Kernels for Feedback Arc Set In Tournaments

Stéphane Bessy*
Christophe Paul*
Fedor V. Fomin ${ }^{\dagger} \quad$ Serge Gaspers ${ }^{\ddagger}$
Anthony Perez* ${ }^{*}$ Saket Saurabh ${ }^{\dagger}$
Stéphan Thomassé*

Abstract

A tournament $T=(V, A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc SET problem restricted to tournaments is known as the k-Feedback Arc SEt in Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T^{\prime} on $O(k)$ vertices. In fact, given any fixed $\epsilon>0$, the kernelized instance has at most $(2+\epsilon) k$ vertices. Our result improves the previous known bound of $O\left(k^{2}\right)$ on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for k FAST.

1 Introduction

Given a directed graph $G=(V, A)$ on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic directed graph. In this paper, we consider this problem in a special class of directed graphs, tournaments. A tournament $T=(V, A)$ is a directed graph in which there is exactly one directed arc between every pair of vertices. More formally the problem we consider is defined as follows.
k-Feedback Arc Set in Tournaments (k-FAST): Given a tournament $T=(V, A)$ and a positive integer k, does there exist a subset $F \subseteq A$ of at most k arcs whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight is at least one) on the arcs and the objective is to find a feedback arc set of weight at most k. This problem is called k-Weighted Feedback Arc Set in Tournaments (k-WFAST).

[^0]Feedback arc sets in tournaments are well studied from the combinatorial 17, 18, $24,25,28,32$, statistical [26] and algorithmic [1, 2, 12, 21, 30, 31] points of view. The problems k-FAST and k-WFAST have several applications. In rank aggregation we are given several rankings of a set of objects, and we wish to produce a single ranking that on average is as consistent as possible with the given ones, according to some chosen measure of consistency. This problem has been studied in the context of voting [7, 11, machine learning [10], and search engine ranking [15, 16]. A natural consistency measure for rank aggregation is the number of pairs that occur in a different order in the two rankings. This leads to Kemeny rank aggregation 19, 20, a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [2] and Charbit et al. [9] while k-WFAST is known to be NP-complete by Bartholdi III et al. [4]. From an approximation perspective, k-WFAST is APX-hard [27] but admits a polynomial time approximation scheme when the edge weights are bounded by a constant [21. The problem is also well studied in parameterized complexity. In this area, a problem with input size n and a parameter k is said to be fixed parameter tractable (FPT) if there exists an algorithm to solve this problem in time $f(k) \cdot n^{O(1)}$, where f is an arbitrary function of k. Raman and Saurabh [23] showed that k-FAST and k-WFAST are FPT by obtaining an algorithm running in time $O\left(2.415^{k} \cdot k^{4.752}+n^{O(1)}\right)$. Recently, Alon et al. [3] have improved this result by giving an algorithm for k-WFAST running in time $O\left(2^{O\left(\sqrt{k} \log ^{2} k\right)}+n^{O(1)}\right)$. This algorithm runs in sub-exponential time, a trait uncommon to parameterized algorithms. In this paper we investigate k-FAST from the view point of kernelization, currently one of the most active subfields of parameterized algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial (in n) time algorithm, called a kernelization algorithm, that reduces the input instance to an instance whose size is bounded by a polynomial $p(k)$ in k, while preserving the answer. This reduced instance is called a $p(k)$ kernel for the problem. When $p(k)$ is a linear function of k then the corresponding kernel is a linear kernel. Kernelization has been at the forefront of research in parameterized complexity in the last couple of years, leading to various new polynomial kernels as well as tools to show that several problems do not have a polynomial kernel under some complexity-theoretic assumptions [5, 6, 8, , 14, 29 . In this paper we continue the current theme of research on kernelization and obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T^{\prime} on $O(k)$ vertices. More precisely, given any fixed $\epsilon>0$, we find a kernel with a most $(2+\epsilon) k$ vertices in polynomial time. The reason we call it a linear vertex kernel is that, even though the number of vertices in the reduced instance is at most $O(k)$, the number of arcs is still $O\left(k^{2}\right)$. Our result improves the previous known bound of $O\left(k^{2}\right)$ on the vertex kernel size for k-FAST [3, 13]. For our kernelization algorithm we find a subclass of tournaments where one can find a minimum sized feedback arc set in polynomial time (see Lemma 3.8) and use the known polynomial time approximation scheme for k-FAST by Kenyon-Mathieu and Schudy [21]. The polynomial time algorithm for a subclass of tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and preliminary results regarding feedback arc sets. In Section 3 we give a linear vertex kernel for k-FAST. Finally we conclude with some remarks in Section 4 .

2 Preliminaries

Let $T=(V, A)$ be a tournament on n vertices. We use $T_{\sigma}=\left(V_{\sigma}, A\right)$ to denote a tournament whose vertices are ordered under a fixed ordering $\sigma=v_{1}, \ldots, v_{n}$ (we also use D_{σ} for an ordered directed graph). We say that an $\operatorname{arc} v_{i} v_{j}$ of T_{σ} is a backward arc if $i>j$, otherwise we call it a forward arc. Moreover, given any partition $\mathcal{P}:=\left\{V_{1}, \ldots, V_{l}\right\}$ of V_{σ}, where every V_{i} is an interval according to the ordering of T_{σ}, we use A_{B} to denote all arcs between the intervals (having their endpoints in different intervals), and A_{I} for all arcs within the intervals. If T_{σ} contains no backward arc, then we say that it is transitive.

For a vertex $v \in V$ we denote its in-neighborhood by $N^{-}(v):=\{u \in V \mid u v \in A\}$ and its out-neighborhood by $N^{+}(v):=\{u \in V \mid v u \in A\}$. A set of vertices $M \subseteq V$ is a module if and only if $N^{+}(u) \backslash M=N^{+}(v) \backslash M$ for every $u, v \in M$. For a subset of arcs $A^{\prime} \subseteq A$, we define $T\left[A^{\prime}\right]$ to be the digraph $\left(V^{\prime}, A^{\prime}\right)$ where V^{\prime} is the union of endpoints of the arcs in A^{\prime}. Given an ordered digraph D_{σ} and an arc $e=v_{i} v_{j}, S(e)=\left\{v_{i}, \ldots, v_{j}\right\}$ denotes the span of e. The number of vertices in $S(e)$ is called the length of e and is denoted by $l(e)$. Thus, for every arc $e=v_{i} v_{j}, l(e)=|i-j|+1$. Finally, for every vertex v in the span of e, we say that e is above v.

In this paper, we will use the well-known fact that every acyclic tournament admits a transitive ordering. In particular, we will consider maximal transitive modules. We also need the following result for our kernelization algorithm.

Lemma 2.1. ([23]) Let $D=(V, A)$ be a directed graph and F be a minimal feedback arc set of D. Let D^{\prime} be the graph obtained from D by reversing the arcs of F in D, then D^{\prime} is acyclic.

In this paper whenever we say circuit, we mean a directed cycle. Next we introduce a definition which is useful for a lemma we prove later.

Definition 2.2. Let $D_{\sigma}=\left(V_{\sigma}, A\right)$ be an ordered directed graph and let $f=v u$ be a backward arc of D_{σ}. We call certificate of f, and denote it by $c(f)$, any directed path from u to v using only forward arcs in the span of f in D_{σ}.

Observe that such a directed path together with the backward arc f forms a directed cycle in D_{σ} whose only backward arc is f.
Definition 2.3. Let $D_{\sigma}=\left(V_{\sigma}, A\right)$ be an ordered directed graph, and let $F \subseteq A$ be a set of backward arcs of D_{σ}. We say that we can certify F whenever it is possible to find a set $\mathcal{F}=\{c(f): f \in F\}$ of arc-disjoint certificates for the arcs in F.

Let $D_{\sigma}=\left(V_{\sigma}, A\right)$ be an ordered directed graph, and let $F \subseteq A$ be a subset of backward arcs of D_{σ}. We say that we can certify the set F using only arcs from $A^{\prime} \subseteq A$ if F can be certified by a collection \mathcal{F} such that the union of the arcs of the certificates in \mathcal{F} is contained in A^{\prime}. In the following, $\operatorname{fas}(D)$ denotes the size of a minimum feedback arc set, that is, the cardinality of a minimum sized set F of arcs whose removal makes D acyclic.

Lemma 2.4. Let D_{σ} be an ordered directed graph, and let $\mathcal{P}=\left\{V_{1}, \ldots, V_{l}\right\}$ be a partition of D_{σ} into intervals. Assume that the set F of all backward arcs of $D_{\sigma}\left[A_{B}\right]$ can be certified using only arcs from A_{B}. Then $\operatorname{fas}\left(D_{\sigma}\right)=\operatorname{fas}\left(D_{\sigma}\left[A_{I}\right]\right)+\operatorname{fas}\left(D_{\sigma}\left[A_{B}\right]\right)$. Moreover, there exists a minimum sized feedback arc set of D_{σ} containing F.

Proof. For any bipartition of the arc set A into A_{1} and $A_{2}, \operatorname{fas}\left(D_{\sigma}\right) \geq \operatorname{fas}\left(D_{\sigma}\left[A_{1}\right]\right)+$ $\operatorname{fas}\left(D_{\sigma}\left[A_{2}\right]\right)$. Hence, in particular for a partition of the arc set A into A_{I} and A_{B} we have that $\operatorname{fas}\left(D_{\sigma}\right) \geq \operatorname{fas}\left(D_{\sigma}\left[A_{I}\right]\right)+\operatorname{fas}\left(D_{\sigma}\left[A_{B}\right]\right)$. Next, we show that $f a s\left(D_{\sigma}\right) \leq$ $\operatorname{fas}\left(D_{\sigma}\left[A_{I}\right]\right)+\operatorname{fas}\left(D_{\sigma}\left[A_{B}\right]\right)$. This follows from the fact that once we reverse all the arcs in F, each remaining circuit lies in $D_{\sigma}\left[V_{i}\right]$ for some $i \in\{1, \ldots, l\}$. In other words once we reverse all the arcs in F, every circuit is completely contained in $D_{\sigma}\left[A_{I}\right]$. This concludes the proof of the first part of the lemma. In fact, what we have shown is that there exists a minimum sized feedback arc set of D_{σ} containing F. This concludes the proof of the lemma.

3 Kernels for k-FAST

In this section we first give a subquadratic vertex kernel of size $O(k \sqrt{k})$ for k-FAST and then improve on it to get our final vertex kernel of size $O(k)$. We start by giving a few reduction rules that will be needed to bound the size of the kernels.

Rule 3.1. If a vertex v is not contained in any triangle, delete v from T.

Rule 3.2. If there exists an arc uv that belongs to more than k distinct triangles, then reverse $u v$ and decrease k by 1 .

We say that a reduction rule is sound, if whenever the rule is applied to an instance (T, k) to obtain an instance $\left(T^{\prime}, k^{\prime}\right), T$ has a feedback arc set of size at most k if and only if T^{\prime} has a feedback arc set of size at most k^{\prime}.

Lemma 3.1. ([3, [13]) Rules 3.1 and 3.2 are sound and can be applied in polynomial time.

The Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST 3. Earlier, these rules were used by Dom et al. [13] to obtain a quadratic kernel for k-FAST. We now add a new reduction rule that will allow us to obtain the claimed bound on the kernel sizes for k-FAST. Given an ordered tournament $T_{\sigma}=\left(V_{\sigma}, A\right)$, we say that $\mathcal{P}=\left\{V_{1}, \ldots, V_{l}\right\}$ is a safe partition of V_{σ} into intervals whenever it is possible to certify the backward arcs of $T_{\sigma}\left[A_{B}\right]$ using only arcs from A_{B}.

Rule 3.3. Let T_{σ} be an ordered tournament, $\mathcal{P}=\left\{V_{1}, \ldots, V_{l}\right\}$ be a safe partition of V_{σ} into intervals and F be the set of backward arcs of $T_{\sigma}\left[A_{B}\right]$. Then reverse all the arcs of F and decrease k by $|F|$.

Lemma 3.2. Rule 3.3 is sound.
Proof. Let \mathcal{P} be a safe partition of T_{σ}. Observe that it is possible to certify all the backward arcs, that is F, using only arcs in A_{B}. Hence using Lemma 2.4 we have that $\operatorname{fas}\left(T_{\sigma}\right)=\operatorname{fas}\left(T_{\sigma}\left[A_{I}\right]\right)+\operatorname{fas}\left(T_{\sigma}\left[A_{B}\right]\right)$. Furthermore, by Lemma 2.4 we also know that there exists a minimum sized feedback arc set of D_{σ} containing F. Thus, T_{σ} has a feedback arc set of size at most k if and only if the tournament T_{σ}^{\prime} obtained from T_{σ} by reversing all the arcs of F has a feedback arc set of size at most $k-|F|$.

3.1 A subquadratic kernel for k-FAST

In this section, we show how to obtain an $O(k \sqrt{k})$ sized vertex kernel for k-FAST. To do so, we introduce the following reduction rule.

Rule 3.4. Let V_{m} be a maximal transitive module of size p, and I and O be the set of in-neighbors and out-neighbors of the vertices of V_{m} in T, respectively. Let Z be the set of arcs uv such that $u \in O$ and $v \in I$. If $q=|Z|<p$ then reverse all the arcs in Z and decrease k by q.

Figure 1: A transitive module on which Rule 3.4 applies.

Lemma 3.3. Rule 3.4 is sound and can be applied in linear time.
Proof. We first prove that the partition $\mathcal{P}=\left\{I, V_{m}, O\right\}$ forms a safe partition of the input tournament. Let $V_{m}^{\prime}=\left\{w_{1}, \ldots, w_{q}\right\} \subseteq V_{m}$ be an arbitrary subset of size q of V_{m} and let $Z=\left\{u_{i} v_{i} \mid 1 \leq i \leq q\right\}$. Consider the collection $\mathcal{F}=\left\{v_{i} w_{i} u_{i} \mid u_{i} v_{i} \in Z, w_{i} \in V_{m}^{\prime}\right\}$ and notice that it certifies all the arcs in Z. In fact we have managed to certify all the backwards arcs of the partition using only arcs from A_{B} and hence \mathcal{P} forms a safe partition. Thus, by Rule 3.3 , it is safe to reverse all the arcs from O to I. The time complexity follows from the fact that computing a modular decomposition tree can be done in $O(n+m)$ time on directed graphs 22].

We show that any Yes-instance to which none of the Rules 3.1, 3.2 and 3.4 could be applied has at most $O(k \sqrt{k})$ vertices.

Theorem 3.4. Let $(T=(V, A), k)$ be a YES-instance to k-FAST which has been reduced according to Rules 3.1. 3.2 and 3.4. Then T has at most $O(k \sqrt{k})$ vertices.

Proof. Let S be a feedback arc set of size at most k of T and let T^{\prime} be the tournament obtained from T by reversing all the arcs in S. Let σ be the transitive ordering of T^{\prime} and $T_{\sigma}=\left(V_{\sigma}, A\right)$ be the ordered tournament corresponding to the ordering σ. We say that a vertex is affected if it is incident to some arc in S. Thus, the number of affected vertices is at most $2|S| \leq 2 k$. The reduction Rule 3.1 ensures that the first and last vertex of T_{σ} are affected. To see this note that if the first vertex in V_{σ} is not affected then it is a source vertex (vertex with in-degree 0) and hence it is not part of any triangle and thus Rule 3.1 would have applied. We can similarly argue for the last vertex. Next we argue that there is no backward arc e of length greater than $2 k+2$ in T_{σ}. Assume to
the contrary that $e=u v$ is a backward arc with $S(e)=\left\{v, x_{1}, x_{2}, \ldots, x_{2 k+1}, \ldots, u\right\}$ and hence $l(e)>2 k+2$. Consider the collection $\mathcal{T}=\left\{v x_{i} u \mid 1 \leq i \leq 2 k\right\}$ and observe that at most k of these triples can contain an arc from $S \backslash\{e\}$ and hence there exist at least $k+1$ triplets in \mathcal{T} which corresponds to distinct triangles all containing e. But then e would have been reversed by an application of Rule 3.2. Hence, we have shown that there is no backward arc e of length greater than $2 k+2$ in T_{σ}. Thus $\sum_{e \in S} l(e) \leq 2 k^{2}+2 k$.

We also know that between two consecutive affected vertices there is exactly one maximal transitive module. Let us denote by t_{i} the number of vertices in these modules, where $i \in\{1, \ldots, 2 k-1\}$. The objective here is to bound the number of vertices in V_{σ} or V using $\sum_{i=1}^{2 k-1} t_{i}$. To do so, observe that since T is reduced under the Rule 3.4 there are at least t_{i} backward arcs above every module with t_{i} vertices, each of length at least t_{i}. This implies that $\sum_{i=1}^{2 k-1} t_{i}^{2} \leq \sum_{e \in S} l(e) \leq 2 k^{2}+2 k$. Now, using the Cauchy-Schwarz inequality we can show the following.

$$
\sum_{i=1}^{2 k-1} t_{i}=\sum_{i=1}^{2 k-1} t_{i} \cdot 1 \leq \sqrt{\sum_{i=1}^{2 k-1} t_{i}^{2} \cdot \sum_{i=1}^{2 k-1} 1} \leq \sqrt{\left(2 k^{2}+2 k\right) \cdot(2 k-1)}=\sqrt{4 k^{3}+2 k^{2}-k}
$$

Thus every reduced Yes-instance has at most $\sqrt{4 k^{3}+2 k^{2}-k}+2 k=O(k \sqrt{k})$ vertices.

3.2 A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which will be useful in obtaining a linear kernel for k-FAST.

3.2.1 Backward Weighted Tournaments

Let T_{σ} be an ordered tournament with weights on its backward arcs. We call such a tournament a backward weighted tournament and denote it by T_{ω}, and use $\omega(e)$ to denote the weight of a backward arc e. For every interval $I:=\left[v_{i}, \ldots, v_{j}\right]$ we use $\omega(I)$ to denote the total weight of all backward arcs having both their endpoints in I, that is, $\omega(I)=\sum_{e=u v} w(e)$ where $u, v \in I$ and e is a backward arc.

Definition 3.5. (Contraction) Let $T_{\omega}=\left(V_{\sigma}, A\right)$ be an ordered tournament with weights on its backward arcs and $I=\left[v_{i}, \ldots, v_{j}\right]$ be an interval. The contracted tournament is defined as $T_{\omega^{\prime}}=\left(V_{\sigma^{\prime}}=V_{\sigma} \backslash\{I\} \cup\left\{c_{I}\right\}, A^{\prime}\right)$. The arc set A^{\prime} is defined as follows.

- It contains all the arcs $A_{1}=\{u v \mid u v \in A, u \notin I, v \notin I\}$
- $\operatorname{Add} A_{2}=\left\{u c_{I} \mid u v \in A, u \notin I, v \in I\right\}$ and $A_{3}=\left\{c_{I} v \mid u v \in A, u \in I, v \notin I\right\}$.
- Finally, we remove every forward arc involved in a 2-cycle after the addition of arcs in the previous step.

The order σ^{\prime} for $T_{\omega^{\prime}}$ is provided by $\sigma^{\prime}=v_{1}, \ldots, v_{i-1}, c_{I}, v_{j+1}, \ldots, v_{n}$. We define the weight of a backward arc $e=x y$ of A^{\prime} as follows.

$$
w^{\prime}(x y)=\left\{\begin{aligned}
w(x y) & \text { if } x y \in A_{1} \\
\sum_{\{x z \in A \mid z \in I\}} w(x z) & \text { if } x y \in A_{2} \\
\sum_{\{z y \in A \mid z \in I\}} w(z y) & \text { if } x y \in A_{3}
\end{aligned}\right.
$$

We refer to Figure 2 for an illustration.

Figure 2: Illustration of the contraction step for the interval $I:=\left[v_{i}, \ldots, v_{j}\right]$.

Next we generalize the notions of certificate and certification (Definitions 2.2 and 2.3) to backward weighted tournaments.
Definition 3.6. Let $T_{\omega}=\left(V_{\sigma}, A\right)$ be a backward weighted tournament, and let $f=v u \in$ A be a backward arc of T_{ω}. We call ω-certificate of f, and denote it by $\mathcal{C}(f)$, a collection of $\omega(f)$ arc-disjoint directed paths going from u to v and using only forward arcs in the span of f in T_{ω}.
Definition 3.7. Let $T_{\omega}=\left(V_{\sigma}, A\right)$ be a backward weighted tournament, and let $F \subseteq A$ be a subset of backward arcs of T_{ω}. We say that we can ω-certify F whenever it is possible to find a set $\mathcal{F}=\{\mathcal{C}(f): f \in F\}$ of arc-disjoint ω-certificates for the arcs in F.
Lemma 3.8. Let $T_{\omega}=\left(V_{\sigma}, A\right)$ be a backward weighted tournament such that for every interval $I:=\left[v_{i}, \ldots, v_{j}\right]$ the following holds:

$$
\begin{equation*}
2 \cdot \omega(I) \leq|I|-1 \tag{1}
\end{equation*}
$$

Then it is possible to ω-certify the backward arcs of T_{ω}.
Proof. Let $V_{\sigma}=v_{1}, \ldots, v_{n}$. The proof is by induction on n, the number of vertices. Note that by applying (1) to the interval $I=\left[v_{1}, \ldots, v_{n}\right]$, we have that there exists a vertex v_{i} in T_{ω} that is not incident to any backward arc. Let $T_{\omega}^{\prime}=\left(V_{\sigma}^{\prime}, A^{\prime}\right)$ denote the tournament $T_{\omega} \backslash\left\{v_{i}\right\}$. We say that an interval I is critical whenever $|I| \geq 2$ and $2 \cdot \omega(I)=|I|-1$. We now consider several cases, based on different types of critical intervals.
(i) Suppose that there are no critical intervals. Thus, in T_{ω}^{\prime}, every interval satisfies (11), and hence by induction on n the result holds.
(ii) Suppose now that the only critical interval is $I=\left[v_{1}, \ldots, v_{n}\right]$, and let $e=v u$ be a backward arc above v_{i} with the maximum length. Note that since v_{i} does not belong to any backward arc, we can use it to form a directed path $c(e)=u v_{i} v$, which is a certificate for e. We now consider T_{ω}^{\prime} where the weight of e has been decreased by 1 . In this process if $\omega(e)$ becomes 0 then we reverse the arc e. We now show that every interval of T_{ω}^{\prime} respects (11. If an interval $I^{\prime} \in T_{\omega}^{\prime}$ does not contain v_{i} in the corresponding interval in T_{ω}, then by our assumption we have that $2 \cdot \omega\left(I^{\prime}\right) \leq\left|I^{\prime}\right|-1$. Now we assume that the interval corresponding to I^{\prime} in T_{ω} contains v_{i} but either $u \notin I^{\prime} \cup\left\{v_{i}\right\}$ or $v \notin I^{\prime} \cup\left\{v_{i}\right\}$. Then we have $2 \cdot \omega\left(I^{\prime}\right)=2 \cdot \omega(I)<|I|-1=\left|I^{\prime}\right|$ and hence we get that $2 \cdot \omega\left(I^{\prime}\right) \leq\left|I^{\prime}\right|-1$. Finally, we assume that the interval corresponding to I^{\prime} in T_{ω} contains v_{i} and $u, v \in I^{\prime} \cup\left\{v_{i}\right\}$. In this case, $2 \cdot \omega\left(I^{\prime}\right)=2 \cdot(\omega(I)-1) \leq|I|-1-2<\left|I^{\prime}\right|-1$. Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-certificates \mathcal{F}^{\prime} which ω-certify the backward arcs of T_{ω}^{\prime}. Observe that the maximality of $l(e)$ ensures that if e is reversed then it will not be used in any ω-certificate of \mathcal{F}^{\prime}, thus implying that $\mathcal{F}^{\prime} \cup c(e)$ is a family ω-certifying the backward arcs of T_{ω}.
(iii) Finally, suppose that there exists a critical interval $I \subsetneq V_{\sigma}$. Roughly speaking, we will show that I and $V_{\sigma} \backslash I$ can be certified separately. To do so, we first show the following.
Claim. Let $I \subset V_{\sigma}$ be a critical interval. Then the tournament $T_{\omega^{\prime}}=\left(V_{\sigma^{\prime}}, A^{\prime}\right)$ obtained from T_{ω} by contracting I satisfies the conditions of the lemma.

Proof. Let H^{\prime} be any interval of $T_{\omega^{\prime}}$. As before if H^{\prime} does not contain c_{I} then the result holds by hypothesis. Otherwise, let H be the interval corresponding to H^{\prime} in T_{ω}. We will show that $2 \omega\left(H^{\prime}\right) \leq\left|H^{\prime}\right|-1$. By hypothesis, we know that $2 \omega(H) \leq|H|-1$ and that $2 \omega(I)=|I|-1$. Thus we have the following.
$2 \omega\left(H^{\prime}\right)=2 \cdot(\omega(H)-\omega(I)) \leq|H|-1-|I|+1=(|H|+1-|I|)-1=\left|H^{\prime}\right|-1$
Thus, we have shown that the tournament $T_{\omega^{\prime}}$ satisfies the conditions of the lemma.

We now consider a minimal critical interval I. By induction, and using the claim, we know that we can obtain a family of arc-disjoint ω-certificates \mathcal{F}^{\prime} which ω certifies the backward arcs of $T_{\omega^{\prime}}$ without using any arc within I. Now, by minimality of I, we can use (iii) to obtain a family of arc-disjoint ω-certificates $\mathcal{F}^{\prime \prime}$ which ω-certifies the backward arcs of I using only arcs within I. Thus, $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime}$ is a family ω-certifying all backward arcs of T_{ω}.

This concludes the proof of the lemma.
In the following, any interval that does not respect condition (1) is said to be a dense interval.

Lemma 3.9. Let $T_{\omega}=\left(V_{\sigma}, A\right)$ be a backward weighted tournament with $\left|V_{\sigma}\right| \geq 2 p+1$ and $\omega\left(V_{\sigma}\right) \leq p$. Then there exists a safe partition of V_{σ} with at least one backward arc between the intervals and it can be computed in polynomial time.

Proof. The proof is by induction on $n=\left|V_{\sigma}\right|$. Observe that the statement is true for $n=3$, which is our base case.

For the inductive step, we assume first that there is no dense interval in T_{ω}. In this case Lemma 3.8 ensures that the partition of V_{σ} into singletons of vertices is a safe partition. So from now on we assume that there exists at least one dense interval.

Let I be a dense interval. By definition of I, we have that $\omega(I) \geq \frac{1}{2} \cdot|I|$. We now contract I and obtain the backward weighted tournament $T_{\omega^{\prime}}=\left(V_{\sigma^{\prime}}, A^{\prime}\right)$. In the contracted tournament $T_{\omega^{\prime}}$, we have:

$$
\begin{cases}\left|V_{\sigma^{\prime}}\right| & \geq 2 p+1-(|I|-1)=2 p-|I|+2 \\ \omega^{\prime}\left(V_{\sigma^{\prime}}\right) & \leq p-\frac{1}{2} \cdot|I|\end{cases}
$$

Thus, if we set $r:=p-\frac{1}{2} \cdot|I|$, we get that $\left|V_{\sigma^{\prime}}\right| \geq 2 r+1$ and $\omega^{\prime}\left(V_{\sigma^{\prime}}\right) \leq r$. Since $\left|V_{\sigma^{\prime}}\right|<\left|V_{\sigma}\right|$, by the induction hypothesis we can find a safe partition \mathcal{P} of $T_{\omega^{\prime}}$, and thus obtain a family $\mathcal{F}_{\omega^{\prime}}$ that ω-certifies the backward arcs of $T_{\omega^{\prime}}\left[A_{B}\right]$ using only arcs in A_{B}.

We claim that \mathcal{P}^{\prime} obtained from \mathcal{P} by substituting c_{I} by its corresponding interval I is a safe partition in T_{ω}. To see this, first observe that if c_{I} has not been used to ω-certify the backward arcs in $T_{\omega^{\prime}}\left[A_{B}\right]$, that is, c_{I} is not an end point of any arc in the ω-certificates, then we are done. So from now on we assume that c_{I} has been part
of a ω-certificate for some backward arc. Let e be a backward arc in $T_{\omega^{\prime}}\left[A_{B}\right]$, and let $c_{\omega^{\prime}}(e) \in \mathcal{F}_{\omega^{\prime}}$ be a ω-certificate of e. First we assume that c_{I} is not the first vertex of the certificate $c_{\omega^{\prime}}(e)$ (with respect to ordering σ^{\prime}), and let c_{1} and c_{2} be the left (in-) and right (out-) neighbors of c_{I} in $c_{\omega^{\prime}}(e)$. By definition of the contraction step together with the fact that there is a forward arc between c_{1} and c_{I} and between c_{I} and c_{2} in $T_{\omega^{\prime}}$, we have that there were no backward arcs between any vertex in the interval corresponding to c_{I} and c_{1} and c_{2} in the original tournament T_{ω}. So we can always find a vertex in I to replace c_{I} in $c_{\omega^{\prime}}(e)$, thus obtaining a certificate $c(e)$ for e in $T_{\omega}\left[A_{B}\right]$ (observe that e remains a backward arc even in T_{ω}). Now we assume that c_{I} is either a first or last vertex in the certificate $c_{\omega^{\prime}}(e)$. Let e^{\prime} be an arc corresponding to e in $T_{\omega^{\prime}}$ with one of its endpoints being $e_{I} \in I$. To certify e^{\prime} in $T_{\omega}\left[A_{B}\right]$, we need to show that we can construct a certificate $c\left(e^{\prime}\right)$ using only arcs of $T_{\omega}\left[A_{B}\right]$. We have two cases to deal with.
(i) If c_{I} is the first vertex of $c_{\omega^{\prime}}(e)$ then let c_{1} be its right neighbor in $c_{\omega^{\prime}}(e)$. Using the same argument as before, there are only forward arcs between any vertex in I and c_{1}. In particular, there is a forward arc $e_{I} c_{1}$ in T_{ω}, meaning that we can construct a ω-certificate for e^{\prime} in T_{ω} by setting $c\left(e^{\prime}\right):=\left(c_{\omega^{\prime}}(e) \backslash\left\{c_{I}\right\}\right) \cup\left\{e_{I}\right\}$.

Figure 3: On the left, the ω-certificate $c_{\omega^{\prime}}(e) \in \mathcal{F}_{\omega^{\prime}}$. On the right, the corresponding ω-certificate obtained in T_{ω} by replacing c_{I} by the interval I.
(ii) If c_{I} is the last vertex of $c_{\omega^{\prime}}(e)$ then let c_{q} be its left neighbor in $c_{\omega^{\prime}}(e)$. Once again, we have that there are only forward arcs between c_{q} and vertices in I, and thus between c_{q} and e_{I}. So using this we can construct a ω-certificate for e^{\prime} in T_{ω}.

Notice that the fact that all ω-certificates are pairwise arc-disjoint in $T_{\omega^{\prime}}\left[A_{B}\right]$ implies that the corresponding ω-certificates are arc-disjoint in $T_{\omega}\left[A_{B}\right]$, and so \mathcal{P}^{\prime} is indeed a safe partition of V_{σ}.

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of the fact that there exists a polynomial time approximation scheme for this problem [21].

Theorem 3.10. For every fixed $\epsilon>0$, there exists a vertex kernel for k-FAST with at most $(2+\epsilon) k$ vertices that can be computed in polynomial time.

Proof. Let $(T=(V, A), k)$ be an instance of k-FAST. For a fixed $\epsilon>0$, we start by computing a feedback arc set S of size at most $\left(1+\frac{\epsilon}{2}\right) k$. To find such a set S, we use the known polynomial time approximation scheme for k-FAST 21]. Then, we order T with the transitive ordering of the tournament obtained by reversing every arc of S in T. Let T_{σ} denote the resulting ordered tournament. By the upper bound on the size of S, we know that T_{σ} has at most $\left(1+\frac{\epsilon}{2}\right) k$ backward arcs. Thus, if T_{σ} has more than $(2+\epsilon) k$ vertices then Lemma 3.9 ensures that we can find a safe partition with at least one backward arc between the intervals in polynomial time. Hence we can reduce the tournament by applying Rule 3.3. We then apply Rule 3.1, and repeat the previous steps until we do not find a safe partition or $k=0$. In the former case, we know by Lemma 3.9 that T can have at most $(2+\epsilon) k$ vertices, thus implying the result. In all other cases we return No.

4 Conclusion

In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of size $(2+\epsilon) k$ for any fixed $\epsilon>0$. The new bound on the kernel size improves the previous known bound of $O\left(k^{2}\right)$ on the vertex kernel size for k-FAST given in [3, 13. It would be interesting to see if one can obtain kernels for other problems using either polynomial time approximation schemes or a constant factor approximation algorithm for the corresponding problem. An interesting problem which remains unanswered is, whether there exists a linear or even a $o\left(k^{2}\right)$ vertex kernel for the k-Feedback Vertex Set in Tournaments (k-FVST) problem. In the k-FVST problem we are given a tournament T and a positive integer k and the aim is to find a set of at most k vertices whose deletion makes the input tournament acyclic. The smallest known kernel for k-FVST has size $O\left(k^{2}\right)$.

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and clustering. In ACM Symposium on Theory of Computing (STOC), pages 684-693, 2005.
[2] N. Alon. Ranking tournaments. SIAM J. Discrete Math., 20(1):137-142, 2006.
[3] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In International Colloquium on Automata, Languages and Programming (ICALP), 2009. (to appear).
[4] J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6(2):157-165, 1989.
[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels (extended abstract). In International Colloquium on Automata, Languages and Programming (ICALP), volume 5125 of LNCS, pages 563-574, 2008.
[6] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos. (meta) kernelization. CoRR, abs/0904.0727, 2009.
[7] J. Borda. Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, 1781.
[8] N. Bousquet, J. Daligault, S. Thomassé, and A. Yeo. A polynomial kernel for multicut in trees. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 183-194, 2009.
[9] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem is NP-hard for tournaments. Combin. Probab. Comput., 16(1):1-4, 2007.
[10] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. In Advances in neural information processing systems (NIPS), pages 451-457, 1997.
[11] M. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, 1785 .
[12] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives a good ranking for weighted tournaments. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 776-782, 2006.
[13] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter tractability results for feedback set problems in tournaments. In Conference on Algorithms and Complexity (CIAC), volume 3998 of LNCS, pages 320-331, 2006.
[14] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In International Colloquium on Automata, Languages and Programming (ICALP), 2009. (to appear).
[15] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited. Technical report.
[16] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In World Wide Web Conference (WWW), 2001.
[17] P. Erdös and J. W. Moon. On sets on consistent arcs in tournaments. Canad. Math. Bull., 8:269-271, 1965.
[18] H. A. Jung. On subgraphs without cycles in tournaments. Combinatorial Theory and its Applications II, pages 675-677, 1970.
[19] J. Kemeny. Mathematics without numbers. Daedalus, 88:571-591, 1959.
[20] J. Kemeny and J. Snell. Mathematical models in the social sciences. Blaisdell, 1962.
[21] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In ACM Symposium on Theory of Computing (STOC), pages 95-103, 2007.
[22] R. M. McConnell and F. de Montgolfier. Linear-time modular decomposition of directed graphs. Discrete Appl. Math., 145(2):198-209, 2005.
[23] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems and their duals in tournaments. Theor. Comput. Sci, 351(3):446-458, 2006.
[24] K. D. Reid and E. T. Parker. Disproof of a conjecture of Erdös and Moser on tournaments. J. Combin. Theory, 9:225-238, 1970.
[25] S. Seshu and M. B. Reed. Linear Graphs and Electrical Networks. Addison-Wesley, 1961.
[26] P. Slater. Inconsistencies in a schedule of paired comparisons. Biometrika, 48:303312, 1961.
[27] E. Speckenmeyer. On feedback problems in digraphs. In Workshop on GraphTheoretic Concepts in Computer Science ($W G$), volume 411 of Lecture Notes in Computer Science, pages 218-231. Springer, 1989.
[28] J. Spencer. Optimal ranking of tournaments. Networks, 1:135-138, 1971.
[29] S. Thomassé. A quadratic kernel for feedback vertex set. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 115-119, 2009.
[30] A. van Zuylen. Deterministic approximation algorithms for ranking and clusterings. Technical Report 1431, Cornell ORIE, 2005.
[31] A. van Zuylen, R. Hegde, K. Jain, and D. P. Williamson. Deterministic pivoting algorithms for constrained ranking and clustering problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 405-414, 2007.
[32] D. H. Younger. Minimum feedback arc sets for a directed graph. IEEE Trans. Circuit Theory, 10:238-245, 1963.

[^0]: *LIRMM - Université de Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier, France. \{bessylpaul|perez|thomasse\}@lirmm.fr
 ${ }^{\dagger}$ Department of Informatics, University of Bergen, N-5020 Bergen, Norway. \{fedor.fominlsaket.saurabh\}@ii.uib.no
 \ddagger Centro de Modelamiento Matemático, Universidad de Chile, 8370459 Santiago de Chile. sgaspers@dim.uchile.cl

