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Abstract: Global stereo matching methods aim to reduce the sensibility of
stereo correspondence to ambiguities caused by occlusions, poor local texture or
fluctuation of illumination. However, when facing the problem of real-time stereo
matching, as in robotic vision, local algorithms are known to be the best. In
this paper, we propose a semi-local stereo matching algorithm (SLSM algorithm);
an area-based method that embodies global matching constraints in the matching
score. Our approach uses a fuzzy formularisation of the similarity assumption
in order to define a matching possibility distribution. An unmatching possibility
distribution is defined by applying global constraints to the matching possibility
distribution. The final matching cost is computed using the two possibility
distributions. Experimental results and comparison with other existing algorithms
are presented to demonstrate the performance and effectiveness of our approach.
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1 Introduction

Stereo vision aims to recover 3D information given incomplete and possibly noisy
information of the scene (Horn, 1986; Marr, 1982). Depth (or shape) provided by
Stereo vision systems is useful for robot controlling. Stereo correspondence search is
the most important and costing task of stereo vision. The stereo matching task can be
extremely challenging in presence of disturbance factors which typically affect images.
A common source of disturbances can be related to photometric distortions between
the images under comparison. These can be ascribed to the camera sensors employed
in the image acquisition process (due to dynamic variations of camera parameters such
as auto-exposure and auto-gain, or to the use of different cameras), or can be induced
by external factors such as changes of the amount of light emitted by the sources
or viewing of non-lambertian surfaces at different angles. All of these factors tend to
produce brightness changes in corresponding pixels of the two images that can not be
neglected in real applications implying stereo correspondence between images acquired
from different spatial points (e.g., stereo vision) and/or different time instants (e.g.,
pattern matching, change detection). In addition to photometric distortions, differences
between corresponding pixels can also be due to the noise introduced by camera sensors.
Finally, the acquisition of images from different spatial points or different time instants
can also induce occlusions. Classical stereo matching methods suffer from weakness in
presence of these disturbances. Stereoscopic constraints are used in a refinement step by
area-based methods to have higher quality results. Constraints used in stereo matching
can be classified into two categories: local constraints, which rely only on a pixel and
on some pixels in its surrounding, and global constraints, which must be verified by
the whole pixels of a line or of the image. The local methods aim to find a matching
for a given pixel without taking into account neighbour pixels correspondences. Global
methods try to define a global model of the observed scene and to minimise a global
cost function. They try to find the correspondences once for all pixels in one line or
for all pixels in the image. This work presents an area-based method that uses global
constraints which we classified as semi-local method. Similarity measures used in this
approach are based on fuzzy logic to have more robustness against disturbance factors.

The paper unfolds as follows. Section 2 presents a brief review state of the art
about stereo matching, focused on the local and global methods. Section 3 defines and
explains two possibility distributions that will be used to compute the matching cost.
Section 4 presents the main algorithm, and Section 5 presents results of the proposed
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algorithm and comparison with existing methods, and Section 6 closes with the main
contributions, drawbacks and possible extensions of this work.

2 Stereo matching: state of the art

The stereo vision aims at retrieving depth and shape of objects on a scene perceived by
two or more images acquired at the same moment from different points of view. The
stereo reconstruction is based on the aptitude to find in each image the projection of the
same object in the scene. The recovery of depth information of an object is related from
one side to the disparity which is the difference between projections of the same object
in both images, and on the other side, to the relative position of both cameras (baseline)
and to the image resolution. Thus, two different problems raise from the stereoscopic
reconstruction. The first is the disparity calculation, which is attached to the problem
of stereo correspondence. The second problem is the ability to inverse the projective
geometry problem. In other words, the 3D reconstruction, or how to exploit disparity
knowledge and relative position of the two sensors to find tridimentional information.
The works of Faugeras (1993), on the projective geometry have established a solid
basis for the tridimentional reconstruction problem. For the matching problem, there is
no method sufficiently reliable, robust and effective that allows a simple use of stereo
vision as a sensor of depth measurement. Binocular stereo vision uses two images
acquired by two cameras. A preliminary phase of calibration is needed to estimate
the different parameters of a stereo rig: the parameters of the projection model for
each camera (pinhole geometric model) and the spatial relationship between the two
cameras. This knowledge allows us to calculate the 3D coordinates of a point from its
projections in the two images by a simple triangulation. Stereo matching is one of the
most studied topics in computer vision since more than half a century (Julesz, 1962).
A detailed taxonomy of stereo correspondence algorithms is proposed in Scharstein
and Szeliski (2002). The authors classify stereo matching methods with respect to four
criteria: the local matching cost, the aggregation area while computing the local cost,
the optimisation method, and the method performed to refine matching results.

2.1 Local stereo matching methods

In local stereo matching methods, best match of each pixel is searched separately
starting from one image (the reference image) without taking into account the matches of
other ones. The matching cost between two pixels is based on similarity measurements
of the local intensity function. Intuitively, the projections of the same physical point
will naturally have similar intensities in the two images. In fact, the Lambertian model
(Horn, 1986) assumes that the object surface reflects uniformly the light in all directions.
Using this model, we can suppose that the corresponding pixels in both images are
similar, and indeed, their neighbours are also similar, assuming that view fields between
the two cameras are very close (no or small occlusions). A correlation measurement
can calculate a degree of similarity between two point sets. Local methods try to find a
match ps in the right image for a point p; in the left one. The correlation measurement
uses information given by p;, po and their neighbour pixels. The pixel p; and its
neighbours form a first point set, and the point ps and its neighbours constitute the
other point set. A correlation score evaluates the similarity between these datasets. Many
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local approaches use comparison windows centred on the considered pixel. Among the
most known measurements, we can find: sum of squared differences (SSD) (Cox et al.,
1996), sum of absolute differences (SAD) (Hirschmiiller, 2001), zero-mean normalised
cross-correlation (ZNCC) (Chen and Medioni, 1999; Sara, 2002), etc.

There are several local stereo matching algorithms, generally classified into two
categories: area matching and/or feature (element) matching (Horn, 1986). Area
matching algorithms are characterised by comparing features distributed over regions.
Feature matching uses local features, edges and borders for instance, with which it
is possible to perform the matching. Area-based algorithms are usually slower than
feature-based ones, but they generate full disparity maps and error estimates. Area-based
algorithms usually employ correlation estimates between image pairs for generating
the match. Such estimates are obtained using discrete convolution operations between
images templates. The algorithm performance is, thus, very dependent on the correlation
and on the search window sizes. Small correlation windows usually generate maps that
are more sensitive to noise, but less sensitive to occlusions, better defining the objects
(Hirschmtiller, 2001).

Local stereo correspondence methods are in general fast algorithms, so can be
used for real time applications. However, they are exposed to many failure sources, in
particular occlusions or variations of intensity between the two images. In fact, these
situations can produce many false matches. In addition, because of the absence of any
constraint between matches, adjacent pixels can have very different disparities, which
can be particularly remarkable in scenes having vertical lines (edges of an open door
for example). Global methods try to overcome these problems.

2.2 Global stereo matching methods

Global matching methods give very accurate results but are very time and computational
demanding because of their iterative nature. In global stereo matching approaches, match
of each pixel is computed based on the match of other pixels in the image. Global
approaches try to define a global model of observed scene and to minimise a global
cost function. Matches for pixels of one line or pixels of the whole image, are searched
at the same time. In a global method, the matching between a pixel in the left image
and a pixel in the right image does not depend only on their neighbours, but also on
the matches of their neighbours. Hence, the match of a pixel influences the matches
of its neighbour pixels. This influence is modelled by regularisation constraints on the
matches set. Some methods are based only on the epipolar constraint to transform
the bidimensional matching problem into one-dimensional problem, as in dynamic
programming (Belhumeur, 1996; Cox, 1992). Other methods address the bidimensional
problem by taking into account, inter-linesnal problem by taking into account, inter-lines
constraints, i.e., compatibility constraints between matchings provided on every epipolar
lines, as in graph cuts algorithms (Boykov et al., 1998; Ishikawa and Geiger, 1998).
The global regularisation aims to reduce the sensibility of stereo correspondence to
ambiguities caused by occlusions, poor local texture or fluctuation of illumination.
This improvement has a cost, which is the increasing of algorithms complexity, and
in consequence, a longer execution time, in addition to some secondary effects due
to this regularisation (smoothing). One of the most important global approaches is
stereo matching using dynamic programming (Ohta and Kanade, 1985; Cox et al.,
1996; Bobick and Intille, 1999). The principle of dynamic programming, introduced by
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Bellman (1957), allows resolving optimisation problems having an objective function as
a sum of monotone non-decreasing functions of resources. In practice, this means that
we can infer the optimal solution of a problem using optimal solutions of sub-problems.
The dynamic programming applied to stereo matching searches for a path of minimal
cost through a matrix composed of possible matches. To reduce the complexity, this
technique is applied on two sets of points of the same epipolar line. Thus, the stereo
correspondence is applied successively to find matchings for all pixels of a line of
one image with pixels located on its epipolar line in the other image (Ohta and
Kanade, 1985). The majority of stereo matching dynamic programming methods try
to match pixels between epipolar lines in both images without taking into account
inter-lines consistency. Hence, they do not use the bidimensional nature of the problem.
To overcome this drawback, and to take into consideration bidimensional continuity
constraint, a solution has been proposed using the graph theory. Graph cuts applied
to stereo matching were proposed by Roy and Cox (1998), and then reformulated by
Veksler (1999) in which the matching problem is considered as a minimisation of an
energy function. The first global method based on graph cuts for stereo correspondence
were given (Roy and Cox, 1998; Ishikawa and Geiger, 1998; Roy, 1999). Afterwards,
the iterative graph-cuts algorithms were introduced in Kolmogorov and Zabih (2001,
2002a, 2002b).

To resume, the matching problem can be seen as a minimisation problem. Local
approaches try to minimise separately many energy functions, representing local
matching costs supposed independent between different entities to be matched: a local
cost depends on similarity constraints between these entities. Global approaches try
to minimise a unique energy function taking into account all matching costs: this
global cost integrates local matching costs, and also compatibility costs expressing how
consistent are matchings computed on a line or on the whole image. Local methods
are very fast and fit to real time applications but are very sensible to disturbances.
Global methods gives more accurate results in a longer execution time that explodes
exponentially if high image resolution is used. In our approach, we try to maximise
separately many energy functions, representing global matching costs calculated using
possibility distributions that will be detailed in next section.

3 Possibility distributions

In stereo matching problems, we have a pair of pictures of the same scene taken from
different positions, and possibly orientations, and the goal is to discover corresponding
points, that is, pixels in both images that are projections of the same scene point. The
most intuitive way of doing that is by comparing groups of pixels of the two images to
obtain a similarity value. After similarities are computed, one may or may not include
restrictions and calculate the matching that maximises the global similarity. Our proposal
assumes

1 ordering constraint
2 uniqueness of the correct matching.

In general, given a point in one image, the comparison is not made with all points
of the other image. Using the epipolar restriction, only pixels on a certain line in one
image are the corresponding candidates of a pixel in the other one. The orientation of
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this line depends only on the relative orientation of the two cameras. The test images
used in the current work have a horizontal epipolar line, thus pixels are searched only in
such direction. We suppose that the rectification is exact, which means that the disparity
depends only on the column index of the pixel: the pixel (r,¢) in the left image is
matched to the pixel (7, ¢ 4 d) in the right image. We define a 3D disparity space which
dimension are 7, ¢ and d respectively to designate row, column and disparity. Each
element (r,c,d) of the disparity space is projected to the pixel (r,c¢) in the reference
image and (r,c+ d) in the matching image. The element (r, ¢, d) refers to the pairing
of the pixel (r, ¢) of the reference image and the pixel (r, ¢ 4+ d) of the matching image.
~(r, ¢,d) refers to the matching cost of the pairing (r, ¢, d).

Local stereo matching methods search separately for the best match of each pixel
starting from one image (e.g., the left one) without taking into account the matches
of other ones. The matching cost between two pixels is based only on similarity
measurements of the local intensity function. However, in a global method, the matching
between a pixel in the left image and a pixel in the right image does not depend only
on their neighbours, but also on the matches of their neighbours. Hence, the match of
a pixel influences the matches of its neighbour pixels. This influence is modelled by
regularisation constraints on the matches set.

In many applications, where high precision is needed, local stereo matching methods
need a step of refinement to include the stereoscopic constraints which is time costing.
In our stereo matching method, stereoscopic ordering and uniqueness constraints are
included directly in the matching score. The matching score between two pixels depends
on the similarity measurement and on the matches of their neighbours. Whence the
appellation of semi-local matching method.

Using fuzzy sets and based on the similarity assumption, we define a possibility
of matching distribution. Based on this distribution and using the uniqueness and
ordering constraints we define a possibility of unmatching distribution. The matching
and unmatching possibility distributions are used to define the matching score.

3.1 Possibility of matching

Similarity assumption assumes that the projections of the same physical point have
comparable light intensities. The major part of stereo vision approaches uses this
assumption in a statistic similarity criterion that calculates the difference of illumination
between two areas around the two pixels tested for the correspondence. This statistic
measure based on numerical distances of intensities is particularly disturbed by changes
caused by non-ergodic phenomena like the change of the point of view, partial
occlusion, sampling, scanning..., which can hardly be modelled by simple normal laws.
In our approach, we propose to model the similarity assumption by a fuzzy measure
more robust to noise and changes. This measure expresses the degree of membership of
two pixels to a same grey class. We define a grey scale classification of pixels. Three
classes are defined; black pixels, white pixels and average pixels. Membership functions
of these grey classes, given (1), are Gaussian centred in 0, 127.5 and 255.

(I(m) — Cclass)Q)

2
20—(:1(135

Mclass(m) = exp (_ (1)
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I(m) is the intensity at the pixel m, c.uss and o.qss are respectively the centre and
the standard deviation of the class under consideration. Based on this classification we
give the following proposition.

Proposition 3.1 The pairing of two pixels m; and mo projections of the same physical
point M on the stereo images, is ‘possible’ if the two pixels belong
to the same grey class. That means (m, is black AND ms is black)
OR (my is white AND my is white) OR ( my is average AND my
is average).

Definition 3.1: Considering two pixels m; and mo from the two stereo images, we
define TI(my,ms2) as the possibility of matching between the two pixels by expressing
Proposition 3.1 using classical fuzzy logic operators. II(mq,ms) is a measure of
co-membership to a same grey class. It reflects how much it is ‘possible’ to have m,
and mqy as corresponding pixels. II(mq,m2) is given by (2).

min(fuprack (M1), Plack (M2)),
1_[(77117 mg) = max min(uavemge (ml), /laverage(m2))a 2
min(fwhite(M1)s Hwhite(M2))

Lelass(m) is the degree of membership of the pixel m to the class under consideration.
The possibility of matching ranges between 0 and 1.

Notation: Thereafter, we will use the notation: II(r, ¢, d)=II(m1, ma) with m; = (r,¢)
and mg = (r, ¢, d).

3.2 Possibility of unmatching

Supposing that the observed objects are opaque and the disparity is not significant, the
uniqueness constraint assumes that an object whose projection is a pixel on the first
image has a projection that is a pixel in the second image. Using such a constraint
reduces the number of potential matches of a pixel in the reference image. This
constraint can be used only to modify an initial pairing distribution to have a new
distribution with less violation to the uniqueness constraint. Referring to the possibilities
of matching, a match (r,c,d) violates the uniqueness constraint if there is a match
(rye,d’) with d’ # d and II(r, ¢, d) < II(r,c,d).

Definition 3.2: Considering two pixels my = (r,¢) and mg = (r,c+ d) from the two
stereo images, we define Iy (r, ¢, d) as the possibility of unmatching relatively to the
uniqueness constraint. Iy (r, ¢, d) reflects how much the pairing of the pixel (r, ¢) in the
reference image and the pixel (7, ¢+ d) in the matching image violates the uniqueness
constraint. Iy (r, ¢, d) is given by (3).

Uy (r, e, d) = sup {Ii(r,c,d") > T0(r, c,d)} Q)

Under some conditions defined in Faugeras (1993), the ordering of pixels is preserved
across the images. This constraint can be formulated by the following proposition.
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Proposition 3.2 Considering two pixels m; and ms, respectively from the reference
and the matching image. If m; and mso are projections of the same
physical point M then all the pixels on the right (respectively left) of
the pixel m, are on the right (respectively left) of the pixel mo.

By extension we can express the dual negative proposition as follow.

Proposition 3.3 Considering two pixels m; and ms, respectively from the reference
and the matching image. If m; and ms are projections of the same
physical point M then all the pixels on the right (respectively left) of
the pixel m can not be on the left (respectively right) of the
pixel ma.

In other words, a match (r,c,d) violates the ordering constraint if there
is a match (r,c,d) that verifies: (¢c<¢ AND c¢+d>c+d) OR
(¢>c AND c+d<c +d) AND (II(r,c,d) < I(r,c¢',d")). Based on this analysis,
we give the following definition.

Definition 3.3: Considering two pixels m; = (r,¢) and mg = (r,c+ d) from the two
stereo images, we define Il (r, ¢, d) as the possibility of unmatching relatively to the
ordering constraint. o (r, ¢, d) reflects how much the pairing of the pixel (r,¢) in the
reference image and the pixel (r,c+ d) in the matching image violates the ordering
constraint. IIp(r, ¢, d) is given by (4).

sup {H(T, C,, d/) > H(Ta C, d)}
d>c
— d <d—(cd—c)
1_IO (7'7 &) d) = max sup {H(T, C/, d/) > H(T, ¢, d)} (4)
d<c

d>d+(c—¢)

Definition 3.4: We define the global unmatching possibility by merging unmatching
possibilities relatively to uniqueness constraint and ordering constraint. Global
unmatching possibility, given by (5), expresses how much the pairing of the pixel (r, c)
in the reference image and the pixel (r,c+ d) in the matching image violates the
stereoscopic constraints.

11(r, ¢, d) = max(Ily (r, ¢, d), o (r, ¢, d)) ®)

4 Semi-local fuzzy stereo matching

We assume here a binocular stereo pair and images in standard form, i.e., with
corresponding epipolar lines lying on corresponding image scanlines. Should the latter
assumption not be verified, a suitable transformation, known as rectification (Fusiello
et al.,, 2000; Trucco and Verri, 1998) can be applied to obtain a pair of images
in standard form from the original ones. Hence, in local algorithms, given a point
in the reference image, the homologous point is selected by searching along the
corresponding scanline in the other image, and within a certain disparity range, for
the point that minimises (maximises) an error (similarity) function, representing the
degree of dissimilarity (similarity) between two small regions centred at the points under
examination.
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4.1 Matching cost and disparity computation

The goal of improving the reliability of the disparity measurements provided by
stereo matching algorithms can be accomplished by introducing constraints to the
basic matching core in a refinement step. Since we are interested in a fast algorithm,
suited to realtime stereo applications, a major guideline of this work has been to
include constraints in the matching cost. To this end, rather than carry out additional
calculations, we try to exploit the information related to match reliability which is
already embodied into unmatching possibilities used to compute the matching score.

Suppose that ~(r,¢,d) is the matching cost between a window of size
(2n+1)(2n + 1) centred at coordinates (r,c) in the left image and the corresponding
window centred at (r,c + d) in the right image:

1
n+1)(2n+1)

I(r +i,c+4,d)
_p 1+ H(r +i,c+ j,d)

n

V(r,e,d) = ( > (6)
ihJ =

We use the matching costs to determine a disparity value d(r, ¢) for each pixel p = (r, c)

of the reference view. We use the winner- takes-all strategy. Hence, the disparity is

computed by

d(r,c) = argmax(r, c, d) @)
where D represents the set of all allowed disparities.
4.2 Occlusion handling

Up to this point we have ignored the occlusion problem. Occlusion is a critical
and difficult phenomena to be dealt with by stereo algorithms. With any reasonably
complex scene there exist occluded pixels that have no correct match. In order to
detect occlusions, we try to identify occlusions by examining the magnitude of the
converged match costs. Since no correct match exists in areas of occlusion, all match
costs corresponding to occluded pixels should be small since uniqueness and ordering
constraints are embodied into matching score. In addition, provided mutually occluded
areas within the disparity range generally do not have similar intensities, all match costs
corresponding to occluded pixels will be small. If a matching cost is below a threshold,
the pixel is labelled as occluded.

5 Implementation and results

In our work, images are acquired by a pre-calibrated stereo rig. In addition, our stereo
matching algorithms considers that the left and right images are rectified, which means
that epipolar lines are horizontal and have the same line index in the left and right
images. Thus, the rectified images come from the pre-calibrated cameras are the input
of the stereo algorithms. We suppose that the rectification is exact, which means that
the disparity depends only on the column index of the pixel: the pixel (r,c) in the left
image is matched to the pixel (r,c+ d) in the right image. The proposed technique
was implemented as a C++ library and a collection of test programmes. This library
generates disparity maps using the default correlation methods and our approach.
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5.1 Fuzzy sets definition

For all the experiments, we set the standard deviations of the pixel classes defined for
equation (1) as follow: Opiack = Twhite = 7.071 and Ogyerage = 2.236. These values
were empirically determined after many experiments on MATLAB fuzzy toolbox and
give significant values of the matching possibilities. Figure 1 shows the membership
functions for three grey classes. The two pixels m; and ms have comparable light
intensities and the possibility of matching is II(mq, m2) = 0.9, however for m; and
ms, H(ml,mg) = 0.26.

Figure 1 Membership functions of the black, white and average grey classes (see online version
for colours)

1 = — == - — = = = - - = =
I |
I
i Black White| |
-] -
I |
- - — - — — _ l |
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5.2 Disparity estimation

The algorithm presented is exploited to its maximum capacity in terms of the stereo
correspondence estimation performance. Four popular synthetic images are chosen from
the database of the University of Middlebury. The relevant disparity maps are shown in
Figures 2 and 3. In addition, error images are also calculated for each of the estimated
disparity maps that simply are the absolute difference, defined in (8), between the
ground truth and estimated disparity maps in terms of grey scale intensity values, as
shown in Figures 2(d) and 3(d). The absolute error can be expressed as

E = |da(r.c) = dp(r,c)ly,. ®)

where dg(r,c) is the discrete ground truth disparity map, whereas dg(r,c) is the
estimated one. In order to find the statistical deviation of the estimated disparity maps
from the provided ground truth disparity, two statistics are calculated as

B =[5 X ldalre) — du(r.o)f ©)
and
B = 5 X Helre) ~d(rof > & (10)

where R and B represent the root mean squared error (RMSE) and percentage of
bad disparities (PBD), respectively. N represents the total number of pixels in the
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input image whereas ¢ represents the acceptable deviation of the estimated disparity
value from the ground truth and is fixed to 1 in this particular work. The images are
taken into consideration with different complexities, in terms of pixel intensity variation
and surface boundaries. First pair of stereo images is shown in Figure 2 with related
ground truth disparity maps, estimated disparity maps and the error between the ground
truth and estimated disparity maps. As it can be seen in Figure 2 the edges of the
discontinuities are extracted to high accuracy and estimated disparity is very much
similar to the ground truth disparity, visually. The RMSE and PBD score for Sawtooth
and Venus are R = 1.7486, B = 0.0218 and R = 0.1027, B = 0.0374, respectively.

Figure 2 (a) Right images of the Sawtooth (left) and Venus (right) stereo pair (b) ground truth
disparity maps (c) estimated disparity maps (d) disparity error

(b)

(d)
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Similarly, another pair of disparity maps are shown for images Cones and Teddy
and related RMSE and PBD scores are R = 2.8427, B = 0.0930 and R = 1.8574,
B = 0.0727, respectively, as shown in Figure 3.

Figure 3 (a) Right images of the Cones (left) and Teddy (right) stereo pair (b) ground truth
disparity maps (c) estimated disparity maps (d) disparity error

5.3 Disparity errors comparison

To further validate the claims about the performance of the proposed algorithm
a comparison is performed between the proposed algorithm and a number of
selected algorithms from the literature. Eight algorithms are chosen, known for their
performance, within the computer vision research community. These estimated disparity
maps are related to the images Cones, Venus and Teddy. The chosen algorithms for
comparison purpose are “double-bp (Yang et al., 2006), graph cuts (Scharstein, 2002),
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infection (Olague et al., 2006), layered (Zitnick et al., 2004), scanline optimisation
(Scharstein, 1998), SSD min. filter (Scharstein et al., 2002) and symmetric-occlusion
(Sun et al.,, 2005)”. The calculated statistics, i.e., R and B, for the analysis of
comparative performance with respect to the estimated results are shown in Table 1 and
Figures 4 to 6. It is obvious from Table 1 and Figures 4 to 6 that the proposed algorithm
has performed best in the case of Venus image. However, in case of Cones and Teddy
images the proposed algorithm has ranked 3rd, though very competitive to the algorithm
ranked 1. Specifically in case of B, the proposed algorithm has outperformed all other
algorithms. This reflects the true consistency and robustness of the proposed algorithm
as number of bad disparity values estimated are lowest in all cases.

Table 1 A comparison of the estimated disparity with a number of existing well known algorithms

Algorithms Cones (Serie 1) Venus (Serie 2) Teddy (Serie 3)
R B R B R B
Estimated 3.397643 0.2138; 2.0018; 0.2248; 2.75883 0.2115¢
Double-Bp 3.4898 0.2329 221143 0.28603 2.9360 0.2852
Graphcut 4.9694 0.2732 3.3977 0.3065 5.6912 0.3314
Infection 4.2949 0.21473 4.4952 0.3119 4.5092 0.24393
Layered 4.6167 0.2638 3.1955 0.3186 4.3622 0.3096
Realtime-Gpu 3.2784, 0.2456 2.07802 0.26092 2.75354 0.2815
Scanline opt. 5.4622 0.2989 4.2491 0.3090 5.7917 0.3538
SSD. min. filter 4.5599 0.2248 3.7330 0.2960 5.9532 0.3111
Sym. occlusion 3.1457, 0.2145-5 15.7478 1.000 2.6445, 0.24214

Figure 4 Comparison of estimated disparity map with existing algorithms for image Venus

GRAPS CUT S5 AN LN E CRTHAS ATION

MFEC TIONS LAYERED REALTME_GFL

DGLUBLE_ar S0 MW M FILTER FYMNMETRAC OC LU0



14 H. Ghazouani et al.

Figure 5 Comparison of estimated disparity map with existing algorithms for image Cones
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Figure 6 Comparison of estimated disparity map with existing algorithms for image Teddy
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5.4 Performance evaluation

To evaluate the performance of these methods, we have used the image Sawtooth. Four
algorithms (graphcut, realtime-Gpu, double-Bp, SSD. min. filter) are considered for the
comparison. The test is done on a P4 with 3 GHz and 512 MB of RAM. Table 2 gives
the execution time for the image Sawtooth with an image size of 434 x 380. We have
used a window size n = 4 in this test. This table puts in evidence the enormous gain in
execution time provided by our algorithm compared to global matching approaches and
its suitability for realtime applications.

Table 2 Comparison of execution time in seconds with existing stereo matching algorithms for
Sawtooth image with an image size of 434 x 380

Algorithms Execution time
Our algorithm 0.97 s
Graphcut 15 s
Realtime-Gpu 1.03 s
Double-Bp 3.17 s
SSD. min. filter 137 s

6 Conclusions and perspectives

Local matching methods aim to find a matching for a given pixel without taking
into account neighbour pixels correspondences. Global methods try to define a global
model of the observed scene and to minimise a global cost function. Local stereo
correspondence methods are in general fast algorithms, so can be used for realtime
applications. However, they are exposed to many failure sources, in particular occlusions
or variations of intensity between the two images. The global methods aim to reduce
the sensibility of stereo correspondence to ambiguities caused by occlusions, poor
local texture or fluctuation of illumination. This improvement has a cost, which is the
increasing of algorithms complexity, and in consequence, a longer execution time. Our
ultimate goal in this work was to find a compromise between realtime requirements
and quality results. For this purpose, we have proposed a new approach to stereo
matching, combining local method with global constraints. A new similarity measure
is calculated based on fuzzy classification of grey scale levels and used to define a
matching possibility distribution. Uniqueness and ordering constraints are used to define
an unmatching possibility distribution based on the matching possibilities. The definition
of a global matching cost combining the defined possibilities, let us achieve two goals:

e sensibly ameliorate the quality of disparity images as described in results section

e reduce the execution time in comparison with area-based methods that use a
refinement step or bidirectional matching.

Hence, SLSM algorithm can be considered a viable alternative to area-based algorithms
with optimisation step, in particular with big images and large disparity ranges, as it is
the case of many current stereo applications.

However, our analysis and results confirm the need for further research aimed at
dealing with the typical problems of area-based stereo algorithms. In particular, we
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plan to embody specific techniques to cope with the borderlocalisation problem into an
SLSM-based framework. Other optimisations are currently studied. Note that we work
always on pre-rectified images, and we produce an integer disparity image: we will
study how to adapt this algorithm in order to find stereo matching on non-rectified
images and obtain sub-pixel disparity images.
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