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Abstract: In this paper environment is modeled using depth information provided by a
stereo vision system. Workspace is decomposed into voxels which are the smallest volume of
environment. A �rst observation on the state of the voxels is calculated based on stereo system
provided 3D points and triangulation error propagation. A new method for model update using
prior and current observations on the voxel state is presented. The proposed update function
uses a credibility value that denotes how strongly a new observation shall in�uence the voxel
state based on the age of the last observation and the homogeneity of the current observations.
Finally, the 3D occupancy grid is scaled down to a 2D map to reduce computational costs.
Experimental results using real environment and comparison based on a benchmarking method
are presented to demonstrate the performance of our approach.

Keywords: Stereo Vision, 3D Occupancy Grid, Map Building.

1. INTRODUCTION

Robot navigation can be performed using a map of the
environment. In the case of an unknown environment the
robot must build its own representation of it. Robotic map-
ping has been an active area in arti�cial intelligence for a
few decades. It addresses the problem of acquiring a spatial
model of the workspace through available sensors on a
robot. Information from sensors is processed and model
of the environment is updated. The characteristics of a
good map representation must be able to quickly update
its knowledge about the current state of the environment
without heavy computation e�ort. At any iteration of map
building the measurements will have a slight inaccuracy,
and then any features being added to the map will con-
tain corresponding errors. If unchecked, these errors build
cumulatively grossly distorting map. One of the greatest
di�culties of map building arises from the nature of the
inaccuracies and uncertainties in terms of noise in sensor
measurements, which often lead to inaccurate maps. In
this paper, input information comes from a depth map
produced by a stereo vision system. Disparity values are
converted into real distances using triangulation and a 3D
occupancy grid is constructed incrementally based on the
positions of 3D points and the de�ned 3D occupancies
(voxels). The construction of the incremental 3D model
takes into account the propagation of camera calibration

error and matching error. For the update of the 3D model,
a credibility value based on the homogeneity of the obser-
vations on a local neighborhood and the age of the last
prior observation is proposed.

The paper is divided as follows. The next section gives
a survey of occupancy grid based map building methods.
Section 3 gives an overview over the whole map building
system. Section 4 introduces our method for map building.
The main contribution of this section is the modeling of
triangulation error, the use of a new update function for
the 3D grid states and the 2D map cell state discretization.
Section 5 presents experimental results using Pioneer 3
equipped with two cameras and comparison with other
paradigms using Collins et al. benchmarking suite (Collins
et al. 2007).

2. SURVEY OF OCCUPANCY GRID BASED MAP
BUILDING METHODS

The occupancy grids, also known as evidence grids or cer-
tainty grids were pioneered by Moravec and Elfes (Moravec
& Elfes, 1985; Elfes, 1987, Moravec, 1988; Elfes, 1989a;
Elfes, 1989b) and formulated in the Carnegie Mellon Uni-
versity (Martin & Moravec, 1996) as a way to construct
an internal representation of static environments by evenly
spaced grids based on ultrasonic range measurements.
Occupancy grids provide a data structure that allows
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fusion of sensor data. It provides a representation of the
world which is created with inputs from the sensors.
Apart from being used directly for sensor fusion, there
also exist interesting variations of evidence grids, such as
place-centric grids (Youngblood, 2000), histogram grids
(Koren & Borenstein, 1991) and response grids (Howard
& Kitchen, 1996). Occupancy Grids is certainly the state
of the art method in the �eld of grid based mapping. It
is the most widely used robot mapping technique due to
its simplicity and robustness and also because it is �exible
enough to accommodate many kinds of spatial sensors with
di�erent modalities and combining di�erent sensor scans.
It also adapts well to dynamic environments.

In general, the occupancy grid technique divides the en-
vironment into two dimensional discrete grid cells. In a
stochastic occupancy grid (Badino et al., 2007) the inten-
sity of each cell denotes the likelihood that a world point is
at the lateral position and depth represented by the cell.
A world point can therefore occupy more than one cell.
How large an area the world point a�ects depends on the
variance (noise) associated with the point. There exists
various occupancy grid representations.

The occupancy grids map is considered as a discrete state
stochastic process de�ned over a set of continuous spatial
coordinates. Each grid cell is an element and represents
an area of the environment. The state variable associated
with any grid cell Ci in the grid map yields the occupancy
probability value of the corresponding region. Since the
probabilities are identi�ed based on the sensor data, they
are purely conditional. Given a sensor data, each cell
in the occupancy grid can be generally in two states
s(Ci) = Occupied or s(Ci) = Free, and to each cell
there is probability P [s(Ci) = Occupied] attached, which
re�ects the belief of the cell Ci being occupied by an object.

P [s(Ci) = Free] = 1− P [s(Ci) = Occupied] (1)

Occupancy grids have been implemented with laser range
�nders (Schmid et al. 2010) stereo vision sensors (Moravec,
1996) and even with a combination of sonar, infrared
sensors and sensory data obtained from stereo vision (Lan-
thier et al., 2004). Recent works of occupancy grid map
building have focused on stereo vision as input sensor.
Franco and Boyer presented a method for visual occupancy
grid using multi camera environment (Franco & Boyer,
2005). The idea of their method is to consider each camera
pixel as statical occupancy sensor. All pixel observations
are then used jointly to infer where, and how likely, matter
is presented in the scene. Kenji et al. attempt to eliminate
false positive in a stereo vision obstacle detection method.
For this purpose, they propose a method that generates
Occupancy Grid Maps based on measurements from a
stereo vision system which leads to robust obstacle de-
tection (Kohara et al. 2010). Braillon et al. have proposed
a real-time method to detect obstacles using theoretical
models of the ground plane, �rst in a 3D point cloud
given by a stereo camera, and then in an optical �ow �eld
given by one of the stereo pairs' camera (Braillon et al.
2006). The idea of their method is to combine two partial
occupancy grids from both sensor modalities with an occu-
pancy grid framework. In (Oniga et al., 2009), the authors
have used an occupancy grid computed with a method that
outputs an occupancy grid with three distinct cell types:

road, tra�c isles and obstacles. They have performed a
temporal �ltering of the false tra�c isles present in the
grids. Obstacle cells were separated into static (probably
infrastructure) and dynamic. An enhanced occupancy grid
was built, containing road, tra�c isle, static obstacle and
dynamic obstacle cells. The global map was obtained by
integrating the enhanced occupancy grid along several
successive frames. Lategahn et al. present in (Lategahn
et al. 2010) a complete processing chain for computing
2D occupancy grids from image sequences. First the 3D
points reconstructed from the images are distributed onto
the underlying grid. Thereafter a virtual measurement
is computed for each cell thus reducing computational
complexity and rejecting potential outliers. Subsequently
a height pro�le is updated from which the current mea-
surement is partitioned into ground and obstacle pixels.

In (Lu et al. 2010), the authors gives the di�erent tech-
niques for building occupancy grid map. These techniques
are based on Bayesian theory (probabilistic approach)
(Moravec, 2001) (Elfes, 1992), Dempster Shafer theory
of evidence (evidence theoretic approach) (Ribo & Pinz,
2001)(Gambino et al. 1996), and fuzzy set theory (pos-
sibility approach) (Oriolo et al. 1999) (Ribo & Pinz,
2001)(Gambino et al. 1996).

The use of probability theory in occupancy grids based
approach has been criticized for several reasons. Firstly,
it is di�cult to create accurate sensor models for new
sensors. The characteristics of ultrasonic sensors are well
known, but unrealistic simpli�cations are needed to model
the complex behavior of stereo vision. Hence, some authors
even decided to skip probability theory and to invent
an own update rule (Guadarrama & Ruiz-Mayor, 2010).
Secondly, a single probability does not allow to distinguish
between unknown and uncertain occupancy. Thus, it can
not be determined whether an area has not been scanned
at all (e.g. due to occlusion) or the sensor data was
unreliable. For these reasons, we present in this work a
new approach to determine and update the states of the
occupancies.

3. OVERVIEW OVER THE WHOLE MAP BUILDING
SYSTEM

Figure 1 gives an overview of the map building system.
The input are disparity images and the parameters of the
stereo camera. This paper concentrates on creating a visual
map from stereo and motion data using occupancy grid
approach.

A stereo vision system we have developed in (Ghazouani
et al. 2010) is used to deliver dense disparity maps. An
adaptive support window is used to have more reliable
disparities. We use a camera motion estimation method
proposed by Hirschmüller et al. (Hirschmüller et al. 2002)
that utilizes the knowledge about the three dimensional
position of features (i.e. corners, which are detected in
the left image) to robustly and accurately determine
motion of the camera. Motion is calculated between two
consecutive stereo images without any pre-knowledge or
prediction about feature location or the possibly large
camera movement.
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Fig. 1. Overview over the whole system.

First, triangulation is used to calculate the positions of 3D
points from the provided stereo data. Then, a method to
determine the state of the cells is proposed based on the
triangulation error estimation. A new update function of
the cells is presented. Finally the 3D grid is scaled down
to a 2D map for optimization reasons. The proposed map
building process (gray squares) is presented in section 4.

4. MAP BUILDING SYSTEM

In this section map building steps are described. We begin
by calculating the triangulation error propagation. Then,
we use a 3D occupancy grid to model the environment
based on the calculated error and the provided stereo
data. After that, we propose an update function for the
environment model. Finally, we generate a 2D navigation
map based on the projection of the 3D model.

4.1 Triangulation error propagation

The stereo vision system constructs a 3D view of the
environment and then extracts the obstacles present in
it. This is done by either generating disparity maps and
evaluating them (Zhang et al. 2009; Boyer et al. 1991), or
generating 3D occupancy grid of the environment using
the disparity values. 3D occupancy grid can provide good
reconstruction quality at low cost. The resulting accuracy
of the three-dimensional position information provided by
the stereo vision process is a crucial point for quality
control tasks.

Over the last years, some e�orts have been spent on
error analysis in stereo-vision based computer vision sys-

tems (Blostein & Huang, 1987)(Yang & Wang, 1996)(Ra-
makrishna & Vaidvanathan, 1997)(Kamberova & Ba-
jcsy, 1998)(Balasuramanian et al. 2000)(Rivera-Rios et al.
2005)(Park & Subbarao, 2005)(Albouy et al. 2006). As an
example, Blostein and Huang (Blostein & Huang, 1987)
have investigated the accuracy in obtaining 3D positional
information based on triangulation using point correspon-
dences derived using a stereoscopic camera setup. They
have derived closed form expressions for the probability
distribution of position errors along each direction (hor-
izontal, vertical and range) of the coordinate system of
the stereo rig. Also, a study of di�erent types of error
and their e�ects on 3D reconstruction results obtained
using a structured light technique has been presented by
Yang and Wang (Yang & Wang, 1996). In their work,
Yang and Wang have derived expressions for the errors
observed for the 3D surface position, the orientation and
the curvature measurements. Further, Ramakrishna et al.
(Ramakrishna & Vaidvanathan, 1997) proposed a new ap-
proach for estimating tight bounds on measurement errors,
considering the inaccuracies introduced during calibration
and triangulation. Balasuramanian et al.(Balasuramanian
et al. 2000) analyzed the e�ect of noise (which is assumed
to be independent and uniformly distributed) and of the
geometry of the imaging setup on the reconstruction error
for a straight line, their analysis being mainly based on
simulation studies. Revira-Rios et al. (Rivera-Rios et al.
2005) have analyzed the error when measuring dimen-
sionally line entities, these errors being mostly due to
localization errors in the image planes of the stereo setup.
Consequently, in order to determine optimal camera poses,
a non-linear program has been formulated, that minimizes
the total MSE (Mean Square Error) for the line to be mea-
sured, while satisfying sensor related constraints. Lastly,
the accuracy of 3D reconstructions has been evaluated
through comparison with ground truth in contributions
presented by Park et al. (Park & Subbarao, 2005) and
Albouy et al. (Albouy et al. 2006) More recently, Jianxi
et al.(Jianxi et al. 2008) have presented an error analysis
for 3D reconstruction taking into account only the camera
calibration parameter accuracy.

In a stereo vision system based on binocular cameras, each
3D point P projects onto the left image at Ul = [ul, vl]
and onto the right image at Ur = [ur, vr]. Because of
errors in measurement, the stereo system will determine
Ul and Ur with some error, which in turn causes error
in the estimate location of the real point P . We want to
take this uncertainty into account in any reasoning based
on measurements of P , specially in the calculation of grid
occupancy state.

Once we have found conjugate pairs in the two images, it
is possible to get the depth of the correspondent points
in the scene if we know: the mutual position of the
cameras (extrinsic parameters) and the sensors parameters
(intrinsic parameters). We de�ne a 3D disparity space
which dimensions are u, v and d respectively to designate
row, column and disparity. Each element (u, v, d) of the
disparity space is projected to pixel (u, v) in the reference
image and the pixel (u, v′ = v+ d) in the matching image.
Each disparity pixel in the stereo image can be converted
to a 3D point based on the projective camera equations.
For our system, with the cameras aligned so that the
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optical axes are parallel these equations are given by the
following equations:
















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x =
zu

f
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f
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fb

d

(2)

where U = (u, v) is the position of the disparity pixel
in the reference camera image plane, X = (x, y, z) is the
position of the observed 3D point in the reference camera
coordinate frame and d is the pixel disparity. We de�ne
our sensor model to be made of two parts: pointing error:
p and matching error m. Pointing error is the error in
the position of the vector U of the reference camera and is
based on the accuracy of the camera calibration. Matching
error is the accuracy of the disparity, d, and is based on
the accuracy of the correlation algorithm. These accuracies
are features of the stereo camera. Given these values, the
covariance matrix of the disparity pixel in (u, v, d) space
is given by the following equation :

CU =

[

p 0 0
0 p 0
0 0 m

]

(3)

To obtain the covariance matrix CX of the 3D point
(x, y, z) associated with a disparity pixel (u, v, d), we
propagate the error from (u, v, d) space to (x, y, z) space
by applying the methods given in Faugeras (Faugeras,
1997). The covariance matrix CX is given by the following
equation :

CX = JX,UCuJ
T
X,U (4)
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We obtain

CX =





A+Bu2 uvB ufB

uvB A+Bv2 vfB

ufB vfB A+Bf2



 (6)

Where A = ( bp
d
)2; B = m

(

b
d2

)2
.

With the above error model, given the pointing and match-
ing error for a stereo camera system, we can determine the
covariance matrix for each 3D point in the disparity image.
This covariance matrix de�nes the con�dence we have in
the accuracy of the 3D point position estimation.

The distance between a 3D point i=(x, y, z) and a given
point j=(xj , yj , zj) in the workspace W is given by :

ρ =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (7)

To obtain the error △ρ in the distance between a 3D point
i=(x, y, z) and a �xed point j=(x, y, z), we propagate the
error from the space (x, y, z) to the ρ coordinate.

△ρ = Jρ,XCXJT
ρ,X (8)

with

Jρ,X =
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△ρ =
Cx2 +Dy2 + Ez2 + 2Fxy + 2Gxz + 2Hyz

δ2
(10)
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C = ( bp
d
)2 +m

(

ub
d2

)2

D = ( bp
d
)2 +m

(

vb
d2

)2

E = ( bp
d
)2 +m

(

fb
d2

)2

F = uvm
(

b
d2

)2

G = ufm
(

b
d2

)2

H = vfm
(

b
d2

)2

4.2 Three dimensional tessellation of workspace

We use a 3D occupancy grid to model the environment.
The workspace is discretized to uniform cubes (voxels)
which are the smallest volumes of the environment model.
The size of voxels determines the desired resolution of the
model. Based on the captured information with the stereo
vision system, the state of each voxel may be determined
using a state function.

W3D =
n
⋃

i=1

Vi,∀i, j ∈ [1, n], Vi ∩ Vj = φ (11)

Where W3D is the workspace and Vi is the voxel i in the
3D model. The state of a voxel is a variable function with
values in [0, 1].

4.3 Voxel occupancy state observation

We propose an observation function O to convert provided
stereo data to voxel occupancy state estimate. The ob-
servation on the state of a voxel is based on the mutual
positions of voxels and the determined 3D points.

We consider that the resolution of the model is 2r, i.e. the
size of a voxel is 2r × 2r × 2r. The observation at a voxel
is estimated based on the determined3D points as follow:

Oj(Vi) =







1 if 0 ≤ ρ ≤ r −△ρ

1− ρ

r
if r −△ρ < ρ ≤ r

0 otherwise

(12)

Oj(Vi) is the observation at the voxel centered in the pixel
i based on the position of the 3D point j. ρ is the euclidean
distance between the center of the voxel and the 3D point
j, △ρ is the estimate error in the distance.

The stereo information is fused into the occupancy grid
using union operator to determine the �nal observation of
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Fig. 2. Calculation of voxel state observation based on
error propagation and distance to 3D points.

the voxel Vi at the instant t (the instant when the stereo
images were taken).

Ot(Vi) = min

(

max
j

[Oj(Vi)] + λ
N(Vi)

6r3
, 1

)

(13)

N(Vi) is the number of the 3D points inside the voxel Vi.

A grati�cation of N(Vi)
6r3 is given to the voxel based on the

number of 3D points found inside it. λ is a scaling constant
empirically determined. The observation value Ot(Vi) re-
veals the degree of occupancy of the area represented by
the voxel based on the input stereo information taken at
the instant t.

4.4 Model update

In our approach, to update the state of each voxel, we
use a credibility value that ranges from 0 to 1. The
credibility value ki,t states how much we are able to trust
the observation Ot(Vi) of the voxel i calculated based on
the stereo pair taken at the instant t. Given a time t and
a new occupancy observation Ot+1(Vi), the state of the
corresponding voxel is updated following this equation:

{

St+1(Vi) = (1− ki,t+1)St(Vi) + ki,t+1Ot+1(Vi)
St0(Vi) = 0

(14)

The credibility value ki,t is dependent on the neighborhood
homogeneity of the determined voxel, the quantity of prior
measurements and the age of last observation. It is unlikely
to �nd a single occupied voxel in an otherwise empty
environment, so measurements indicating homogeneous
regions are more likely to be credible and we don't want to
trust the very �rst measurements and over aged measure-
ment at a point too much. The neighborhood homogeneity
of an observation Ot(Vi) is calculated using a set of voxel N
in the neighborhood of Vi. In our approach, only directly
neighboring voxels are regarded. The following equation
gives the homogeneity of the observation at the voxel Vi

at the instant t.

Hi,t =

∑

Vj∈N |Ot(Vi)−Ot(Vj)|
|N | (15)

The credibility value is given by the following equation:

ki,t =
Ni,t(1−Hi,t)√

2π
exp

(

− t− tlast

2σ2t0

)

(16)

Fig. 3. O�ce scene

Fig. 4. Results for Voxels states representation using three
stereo pairs taken from three di�erent positions of
the stereo cameras, white voxels have high occupancy
state,

Where Ni,t is the number of prior observations calculated
for the voxel Vi until the instant t. tlast is the time of the
last observation (before the instant t) calculated for the
voxel Vi. σ is the age scaling constant. The age of last
measurements, number of prior measurements are called
meta information and are stored in each voxel.

Fig. 3 shows the representation of the states of voxels in
a 3D scene of an o�ce (Fig. 2). White voxels represent
occupied voxels, black ones are free.

4.5 2D map generation based on projection of occupied
voxels

A major drawback of occupancy grid based methods is
their large memory requirement. The 3D grid map needs
to be initialized so that it is at least as big as the bounding
box of the mapped area, regardless of the actual distribu-
tion of map cells in the volume. In large-scale outdoor
scenarios or when there is the need for �ne resolutions,
the memory consumption becomes prohibitive. Pruning
of the 3D occupancy grid obtained by the stereo vision
cameras is needed to achieve computational e�ciency in
real time environment, after which the 3D occupancy grid
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Fig. 5. 2D map building; black cells are occupied, white
cells are free and gray cells are unknown

is scaled down to a 2D vision map, to reduce computational
costs. We create a 2D map from the 3D voxels generated
as described in previous sections. The 2D workspace is
decomposed into cells as follow:

W2D =
m
⋃

k=1

Ck,∀k, l ∈ [1,m], Ck ∩ Cl = φ (17)

The occupancy state of a cell is given by the maximum
state of all the voxels that projects into the cell under
consideration.

S(Ck) = max
Vi∈P (Ck)

(S(Vi)) (18)

Where S(Ck) is the cell state, P (Ck) is the set of all the
voxels that projects into the cell Ck. The occupancy state
of the cells is discretized into unknown, free and occupied
according the value of S(Ck). All the cells are initially
labeled as unknown. When a state is calculated for a cell,
it is then compared to a threshold. If the state value of
the cell is upper to the threshold, it is then labeled as
occupied. All the cells between the robot and occupied cells
are labeled free as shown in Figure 5.

5. EXPERIMENTAL RESULTS

To evaluate our method for environment modeling we
use a benchmarking suite for occupancy grid mapping
presented by Thomas Collins et al. (Collins et al. 2007).
This benchmark suite encompasses an image comparison
algorithm based on correlation (T. Collins et al. 2005),
a direct comparison method called map scoring based on
(Martin and Moravec, 1996) and a path analysis technique
which tests the usefulness of a map as a means of naviga-
tion rather than treating it as if it were a picture. The
correlation metric is calculated by matching the generated
map with the theoretical map using the following equation:

C =
〈M.T 〉 − 〈M〉 〈T 〉
σ(M)× σ(T )

(19)

Where M is the map to be matched, T is the theoretical
map, 〈〉 is the average operator and σ is the standard
deviation over the area being matched. C is a percentage
value that speci�es the similarity of the two maps. The
map score uses a normalization map to calculate the sum
of the squared di�erences between corresponding cells. The
map score is given by the following equation.

Fig. 6. The mobile robot Pioneer 3

Fig. 7. The test environment

MapScore =
∑

mxy∈M,nxy∈N

(mxy − nxy)
2

(20)

Where mxy is the value of the cell at position (x, y) in
M and nxy is the value of the cell at position (x, y) in
the normalized map N . Map score gives a positive value
representing the di�erence between two maps (generally
the ideal map of the environment and the generated map
that we are evaluating), so the lower the number, the more
alike the two maps are.

The benchmarking method also calculates a false positive
score that expresses the degree to which the paths created
in the generated map would cause the robot to collide with
a structural obstacle in the real world and a false negative
score that expresses the degree to which the robot should
be able to plan a path from one position to another using
the generated map, but cannot because such paths are
invalid in the ideal map. The method for calculating the
false positives and false negatives is detailed in (Collins et
al. 2007).

Experimentation consisted of testing the mapping paradigms
with identical data obtained from a number of runs in
a real indoor environment using Pioneer 3 (Figure 6)
equipped with stereo vision cameras. Stereo vision pro-
cessing and map updates are done at 5Hz and Pioneer 3
moves at 0.2 m/s. The test environment is an o�ce in the
LIRMM Laboratory (Figure 7).
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Fig. 8. Normalization of ideal map for benchmarking

Figures 8(a) and 8(b) show the ideal map and the normal-
ized map for the test environment used for benchmarking.
Figure 9 presents some illustrative maps generated by the
various mapping paradigms over a single run in the test
environments. The map cell size used is 25cm.

Table I presents the results for the comparison of our
method with �ve mapping paradigms. We calculate the
correlation metric, map score metric for all cells and for
the occupied cells, the false positives and negatives for the
di�erent algorithms.

Table 1. Comparison of our results with the
results of the di�erent mapping algorithms
using the Collins et al. benchmarking method

Corr. A.M.Sc O.M.Sc F.Pos F.Neg

key A B C D E

Our method 53.56 17.21 19.63 44.47 14.93

Rank 1 1 2 1 1

Mor. & Elf. 85 39.18 33.73 23.56 72.84 21.34

Mat. & Elf. 88 40.69 28.27 24.82 69.17 25.91

Thrun 93 38.34 25.97 29.71 77.13 27.93

Konolige 97 40.54 20.25 19.69 63.45 22.64

Thrun 01 50.13 18.56 17.39 50.15 16.68

5.1 Analysis of the correlation results

As shown in Table 1 (key A) our method achieved the
highest correlation followed by the Thrun's forward model
based paradigm. Thrun's 1993 paradigm has the lowest
correlation of the systems tested. According to Collins
et al. (Collins et al. 2007) this can be attributed to two
causes. First, paradigms that have low correlation cost
have a tendency to overestimate free space as can be
clearly seen from Figure 9 and also have a tendency to
model the extremities of the sensors as being occupied.
In our method, inputs are issued from stereo cameras,
the problem of sensor extremities does not exist. As
shown in Figure 9, the sensors extremities are modeled
as unoccupied. The problem of the overestimation of
the free space is due to the updating mechanisms. In
fact, according to (Collins et al. 2007), the Bayesian

Fig. 9. Illustrative occupancy grid maps generated during
experimentation of the di�erent mapping algorithm.
Environmental size: (15× 20 m2).

update makes the paradigm susceptible to �uctuations
in occupancy values when used in conjunction with an
approach that has a penchant for over estimation of
occupied/empty space. In our approach, we have used a
credibility based update method. To update the model,
we take into account, the age of the last observation and
the homogeneity of the current observation in a local
neighborhood. As shown in Figure 9, our update paradigm
don't su�er from free space over estimation problem.

5.2 Analysis of the map score results

A lower map score indicates a less of a di�erence between
the generated map and the theoretical map. Table I
(B) presents the results for the map score all metric.
As can be seen, our method has the best performance
achieving the lowest map score followed by Thrun's 2001
method and Konolige's 1997 method. The map score
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metric compares the generated maps with a theoretical
map. The reasons for this performance are the same
outlined for the correlation results. Table I (C) presents
the results for the map score occupied cells metric. Thrun's
2001 method achieved the best performance followed by
our method. This is because we use a relatively high
threshold to label a cell as occupied. In fact, the �rst
criteria to be satis�ed in our approach is the robustness
of the path. For this purpose, all the cells are initially
labeled as unknown. The status of a cell is modi�ed to
free or occupied only when we have su�cient data that
favor this change.

5.3 Analysis of the �false positives� results

Mapping approaches that have poor performance regard-
ing false positives metric are those that have a tendency
to update free-space too strongly (Collins et al. 2007).
Our approach achieved the �rst performance as shown in
Table I (key D) followed by Thrun's 2001 paradigm. This
is because the structure of the occupied space in maps
generated by the 1993, 1988 and 1985 paradigms cause
a number of inconsistent paths to be created due to the
tendency to render areas that reach past the occupied cells
to the extremity of the sensor beam as being unoccupied.
This subsequently causes the creation of possible paths on
either side of the correctly identi�ed environmental obsta-
cles, which are not possible in the actual environment.This
indicates that paths generated by our mapping system are
robust and usable.

5.4 Analysis of the �false negatives� results

The false positives benchmark was concerned with de-
termining the usability of the map as a basis for safe
robot navigation, this metric presents the percentage of
false negative paths in the map and is concerned with the
usability of the map as a basis for planning a path in the
real world environment. The false positives metric informs
about the number of paths that cannot be completed in
the generated map but can be completed in the theoretical
map. Table I (key E) shows that our approach achieved the
best performance giving the best map for path planning.

6. CONCLUSION

In this paper, a 2D map building algorithm is proposed
based on binocular stereo vision. The algorithm is highly
robust and meets the need of navigation in real envi-
ronment. An intrinsically uncertain 3D representation of
the environment based on error propagation is used. A
3D occupancy grid is used to model the environment.
A new update method based on a proposed credibility
value is used to update environment model. Finally, the
3D occupancy grid is scaled down to a 2D navigation
map. Experimental results have been reported to illustrate
the satisfactory performance of the proposed method. The
obtained maps were quite accurate in real environment
and permit to identify obstacles and free space.
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