimality, we recall that every handle of TH is non trivial (i.e. has length at least 2).

Consider for this a subgraph D’ of D with vertex set V' and arc set E’, which is maximal with respect
to |V'| and verifies the following conditions:

I) For some p € {0,...,l}, D' is a p-handle and contains the vertices of at least p handles of TH.

II) For all j = 1,...,1, either V(P;) NV’ =@ or V(P;) C V"

II) For all 4 =1,...,k, either V(4;)NV' =0 or D'[V(4;) N V'] is a sub-bi-arborescence of A; which
contains a;. Morever D'[V (W) N V'] is a sub-bi-arborescence of W which contains w.

Since the singleton digraph {w} satisfies I),IT) and III), such a D’ exists. We prove that D' necessarily
spans D, and thus achieve our goal:

- Let us assume that there exists a (V')-handle H in R which is not an arc. We denote its head by h
and its tail by ¢. By the condition III), H is not contained in a bi-arborescence A; or W. Therefore H
contains an internal vertex of some handle P of TH. By the condition II), it follows that P is contained
in H. Thus, D' U H contains at least one handle of T H which is not in D', in particular D' U H satisfies

the condition I). If }OI contains an internal vertex v of some handle P,, the whole handle P, is contained
in D' U H, so the condition II) is also satisfied. To check that condition III) is still satisfied, suppose

[e]
that H contains a vertex of some bi-arborescence A; which is disjoint from D’. Denote by a the first

]
vertex of H NA; along H and by b the last one. Since H is included in R, a is an in-vertex of A;, b is
an out-vertex of 4;, and HJa,b] is included in A;, and thus forms a sub-bi-arborescence which contains

a;. Now if H contains a vertex v of some bi-arborescence A; (resp. W) which meets D', assume without
loss of generality that v is an in-vertex of A; (resp. W). Since H is included in R and a; € D' (resp.
w € D", the path H{v,t] is included in the set of in-vertices of A; (resp. W). In both of these two cases,
D' U H satisfies the condition IIT).

- If there is no (V')-handle in R and V' # V', since both the in and the out-degree in R of any vertex
different from w are greater than one, R contains a cycle C' which is disjoint from D’. The cycle C
contains the center a; of a bi-arborescence A; of TH. Let us denote by a; the next center of an A; on
C, that is, no internal vertex of C|a;,a;] is the center of some bi-arborescence of TH. If a; is the unique
center which is contained in C, we simply choose a; := a;. Since C[a;, a;] contains a handle of TH, it has
length at least two. By the property v) of a tree-handle system, the out-neighbour a;L of a; in C belongs
to w~, and the in-neighbour a; of a; in C' belongs to wt. Since wt and w™ are disjoint sets, a} # a; .
In particular, we can find in Cla;, a; ] two consecutive vertices z and y such that z € w™ and y € w.
The subgraph D' Uwy U Cly, z] Uzw of D contains at least one handle of TH which is not in D' (indeed
Clai,a;] contains exactly one handle of TH), in particular it satisfies the condition I). The conditions II)
and IIT) are also easily verified.

So, V = V' and hence, D' is a p-handle which spans D, with p <1 < a. O



4 The main theorem. The algorithmic aspect.

Finally, we prove Theorem 1, which is an easy corollary of the previous result.

Proof of Theorem 1. Let us fix a vertex wo of D. According to Theorem 4, we can cover {wg} U
N (wo) U Np (wo) by a ki-handle Hy with k1 < a(D[Nj(wo) U Np, (wo)]). We contract this ki-handle
to form a digraph D; and call w; the contracted vertex. We again apply Theorem 4, and cover {w; } U
N,ng (w1) UNp (wr) by a ka-handle Hy with ks < a(Dy [NBF1 (w1) UNp (w1)])-

Perform these contractions until only one vertex w, remains. For | = 1,...,p, we denote by V; the
set of vertices of D contracted to w; and which were not contracted to w;_1, observe that the stability of
D[Vi], denoted by «y, is greater or equal to k;. Moreover, if an arc of D has its endvertices in V; and V},
we clearly have |i — j| < 1. Consequently, 1 + as +a4+--- < a(D) and a; +az+as+--- < a(D). Now,
let D), := {w,} and, starting with j := p, inductively replace w; in D} by the kj;-handle H; to form the
digraph D’_;. The spanning subgraph D of D is a k-handle where k is the sum of the k;. Moreover,
k§a1+a2+...+ap§2a—1. O

To conclude this paper, we invite the reader to check that an algorithm can easily be derived from our
proof. The calculation of a completion in which every arc is necessary can be done in polynomial time.
The reduction of a tree-handle system can be performed in O(|V|), and the path-exchange of Theorem 3
can be calculated in O(|E|). From this, the calculation of a (2a — 1)-handle which spans D can be done
in polynomial time. Although the calculation of the minimum k for which a strong digraph D admits a
spanning k-handle cannot be approximated up to any fixed factor (we leave this as an exercise for the
reader), the best known bound (see [12]) is the following: there exists an algorithm which calculates a
spanning k-handle of a digraph D where (n+k—1)/(n+1—1) < 3/2, where [ is the minimum value for
an l-handle spanning D. Our approach gives a better bound for dense graphs, that is when a < n/4.
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