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Abstract

A tournament T = (V, A) is a directed graph in which there is exactly one arc
between every pair of distinct vertices. Given a digraph on n vertices and an integer
parameter k, the Feedback Arc Set problem asks whether the given digraph has
a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc
Set problem restricted to tournaments is known as the k-Feedback Arc Set in
Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel
for k-FAST. That is, we give a polynomial time algorithm which given an input
instance T to k-FAST obtains an equivalent instance T ′ on O(k) vertices. In fact,
given any fixed ǫ > 0, the kernelized instance has at most (2 + ǫ)k vertices. Our
result improves the previous known bound of O(k2) on the kernel size for k-FAST.
Our kernelization algorithm solves the problem on a subclass of tournaments in
polynomial time and uses a known polynomial time approximation scheme for k-
FAST.

1 Introduction

Given a directed graph G = (V,A) on n vertices and an integer parameter k, the
Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose
removal results in an acyclic directed graph. In this paper, we consider this problem in
a special class of directed graphs, tournaments. A tournament T = (V,A) is a directed
graph in which there is exactly one directed arc between every pair of vertices. More
formally the problem we consider is defined as follows.

k-Feedback Arc Set in Tournaments (k-FAST): Given a tournament
T = (V,A) and a positive integer k, does there exist a subset F ⊆ A of at
most k arcs whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight
is at least one) on the arcs and the objective is to find a feedback arc set of weight at
most k. This problem is called k-Weighted Feedback Arc Set in Tournaments
(k-WFAST).
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Feedback arc sets in tournaments are well studied from the combinatorial [17, 18,
24, 25, 28, 32], statistical [26] and algorithmic [1, 2, 12, 21, 30, 31] points of view. The
problems k-FAST and k-WFAST have several applications. In rank aggregation we are
given several rankings of a set of objects, and we wish to produce a single ranking that
on average is as consistent as possible with the given ones, according to some chosen
measure of consistency. This problem has been studied in the context of voting [7, 11],
machine learning [10], and search engine ranking [15, 16]. A natural consistency measure
for rank aggregation is the number of pairs that occur in a different order in the two
rankings. This leads to Kemeny rank aggregation [19, 20], a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [2]
and Charbit et al. [9] while k-WFAST is known to be NP-complete by Bartholdi III
et al. [4]. From an approximation perspective, k-WFAST is APX-hard [27] but admits
a polynomial time approximation scheme when the edge weights are bounded by a
constant [21]. The problem is also well studied in parameterized complexity. In this area,
a problem with input size n and a parameter k is said to be fixed parameter tractable
(FPT) if there exists an algorithm to solve this problem in time f(k)·nO(1), where f is an
arbitrary function of k. Raman and Saurabh [23] showed that k-FAST and k-WFAST
are FPT by obtaining an algorithm running in time O(2.415k ·k4.752 +nO(1)). Recently,
Alon et al. [3] have improved this result by giving an algorithm for k-WFAST running

in time O(2O(
√

k log2 k) + nO(1)). This algorithm runs in sub-exponential time, a trait
uncommon to parameterized algorithms. In this paper we investigate k-FAST from the
view point of kernelization, currently one of the most active subfields of parameterized
algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial
(in n) time algorithm, called a kernelization algorithm, that reduces the input instance to
an instance whose size is bounded by a polynomial p(k) in k, while preserving the answer.
This reduced instance is called a p(k) kernel for the problem. When p(k) is a linear
function of k then the corresponding kernel is a linear kernel. Kernelization has been at
the forefront of research in parameterized complexity in the last couple of years, leading
to various new polynomial kernels as well as tools to show that several problems do not
have a polynomial kernel under some complexity-theoretic assumptions [5, 6, 8, 14, 29].
In this paper we continue the current theme of research on kernelization and obtain a
linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which
given an input instance T to k-FAST obtains an equivalent instance T ′ on O(k) vertices.
More precisely, given any fixed ǫ > 0, we find a kernel with a most (2 + ǫ)k vertices in
polynomial time. The reason we call it a linear vertex kernel is that, even though
the number of vertices in the reduced instance is at most O(k), the number of arcs
is still O(k2). Our result improves the previous known bound of O(k2) on the vertex
kernel size for k-FAST [3, 13]. For our kernelization algorithm we find a subclass of
tournaments where one can find a minimum sized feedback arc set in polynomial time
(see Lemma 3.8) and use the known polynomial time approximation scheme for k-FAST
by Kenyon-Mathieu and Schudy [21]. The polynomial time algorithm for a subclass of
tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and prelim-
inary results regarding feedback arc sets. In Section 3 we give a linear vertex kernel for
k-FAST. Finally we conclude with some remarks in Section 4.
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2 Preliminaries

Let T = (V,A) be a tournament on n vertices. We use Tσ = (Vσ, A) to denote a
tournament whose vertices are ordered under a fixed ordering σ = v1, . . . , vn (we also
use Dσ for an ordered directed graph). We say that an arc vivj of Tσ is a backward arc if
i > j, otherwise we call it a forward arc. Moreover, given any partition P := {V1, . . . , Vl}
of Vσ, where every Vi is an interval according to the ordering of Tσ, we use AB to denote
all arcs between the intervals (having their endpoints in different intervals), and AI for
all arcs within the intervals. If Tσ contains no backward arc, then we say that it is
transitive.

For a vertex v ∈ V we denote its in-neighborhood by N−(v) := {u ∈ V | uv ∈ A}
and its out-neighborhood by N+(v) := {u ∈ V | vu ∈ A}. A set of vertices M ⊆ V is a
module if and only if N+(u) \ M = N+(v) \ M for every u, v ∈ M . For a subset of arcs
A′ ⊆ A, we define T [A′] to be the digraph (V ′, A′) where V ′ is the union of endpoints
of the arcs in A′. Given an ordered digraph Dσ and an arc e = vivj , S(e) = {vi, . . . , vj}
denotes the span of e. The number of vertices in S(e) is called the length of e and is
denoted by l(e). Thus, for every arc e = vivj , l(e) = |i− j|+ 1. Finally, for every vertex
v in the span of e, we say that e is above v.

In this paper, we will use the well-known fact that every acyclic tournament admits
a transitive ordering. In particular, we will consider maximal transitive modules. We
also need the following result for our kernelization algorithm.

Lemma 2.1. ([23]) Let D = (V,A) be a directed graph and F be a minimal feedback
arc set of D. Let D′ be the graph obtained from D by reversing the arcs of F in D, then
D′ is acyclic.

In this paper whenever we say circuit, we mean a directed cycle. Next we introduce
a definition which is useful for a lemma we prove later.

Definition 2.2. Let Dσ = (Vσ, A) be an ordered directed graph and let f = vu be a
backward arc of Dσ. We call certificate of f , and denote it by c(f), any directed path
from u to v using only forward arcs in the span of f in Dσ.

Observe that such a directed path together with the backward arc f forms a directed
cycle in Dσ whose only backward arc is f .

Definition 2.3. Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a set
of backward arcs of Dσ. We say that we can certify F whenever it is possible to find a
set F = {c(f) : f ∈ F} of arc-disjoint certificates for the arcs in F .

Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a subset of
backward arcs of Dσ. We say that we can certify the set F using only arcs from A′ ⊆ A
if F can be certified by a collection F such that the union of the arcs of the certificates in
F is contained in A′. In the following, fas(D) denotes the size of a minimum feedback
arc set, that is, the cardinality of a minimum sized set F of arcs whose removal makes
D acyclic.

Lemma 2.4. Let Dσ be an ordered directed graph, and let P = {V1, . . . , Vl} be a par-
tition of Dσ into intervals. Assume that the set F of all backward arcs of Dσ[AB ] can
be certified using only arcs from AB. Then fas(Dσ) = fas(Dσ[AI ]) + fas(Dσ[AB ]).
Moreover, there exists a minimum sized feedback arc set of Dσ containing F .
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Proof. For any bipartition of the arc set A into A1 and A2, fas(Dσ) ≥ fas(Dσ[A1]) +
fas(Dσ[A2]). Hence, in particular for a partition of the arc set A into AI and AB we
have that fas(Dσ) ≥ fas(Dσ[AI ]) + fas(Dσ[AB ]). Next, we show that fas(Dσ) ≤
fas(Dσ[AI ]) + fas(Dσ[AB ]). This follows from the fact that once we reverse all the
arcs in F , each remaining circuit lies in Dσ[Vi] for some i ∈ {1, . . . , l}. In other words
once we reverse all the arcs in F , every circuit is completely contained in Dσ[AI ]. This
concludes the proof of the first part of the lemma. In fact, what we have shown is that
there exists a minimum sized feedback arc set of Dσ containing F . This concludes the
proof of the lemma.

3 Kernels for k-FAST

In this section we first give a subquadratic vertex kernel of size O(k
√

k) for k-FAST
and then improve on it to get our final vertex kernel of size O(k). We start by giving a
few reduction rules that will be needed to bound the size of the kernels.

Rule 3.1. If a vertex v is not contained in any triangle, delete v from T .

Rule 3.2. If there exists an arc uv that belongs to more than k distinct triangles, then
reverse uv and decrease k by 1.

We say that a reduction rule is sound, if whenever the rule is applied to an instance
(T, k) to obtain an instance (T ′, k′), T has a feedback arc set of size at most k if and
only if T ′ has a feedback arc set of size at most k′.

Lemma 3.1. ([3, 13]) Rules 3.1 and 3.2 are sound and can be applied in polynomial
time.

The Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST [3]. Earlier,
these rules were used by Dom et al. [13] to obtain a quadratic kernel for k-FAST.
We now add a new reduction rule that will allow us to obtain the claimed bound on
the kernel sizes for k-FAST. Given an ordered tournament Tσ = (Vσ, A), we say that
P = {V1, . . . , Vl} is a safe partition of Vσ into intervals whenever it is possible to certify
the backward arcs of Tσ[AB ] using only arcs from AB .

Rule 3.3. Let Tσ be an ordered tournament, P = {V1, . . . , Vl} be a safe partition of Vσ

into intervals and F be the set of backward arcs of Tσ[AB ]. Then reverse all the arcs of
F and decrease k by |F |.

Lemma 3.2. Rule 3.3 is sound.

Proof. Let P be a safe partition of Tσ. Observe that it is possible to certify all the
backward arcs, that is F , using only arcs in AB . Hence using Lemma 2.4 we have that
fas(Tσ) = fas(Tσ[AI ]) + fas(Tσ[AB ]). Furthermore, by Lemma 2.4 we also know that
there exists a minimum sized feedback arc set of Dσ containing F . Thus, Tσ has a
feedback arc set of size at most k if and only if the tournament T ′

σ obtained from Tσ by
reversing all the arcs of F has a feedback arc set of size at most k − |F |.
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3.1 A subquadratic kernel for k-FAST

In this section, we show how to obtain an O(k
√

k) sized vertex kernel for k-FAST. To
do so, we introduce the following reduction rule.

Rule 3.4. Let Vm be a maximal transitive module of size p, and I and O be the set of
in-neighbors and out-neighbors of the vertices of Vm in T , respectively. Let Z be the set
of arcs uv such that u ∈ O and v ∈ I. If q = |Z| < p then reverse all the arcs in Z and
decrease k by q.

I O

Tm

|Tm| = p

q < p

Figure 1: A transitive module on which Rule 3.4 applies.

Lemma 3.3. Rule 3.4 is sound and can be applied in linear time.

Proof. We first prove that the partition P = {I, Vm, O} forms a safe partition of the
input tournament. Let V ′

m = {w1, . . . , wq} ⊆ Vm be an arbitrary subset of size q of Vm

and let Z = {uivi | 1 ≤ i ≤ q}. Consider the collection F = {viwiui | uivi ∈ Z, wi ∈ V ′
m}

and notice that it certifies all the arcs in Z. In fact we have managed to certify all the
backwards arcs of the partition using only arcs from AB and hence P forms a safe
partition. Thus, by Rule 3.3, it is safe to reverse all the arcs from O to I. The time
complexity follows from the fact that computing a modular decomposition tree can be
done in O(n + m) time on directed graphs [22].

We show that any Yes-instance to which none of the Rules 3.1, 3.2 and 3.4 could be
applied has at most O(k

√
k) vertices.

Theorem 3.4. Let (T = (V,A), k) be a Yes-instance to k-FAST which has been reduced
according to Rules 3.1, 3.2 and 3.4. Then T has at most O(k

√
k) vertices.

Proof. Let S be a feedback arc set of size at most k of T and let T ′ be the tournament
obtained from T by reversing all the arcs in S. Let σ be the transitive ordering of T ′ and
Tσ = (Vσ, A) be the ordered tournament corresponding to the ordering σ. We say that a
vertex is affected if it is incident to some arc in S. Thus, the number of affected vertices
is at most 2|S| ≤ 2k. The reduction Rule 3.1 ensures that the first and last vertex of
Tσ are affected. To see this note that if the first vertex in Vσ is not affected then it is
a source vertex (vertex with in-degree 0) and hence it is not part of any triangle and
thus Rule 3.1 would have applied. We can similarly argue for the last vertex. Next we
argue that there is no backward arc e of length greater than 2k + 2 in Tσ. Assume to
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the contrary that e = uv is a backward arc with S(e) = {v, x1, x2, . . . , x2k+1, . . . , u} and
hence l(e) > 2k+2. Consider the collection T = {vxiu | 1 ≤ i ≤ 2k} and observe that at
most k of these triples can contain an arc from S\{e} and hence there exist at least k+1
triplets in T which corresponds to distinct triangles all containing e. But then e would
have been reversed by an application of Rule 3.2. Hence, we have shown that there is
no backward arc e of length greater than 2k + 2 in Tσ. Thus

∑

e∈S l(e) ≤ 2k2 + 2k.
We also know that between two consecutive affected vertices there is exactly one

maximal transitive module. Let us denote by ti the number of vertices in these modules,
where i ∈ {1, . . . , 2k − 1}. The objective here is to bound the number of vertices in Vσ

or V using
∑2k−1

i=1 ti. To do so, observe that since T is reduced under the Rule 3.4, there
are at least ti backward arcs above every module with ti vertices, each of length at least
ti. This implies that

∑2k−1
i=1 t2i ≤

∑

e∈S l(e) ≤ 2k2 +2k. Now, using the Cauchy-Schwarz
inequality we can show the following.

2k−1
∑

i=1

ti =

2k−1
∑

i=1

ti · 1 ≤

√

√

√

√

2k−1
∑

i=1

t2i ·
2k−1
∑

i=1

1 ≤
√

(2k2 + 2k) · (2k − 1) =
√

4k3 + 2k2 − k.

Thus every reduced Yes-instance has at most
√

4k3 + 2k2 − k + 2k = O(k
√

k) vertices.

3.2 A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which
will be useful in obtaining a linear kernel for k-FAST.

3.2.1 Backward Weighted Tournaments

Let Tσ be an ordered tournament with weights on its backward arcs. We call such
a tournament a backward weighted tournament and denote it by Tω, and use ω(e) to
denote the weight of a backward arc e. For every interval I := [vi, . . . , vj ] we use ω(I)
to denote the total weight of all backward arcs having both their endpoints in I, that
is, ω(I) =

∑

e=uv w(e) where u, v ∈ I and e is a backward arc.

Definition 3.5. (Contraction) Let Tω = (Vσ, A) be an ordered tournament with
weights on its backward arcs and I = [vi, . . . , vj ] be an interval. The contracted tour-
nament is defined as Tω′ = (Vσ′ = Vσ \ {I} ∪ {cI}, A′). The arc set A′ is defined as
follows.

• It contains all the arcs A1 = {uv | uv ∈ A, u /∈ I, v /∈ I}

• Add A2 = {ucI | uv ∈ A, u /∈ I, v ∈ I} and A3 = {cIv | uv ∈ A, u ∈ I, v /∈ I}.

• Finally, we remove every forward arc involved in a 2-cycle after the addition of
arcs in the previous step.

The order σ′ for Tω′ is provided by σ′ = v1, . . . , vi−1, cI , vj+1, . . . , vn. We define the
weight of a backward arc e = xy of A′ as follows.

w′(xy) =







w(xy) if xy ∈ A1
∑

{xz∈A | z∈I} w(xz) if xy ∈ A2
∑

{zy∈A | z∈I} w(zy) if xy ∈ A3

We refer to Figure 2 for an illustration.

6



vp vp

c
I

2

vjvi

Figure 2: Illustration of the contraction step for the interval I := [vi, . . . , vj ].

Next we generalize the notions of certificate and certification (Definitions 2.2 and 2.3)
to backward weighted tournaments.

Definition 3.6. Let Tω = (Vσ, A) be a backward weighted tournament, and let f = vu ∈
A be a backward arc of Tω. We call ω-certificate of f , and denote it by C(f), a collection
of ω(f) arc-disjoint directed paths going from u to v and using only forward arcs in the
span of f in Tω.

Definition 3.7. Let Tω = (Vσ, A) be a backward weighted tournament, and let F ⊆ A be
a subset of backward arcs of Tω. We say that we can ω-certify F whenever it is possible
to find a set F = {C(f) : f ∈ F} of arc-disjoint ω-certificates for the arcs in F .

Lemma 3.8. Let Tω = (Vσ, A) be a backward weighted tournament such that for every
interval I := [vi, . . . , vj ] the following holds:

2 · ω(I) ≤ |I| − 1 (1)

Then it is possible to ω-certify the backward arcs of Tω.

Proof. Let Vσ = v1, . . . , vn. The proof is by induction on n, the number of vertices.
Note that by applying (1) to the interval I = [v1, . . . , vn], we have that there exists a
vertex vi in Tω that is not incident to any backward arc. Let T ′

ω = (V ′
σ, A′) denote

the tournament Tω \ {vi}. We say that an interval I is critical whenever |I| ≥ 2 and
2 · ω(I) = |I| − 1. We now consider several cases, based on different types of critical
intervals.

(i) Suppose that there are no critical intervals. Thus, in T ′
ω, every interval satisfies (1),

and hence by induction on n the result holds.

(ii) Suppose now that the only critical interval is I = [v1, . . . , vn], and let e = vu be
a backward arc above vi with the maximum length. Note that since vi does not
belong to any backward arc, we can use it to form a directed path c(e) = uviv,
which is a certificate for e. We now consider T ′

ω where the weight of e has been
decreased by 1. In this process if ω(e) becomes 0 then we reverse the arc e. We
now show that every interval of T ′

ω respects (1). If an interval I ′ ∈ T ′
ω does

not contain vi in the corresponding interval in Tω, then by our assumption we
have that 2 · ω(I ′) ≤ |I ′| − 1. Now we assume that the interval corresponding
to I ′ in Tω contains vi but either u /∈ I ′ ∪ {vi} or v /∈ I ′ ∪ {vi}. Then we have
2 · ω(I ′) = 2 · ω(I) < |I| − 1 = |I ′| and hence we get that 2 · ω(I ′) ≤ |I ′| − 1.
Finally, we assume that the interval corresponding to I ′ in Tω contains vi and
u, v ∈ I ′ ∪ {vi}. In this case, 2 · ω(I ′) = 2 · (ω(I) − 1) ≤ |I| − 1 − 2 < |I ′| − 1.
Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-certificates
F ′ which ω-certify the backward arcs of T ′

ω. Observe that the maximality of l(e)
ensures that if e is reversed then it will not be used in any ω-certificate of F ′, thus
implying that F ′ ∪ c(e) is a family ω-certifying the backward arcs of Tω.
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(iii) Finally, suppose that there exists a critical interval I ( Vσ. Roughly speaking, we
will show that I and Vσ \ I can be certified separately. To do so, we first show the
following.

Claim. Let I ⊂ Vσ be a critical interval. Then the tournament Tω′ = (Vσ′ , A′)
obtained from Tω by contracting I satisfies the conditions of the lemma.

Proof. Let H ′ be any interval of Tω′ . As before if H ′ does not contain cI then
the result holds by hypothesis. Otherwise, let H be the interval corresponding to
H ′ in Tω. We will show that 2ω(H ′) ≤ |H ′| − 1. By hypothesis, we know that
2ω(H) ≤ |H| − 1 and that 2ω(I) = |I| − 1. Thus we have the following.

2ω(H ′) = 2 · (ω(H) − ω(I)) ≤ |H| − 1 − |I| + 1 = (|H| + 1 − |I|) − 1 = |H ′| − 1

Thus, we have shown that the tournament Tω′ satisfies the conditions of the lemma.

We now consider a minimal critical interval I. By induction, and using the claim,
we know that we can obtain a family of arc-disjoint ω-certificates F ′ which ω-
certifies the backward arcs of Tω′ without using any arc within I. Now, by min-
imality of I, we can use (ii) to obtain a family of arc-disjoint ω-certificates F ′′

which ω-certifies the backward arcs of I using only arcs within I. Thus, F ′ ∪ F ′′

is a family ω-certifying all backward arcs of Tω.

This concludes the proof of the lemma.

In the following, any interval that does not respect condition (1) is said to be a dense
interval.

Lemma 3.9. Let Tω = (Vσ, A) be a backward weighted tournament with |Vσ| ≥ 2p + 1
and ω(Vσ) ≤ p. Then there exists a safe partition of Vσ with at least one backward arc
between the intervals and it can be computed in polynomial time.

Proof. The proof is by induction on n = |Vσ|. Observe that the statement is true for
n = 3, which is our base case.

For the inductive step, we assume first that there is no dense interval in Tω. In
this case Lemma 3.8 ensures that the partition of Vσ into singletons of vertices is a safe
partition. So from now on we assume that there exists at least one dense interval.

Let I be a dense interval. By definition of I, we have that ω(I) ≥ 1
2 · |I|. We

now contract I and obtain the backward weighted tournament Tω′ = (Vσ′ , A′). In the
contracted tournament Tω′ , we have:

{

|Vσ′ | ≥ 2p + 1 − (|I| − 1) = 2p − |I| + 2;

ω′(Vσ′) ≤ p − 1
2 · |I|.

Thus, if we set r := p − 1
2 · |I|, we get that |Vσ′ | ≥ 2r + 1 and ω′(Vσ′) ≤ r. Since

|Vσ′ | < |Vσ|, by the induction hypothesis we can find a safe partition P of Tω′ , and thus
obtain a family Fω′ that ω-certifies the backward arcs of Tω′ [AB ] using only arcs in AB .

We claim that P ′ obtained from P by substituting cI by its corresponding interval
I is a safe partition in Tω. To see this, first observe that if cI has not been used to
ω-certify the backward arcs in Tω′ [AB ], that is, cI is not an end point of any arc in
the ω-certificates, then we are done. So from now on we assume that cI has been part

8



of a ω-certificate for some backward arc. Let e be a backward arc in Tω′ [AB ], and let
cω′(e) ∈ Fω′ be a ω-certificate of e. First we assume that cI is not the first vertex of the
certificate cω′(e) (with respect to ordering σ′), and let c1 and c2 be the left (in-) and
right (out-) neighbors of cI in cω′(e). By definition of the contraction step together with
the fact that there is a forward arc between c1 and cI and between cI and c2 in Tω′ , we
have that there were no backward arcs between any vertex in the interval corresponding
to cI and c1 and c2 in the original tournament Tω. So we can always find a vertex in
I to replace cI in cω′(e), thus obtaining a certificate c(e) for e in Tω[AB ] (observe that
e remains a backward arc even in Tω). Now we assume that cI is either a first or last
vertex in the certificate cω′(e). Let e′ be an arc corresponding to e in Tω′ with one of its
endpoints being eI ∈ I. To certify e′ in Tω[AB ], we need to show that we can construct
a certificate c(e′) using only arcs of Tω[AB ]. We have two cases to deal with.

(i) If cI is the first vertex of cω′(e) then let c1 be its right neighbor in cω′(e). Using
the same argument as before, there are only forward arcs between any vertex in
I and c1. In particular, there is a forward arc eIc1 in Tω, meaning that we can
construct a ω-certificate for e′ in Tω by setting c(e′) := (cω′(e) \ {cI}) ∪ {eI}.

e
I

c
I

c
1

c
1

I

Figure 3: On the left, the ω-certificate cω′(e) ∈ Fω′ . On the right, the corresponding
ω-certificate obtained in Tω by replacing cI by the interval I.

(ii) If cI is the last vertex of cω′(e) then let cq be its left neighbor in cω′(e). Once
again, we have that there are only forward arcs between cq and vertices in I, and
thus between cq and eI . So using this we can construct a ω-certificate for e′ in Tω.

Notice that the fact that all ω-certificates are pairwise arc-disjoint in Tω′ [AB ] implies
that the corresponding ω-certificates are arc-disjoint in Tω[AB ], and so P ′ is indeed a
safe partition of Vσ.

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of
the fact that there exists a polynomial time approximation scheme for this problem [21].

Theorem 3.10. For every fixed ǫ > 0, there exists a vertex kernel for k-FAST with at
most (2 + ǫ)k vertices that can be computed in polynomial time.

Proof. Let (T = (V,A), k) be an instance of k-FAST. For a fixed ǫ > 0, we start by
computing a feedback arc set S of size at most (1 + ǫ

2 )k. To find such a set S, we use
the known polynomial time approximation scheme for k-FAST [21]. Then, we order T
with the transitive ordering of the tournament obtained by reversing every arc of S in
T . Let Tσ denote the resulting ordered tournament. By the upper bound on the size
of S, we know that Tσ has at most (1 + ǫ

2 )k backward arcs. Thus, if Tσ has more than
(2 + ǫ)k vertices then Lemma 3.9 ensures that we can find a safe partition with at least
one backward arc between the intervals in polynomial time. Hence we can reduce the
tournament by applying Rule 3.3. We then apply Rule 3.1, and repeat the previous
steps until we do not find a safe partition or k = 0. In the former case, we know by
Lemma 3.9 that T can have at most (2 + ǫ)k vertices, thus implying the result. In all
other cases we return No.
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4 Conclusion

In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of
size (2 + ǫ)k for any fixed ǫ > 0. The new bound on the kernel size improves the
previous known bound of O(k2) on the vertex kernel size for k-FAST given in [3, 13].
It would be interesting to see if one can obtain kernels for other problems using either
polynomial time approximation schemes or a constant factor approximation algorithm
for the corresponding problem. An interesting problem which remains unanswered is,
whether there exists a linear or even a o(k2) vertex kernel for the k-Feedback Vertex
Set in Tournaments (k-FVST) problem. In the k-FVST problem we are given a
tournament T and a positive integer k and the aim is to find a set of at most k vertices
whose deletion makes the input tournament acyclic. The smallest known kernel for
k-FVST has size O(k2).
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