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Abstract

Given a graph G = (V,E) and a positive integer k, the Proper Interval Completion

problem asks whether there exists a set F of at most k pairs of (V ×V ) \E such that the graph
H = (V,E ∪F ) is a proper interval graph. The Proper Interval Completion problem finds
applications in molecular biology and genomic research [16, 24]. First announced by Kaplan,
Tarjan and Shamir in FOCS ’94, this problem is known to be FPT [16], but no polynomial kernel
was known to exist. We settle this question by proving that Proper Interval Completion

admits a kernel with at most O(k3) vertices. Moreover, we prove that a related problem, the
so-called Bipartite Chain Deletion problem, admits a kernel with at most O(k2) vertices,
completing a previous result of Guo [13].

Introduction

The aim of a graph modification problem is to transform a given graph in order to get a certain
property Π satisfied. Several types of transformations can be considered: for instance, in vertex
deletion problems, we are only allowed to delete vertices from the input graph, while in edge
modification problems the only allowed operation is to modify the edge set of the input graph. The
optimization version of such problems consists in finding a minimum set of edges (or vertices) whose
modification makes the graph satisfy the given property Π. Graph modification problems cover
a broad range of NP-Complete problems and have been extensively studied in the literature [20,
23, 24]. Well-known examples include the Vertex Cover [8], Feedback Vertex Set [26], or
Cluster Editing [5] problems. These problems find applications in various domains, such as
computational biology [16, 24], image processing [23] or relational databases [25].

A natural approach to deal with such problems is to measure their difficulty with respect
to some parameter such as ,for instance, the number of allowed modifications. Parameterized
complexity provides a useful theoretical framework to that aim [10, 21]. A problem parameterized
by some integer k is said to be fixed-parameter tractable (FPT for short) whenever it can be solved
in time f(k) · nc for some constant c > 0, where n is the size of the instance (for problems on
graphs, usually, n is the number of vertices of the input graph). A natural parameterization for
graph modification problems thereby consists in the number of allowed transformations. As one of
the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have

∗Research supported by the AGAPE project (ANR-09-BLAN-0159).
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been extensively studied in the last decade (see [2] for a survey). A kernelization algorithm is a
polynomial-time algorithm (called reduction rules) that given an instance (I, k) of a parameterized
problem P computes an instance (I ′, k′) of P such that (i) (I, k) is a Yes-instance if and only
if (I ′, k′) is a Yes-instance and (ii) |I ′| ≤ h(k) for some computable function h() and k′ ≤ k.
The instance (I ′, k′) is called the kernel of P . We say that (I ′, k′) is a polynomial kernel if the
function h() is a polynomial. It is well-known that a decidable parameterized problem is FPT if
and only if it has a kernelization algorithm [21]. But this equivalence only yields kernels of super-
polynomial size. To design efficient fixed-parameter algorithms, a kernel of small size - polynomial
(or even linear) in k - is highly desirable [22]. However, recent results give evidence that not every
parameterized problem admits a polynomial kernel, unless NP ⊆ coNP/poly [3]. On the positive
side, notable kernelization results include a less-than-2k kernel for Vertex Cover [8], a 4k2 kernel
for Feedback Vertex Set [26] and a 2k kernel for Cluster Editing [5].

We follow this line of research with respect to graph modification problems. It has been shown
that a graph modification problem is FPT whenever Π is hereditary and can be characterized by
a finite set of forbidden induced subgraphs [4]. However, recent results proved that several graph
modification problems do not admit a polynomial kernel even for such properties Π [12, 18]. In this
paper, we are in particular interested in completion problems, where the only allowed operation is
to add edges to the input graph. We consider the property Π as being the class of proper interval
graphs. This class is a well-studied class of graphs, and several characterizations are known to
exist [19, 30]. In particular, there exists an infinite set of forbidden induced subgraphs that charac-
terizes proper interval graphs [30] (see Figure 1). More formally, we consider the following problem:

Proper Interval Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F of at most k pairs of (V ×V ) \E such that the graph H = (V,E ∪F ) is a proper
interval graph.

Interval completion problems find applications in molecular biology and genomic research [15,
16], and in particular in physical mapping of DNA. In this case, one is given a set of long contiguous
intervals (called clones) together with experimental information on their pairwise overlaps, and the
goal is to reconstruct the relative position of the clones along the target DNA molecule. We focus
here on the particular case where all intervals have equal length, which is a biologically important
case (e.g. for cosmid clones [15]). In the presence of (a small number of) unidentified overlaps, the
problem becomes equivalent to the Proper Interval Completion problem. It is known to be
NP-Complete for a long time [11], but fixed-parameter tractable due to a result of Kaplan, Tarjan
and Shamir in FOCS ’94 [16, 17]1. The fixed-parameter tractability of the Proper Interval

Completion can also be seen as a corollary of a characterization of Wegner [30] combined with
Cai’s result [4]. Nevertheless, it was not known whether this problem admits a polynomial kernel
or not.

Our results We prove that the Proper Interval Completion problem admits a kernel with
at most O(k3) vertices. To that aim, we identify nice parts of the graph that induce proper interval
graphs and can hence be safely reduced. Moreover, we apply our techniques to the so-called
Bipartite Chain Deletion problem, closely related to the Proper Interval Completion

problem where one is given a graph G = (V,E) and seeks a set of at most k edges whose deletion

1Notice also that the vertex deletion of the problem is fixed-parameter tractable [28].
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from E results in a bipartite chain graph (a graph that can be partitioned into two independent
sets connected by a join). We obtain a kernel with O(k2) vertices for this problem. This result
completes a previous result of Guo [13] who proved that the Bipartite Chain Deletion With

Fixed Bipartition problem admits a kernel with O(k2) vertices.

Outline We begin with some definitions and notations regarding proper interval graphs. Next,
we give the reduction rules the application of which leads to a kernelization algorithm for the
Proper Interval Completion problem. These reduction rules allow us to obtain a kernel with
at most O(k3) vertices. Finally, we prove that our techniques can be applied to Bipartite Chain

Deletion to obtain a quadratic-vertex kernel.

1 Preliminaries

1.1 Proper interval graphs

We consider simple, loopless, undirected graphs G = (V (G), E(G)) where V (G) denotes the vertex
set ofG and E(G) its edge set2. Given a vertex v ∈ V , we useNG(v) to denote the open neighborhood
of v and NG[v] = NG(v) ∪ {v} for its closed neighborhood. Two vertices u and v are true twins
if N [u] = N [v]. If u and v are not true twins but uv ∈ E, we say that a vertex of N [u] △ N [v]
distinguishes u and v. Given a subset of vertices S ⊆ V , NS(v) denotes the set NG(v) ∩ S and
NG(S) denotes the set (∪s∈SNG(s)) \ S. Moreover, G[S] denotes the subgraph induced by S, i.e.
G[S] = (S,ES) where ES = {uv ∈ E : u, v ∈ S}. A join in a graph G = (V,E) is a bipartition
(X,Y ) of G and an order x1, . . . , x|X| on X such that for all i = 1, . . . , |X|−1, NY (xi) ⊆ NY (xi+1).
The edges between X and Y are called the edges of the join, and a subset F ⊆ E is said to form a
join if F corresponds to the edges of a join of G. Finally, a graph is an interval graph if it admits a
representation on the real line such that: (i) the vertices of G are in bijection with intervals of the
real line and (ii) uv ∈ E if and only if Iu ∩ Iv 6= ∅, where Iu and Iv denote the intervals associated
to u and v, respectively. Such a graph is said to admit an interval representation. A graph is a
proper interval graph if it admits an interval representation such that Iu 6⊂ Iv for every u, v ∈ V .
In other words, no interval strictly contains another interval.
We will make use of the two following characterizations of proper interval graphs to design our
kernelization algorithm.

Theorem 1.1 (Forbidden subgraphs [30]). A graph is a proper interval graph if and only if it does
not contain any {hole, claw, net, 3-sun} as an induced subgraph (see Figure 1).

The claw graph is the bipartite graph K1,3. Denoting its bipartition by ({c}, {l1, l2, l3}), we call
c the center and {l1, l2, l3} the leaves of the claw.

Theorem 1.2 (Umbrella property [19]). A graph is a proper interval graph if and only if its vertices
admit an ordering σ (called umbrella ordering) satisfying the following property: given vivj ∈ E
with i < j then vivl, vlvj ∈ E for every i < l < j (see Figure 2).

In the following, we associate an umbrella ordering σG to any proper interval graph G = (V,E).
There are several things to remark. First, note that in an umbrella ordering σG of a graph G, every
maximal set of true twins of G is consecutive. Moreover, it is known [9] that σG is unique up to
permutation of true twins of G or by reversal of the ordering induced on a connected component of

2In all our notations, we forget the mention to the graph G whenever the context is clear.
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claw hole3−sun net

Figure 1: The forbidden induced subgraphs of proper interval graphs. A hole is an induced cycle
of length at least 4.

vi vl

σ

vj

Figure 2: Illustration of the umbrella property. The edge vivj is extremal. 3

G. Remark also that for any edge uv with u <σG
v, the set {w ∈ V : u ≤σG

w ≤σG
v} is a clique

of G, and for every i with 1 ≤ i < l, ({v1, . . . , vi}, {vi+1, . . . , vn}) is a join of G.
According to this ordering, we say that an edge uv is extremal if there does not exist any edge u′v′

different from uv such that u′ ≤σG
u and v ≤σG

v′ (see Figure 2).
Let G = (V,E) be an instance of Proper Interval Completion. A completion of G is a

set F ⊆ (V × V ) \ E such that the graph H = (V,E ∪ F ) is a proper interval graph. In a slight
abuse of notation, we use G+F to denote the graph H. A k-completion of G is a completion such
that |F | ≤ k, and an optimal completion F is such that |F | is minimum. We say that G = (V,E)
is a positive instance of Proper Interval Completion whenever it admits a k-completion. We
state a simple observation that will be very useful for our kernelization algorithm.

Observation 1.3. Let G = (V,E) be a graph and F be an optimal completion of G. Given an
umbrella ordering σ of G+ F , any extremal edge of σ is an edge of G.

Proof. Assume that there exists an extremal edge e in σ that belongs to F . By definition, σ is still
an umbrella ordering if we remove the edge e from F , contradicting the optimality of F .

1.2 Branches

We now give the main definitions of this Section. The branches that we will define correspond to
some parts of the graph that already behave like proper interval graphs. They are the parts of the
graph that we will reduce in order to obtain a kernelization algorithm.

Definition 1.4 (1-branch). Let B ⊆ V . We say that B is a 1-branch if the following properties
hold (see Figure 3):

3In all the figures, (non-)edges between blocks stand for all the possible (non-)edges between the vertices that lie
in these blocks, and the vertices within a gray box form a clique of the graph.
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(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \ B can be partitioned into two sets R and C with: no edges between B
and C, every vertex in R has a neighbor in B, no edges between {b1, . . . , bl−1} and R where
bl is the neighbor of b|B| with minimal index in σB, and for every l ≤ i < |B|, we have
NR(bi) ⊆ NR(bi+1).

We denote by B1 the set of vertices {v ∈ V : bl ≤σB
v ≤σB

b|B|}, which is a clique (because bl
is a neighbor of b|B|). This set is exactly the neighborhood of b|B| in B. We call B1 the attachment

clique of B, and use BR to denote B \B1.

R C

B1

bl b|B|b1
B

BR

Figure 3: A 1-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

Definition 1.5 (2-branch). Let B ⊆ V . We say that B is a 2-branch if the following properties
hold (see Figure 4):

(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \B can be partitioned into sets L,R and C with:

• no edges between B and C,

• every vertex in L (resp. R) has a neighbor in B,

• no edges between {b1, . . . , bl−1} and R where bl is the neighbor of b|B| with minimal index
in σB,

• no edges between {bl′+1, . . . , b|B|} and L where bl′ is the neighbor of b1 with maximal
index in σB and,

• NR(bi) ⊆ NR(bi+1) for every l ≤ i < |B| and NL(bi+1) ⊆ NL(bi) for every 1 ≤ i < l′.

Again, we denote by B1 (resp. B2) the set of vertices {v ∈ V : b1 ≤σB
v ≤σB

bl′} (resp.
{v ∈ V : bl ≤σB

v ≤σB
b|B|}). We call B1 and B2 the attachment cliques of B, and use BR to

denote B \ (B1 ∪B2). We assume that L 6= ∅ and R 6= ∅, otherwise B is a 1-branch. Finally, when
BR = ∅, it is possible that a vertex of L or R is adjacent to all the vertices of B. In this case, we
will denote by N the set of vertices that are adjacent to every vertex of B, remove them from R
and L and abusively still denote by L (resp. R) the set L \N (resp. R \N). We will precise when
we need to use the set N .

In both cases, in a 1- or 2-branch, whenever the proper interval graph G[B] is a clique, we say
that B is a K-join. Observe that, in a 1- or 2-branch B, for any extremal edge uv in σB, the set of
vertices {w ∈ V : u ≤σB

w ≤σB
v} defines a K-join. In particular, this means that a branch can
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bl′

B1 BR B2

L
b1 bl b|B|

R C

B

Figure 4: A 2-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

be decomposed into a sequence of K-joins. Observe however that the decomposition is not unique:
for instance, the K-joins corresponding to all the extremal edges of σB are not disjoint. We will
precise in Section 2.1.5, when we will reduce the size of 2-branches, how to fix a decomposition.
Finally, we say that a K-join is clean whenever its vertices are not contained in any claw or 4-cycle.
Remark that a subset of a K-join (resp. clean K-join) is also a K-join (resp. clean K-join).

2 Kernel for Proper Interval Completion

The basic idea of our kernelization algorithm is to detect the large enough branches and then to
reduce them. This section details the rules we use for that.

2.1 Reduction rules

2.1.1 Basic rules

We say that a rule is safe if when it is applied to an instance (G, k) of the problem, (G, k) admits
a k-completion if, and only if, the instance (G′, k′) reduced by the rule admits a k′-completion.

The first reduction rule gets rid of connected components that are already proper interval
graphs. This rule is trivially safe and can be applied in O(n + m) time using any recognition
algorithm for proper interval graphs [6].

Rule 2.1 (Connected components). Remove any connected component of G that is a proper interval
graph.

The following reduction rule can be applied since proper interval graphs are closed under true
twin addition and induced subgraphs. For a class of graphs satisfying these two properties, we
know that this rule is safe [1] (roughly speaking, we edit all the large set of true twins in the same
way). Furthermore, it is possible to compute every set of pairewise true twins using a modular
decomposition algorithm or more easily, partition refinement (see [14] for example).

Rule 2.2 (True twins [1]). Let T be a set of true twins in G such that |T | > k. Remove |T |−(k+1)
arbitrary vertices from T .

We also use the classical sunflower rule, allowing to identify a set of edges that must be added
in any optimal completion.

Rule 2.3 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of claws having two leaves u, v in
common but distinct third leaves. Add uv to F and decrease k by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

6



Lemma 2.1. Rule 2.3 is safe and can be carried out in polynomial time. More precisely, it is
possible to detect all the 4-cycles and claws of G in time O(n2m).

Proof. We only prove the first rule. The second rule can be proved similarly. Let F be a k-
completion of G and assume that F does not contain (u, v). Since any two claws in S only share
(u, v) as a common non-edge, F must contain one edge for every Ci, 1 ≤ i ≤ m. Since m > k,
we have |F | > k, which cannot be. Now, we brievely indicate how to compute all claws and the
4-cycles of G. For every edge xy of G, in time O(n), we compute the sets Nx = NG(x) \NG[y] and
Ny = NG(y) \ NG[x]. Each edge uv between Nx and Ny correspond to the 4-cycle xyvu. So, in
time O(m.(n + m)) (less than O(n2m)), we enumerate all the 4-cycles of G. On the other hand,
for every vertex x of G, we compute all the three cycle in Hx, the complementary of G[NG(x)],
what can be done in time O(n(Hx)m(Hx)) (for instance, by computing for every vertex y of Hx, a
breadh search tree rooted on y). This gives all the claws with center x. And, in all, we enumerate
all the claws of G in time O(n2m). Finaly, sparsing the claws and the 4-cycles, it is then easy to
detect the sunflowers.

2.1.2 Number of vertices in claws or 4-cycles

The general idea of our process is to reduce the size of the branches. However, we realized that is
not always possible, even for K-join. We will see that this problem is due to the presence of claws
or 4-cycles intersecting the branches. So, in this part, we give a bound of the number of vertices
belonging to these obstructions in a positive instance of Proper Interval Completion.

Lemma 2.2. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.3 has been applied. There are at most k2 claws with distinct sets of leaves, and at most
k2+2k vertices of G are leaves of claw. Furthermore, there are at most 2k2+2k vertices of G that
are vertices of a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, every claw or 4-cycle of G
has a non-edge that will be completed and then is an edge of F . Let xy be an edge of F . As we
have applied Rule 2.3 on G, there are at most k vertices in G that form the three leaves of a claw
with x and y. So, at most (k + 2)k vertices of G are leaves of claws. Similarly, there are at most
k non-edges of G, implying at most 2k vertices, that form a 4-cycle with x and y. So, at most
(2k + 2)k vertices of G are in a 4-cycle.

Lemma 2.3. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.2 and Rule 2.3 have been applied. There are at most 4k3 + 15k2 + 16k vertices of G that
belong to a claw or a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, there exists a set F of
at most k edges such that G + F is a proper interval graph and admits an umbrella ordering σ.
We contract all the set of true twins of G and denote by G′ the obtained graph. Remark that,
as Rule 2.2 has been applied on G, every contracted set has size at most k + 1. As G′ is also an
induced subgraph of G, we denote by σ′ the order induced by σ on G′.
Now, we define C to be the vertices of G′ which are center of a claw in G′, not incident to any edge
of F , are not contained in a 4-cycle neither a leaf of a claw. We sort this set according to σ′ and
denote by c1, . . . , cl its vertices in this order. As the vertices of C are not incident with edges of F ,
the edges incident with vertices of C respect the umbrella property.
We look for distinct vertices which distinguish the pairs of consecutive vertices of C. Remark that
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it is possible that two consecutive vertices of C, ci and ci+1 are twins, but not true twins. In this
case, we can identify all the neighbors of ci and ci+1. Indeed, assume that ci and ci+1 are not linked
but that they have same neighborhood. Then, ci has no neighbor x with x <σ′ ci, otherwise x is
also a neighbor of ci+1 and ci and ci+1 would be neighbors, by the umbrella property. As ci is not an
isolated vertex, it has at least one neighbor. So, let x be the neighbor of ci with maximal index in σ′.
As ci and ci+1 are not linked, then x <σ′ ci+1. So, let Y denotes the set {y ∈ G′ : x <σ′ y <σ′ ci+1}.
If Y 6= ∅, as x and ci+1 are linked by an edge, then Y is a set of neighbors of ci+1 and then a set of
neighbors of ci also, what contradicts the choice of x. So, Y = ∅, and ci+1 is the first non-neighbor
of ci after ci according to σ′. Similarly, ci is the last non-neighbor of ci+1 before ci+1 according to
σ′, and we conclude that NG′(ci) = NG′(ci+1) = {x ∈ G′ : ci <σ′ x <σ′ ci+1}. So, ci and ci−1

cannot be twins, so it is for ci+1 and ci+2. It means that we can remove at most half of ci and
obtain C ′ = {c′1, . . . , c

′
p} (with p ≥ l/2), a subset of C, sorted according to σ′, in which every pair

of consecutive vertices is not made of twins.
Now, let x be a vertex of G′. As no vertex of C ′ are incident to an edge of F , it means that the
neighborhood of x in C ′ is consecutive according to the order c′1, . . . , c

′
p. Then, x distinguishes at

most two pairs {c′i, c
′
i+1}, for 1 ≤ i ≤ p− 1 So, for 1 ≤ i ≤ p− 1, we choose di a vertex of G′ which

distinguishes c′i from c′i+1. If, amongst all the vertices of G′ which distinguishes c′i from c′i+1, one
is the leaf of a claw, we preferably choose it for di. As seen previously, it is possible that a vertex
has been chosen twice to be a vertex di, but no more than two times. So, the set {d1, . . . , dp−1}
contains at least (p − 1)/2 distinct vertices which we denote by d′1, . . . , d

′
q sorted according to σ′,

and with q ≥ (p− 1)/2 ≥ l/4− 1.
Now, for every i = 1, . . . , q, we will find a claw containing d′i as leaf. Assume that such a claw does
not exist, we will derive a contradiction. Without loss of generality, we can assume that we have
d′ic

′
j /∈ E(G′) and d′ic

′
j+1 ∈ E(G′), for some j with 1 ≤ j ≤ p− 1. By hypothesis, c′j+1 is the center

of a claw in G′. We denote by x, y and z the leaves of this claw. As d′i is not the leaf of a claw,
it is disjoint from {x, y, z}, and by the choice of d′i, no one of these vertices distinguishes c′j from
c′j+1. It means that c′j is linked to all vertices of {x, y, z}. If two elements of this set, say x and y,
are adjacent to d′i, then {x, d′i, y, c

′
j} forms a 4-cycle that contains c′j , which is not possible. So, at

least two elements among {x, y, z}, say x and y, are not adjacent to d′i and then, we find the claw
{c′j+1, x, y, d

′
i} of center c′j+1 that contains d′i, which is also not possible, by assumption.

Finally, for 1 ≤ i ≤ q every d′i is the leaf of a claw. So, by Lemma 2.2, we have q ≤ k2+2k. Then, we
conclude that l ≤ 4(k2+2k+1) and that G contains at most 4(k2+2k+1)(k+1) vertices which are
center of a claw. Finally, using Lemma 2.2 G contains at most 4(k2+2k+1)(k+1)+k2+2k+2k2+2k
vertices belonging to a claw or a 4-cycle.

Remark that, using Lemma 2.1, it possible to detect all the vertices of G which belongs to a
claws or a 4-cycle in time O(n2m).

2.1.3 Bounding the size of the clean K-joins

Now, we set a rule that will bound the number of vertices in a clean K-join, once applied. Although
quite technical to prove, this rule is the core tool of our process of kernelization. Remark that, if
we remove the vertices contained in a claw or a 4-cycle from a (general) K-join, we obtain a clean
K-join. So, by the result of the previous subsection, providing a bound on the size of the clean
K-joins will give a bound on the size of K-joins.

Rule 2.4 (K-join). Let B be a clean K-join of size at least 2k + 2, provided with an umbrella
ordering σB. Let BL be the k+1 first vertices of B (according to σB), BR be its k+1 last vertices

8



(according to σB) and M = B \ (BR ∪BL). Remove the set of vertices M from G.

Lemma 2.4. Rule 2.4 is safe.

Proof. LetG′ = G\M . Observe that the restriction toG′ of any k-completion ofG is a k-completion
of G′, since proper interval graphs are closed under induced subgraphs. So, let F be a k-completion
for G′. We denote by H the resulting proper interval graph G′ + F and by σH = h1, . . . , h|H| an
umbrella ordering of H. We prove that we can insert the vertices of M into σH and modify it if
necessary, to obtain an umbrella ordering for G without adding any edge (in fact, some edges of F
might even be deleted during the process). This will imply that G admits a k-completion as well.
To see this, we need the following structural description of G. As explained before, we denote by
N the set ∩b∈BNG(b) \ B, and abusively still denote by L (resp. R) the set L \ N (resp. R \ N)
(see Figure 5). We also denote by b1, . . . , b|B| the umbrella ordering σB of B.

Claim 2.5. The sets L and R are cliques of G.

Proof. We prove that R is a clique in G. The proof for L uses similar arguments. No vertex
of R is a neighbor of b1, otherwise such a vertex must be adjacent to every vertex of B and then
stands in N . So, if R contains two vertices u, v such that uv /∈ E, we form the claw {b|B|, b1, u, v}
with center b|B|, contradicting the fact that B is clean. ⋄

The following observation comes from the definition of a K-join.

Observation 2.6. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r). Similarly,
given any vertex l ∈ L, if NB(l) ∩BR 6= ∅ holds then M ⊆ NB(l).

BL

L R C

B

N

M BR

Figure 5: The structure of the K-join B.

We use these facts to prove that an umbrella ordering can be obtained for G by inserting the
vertices of M into σH . Let hf and hl be respectively the first and last vertex of B \M appearing
in σH . We let BH denote the set {u ∈ V (H) : hf ≤σH

u ≤σH
hl}. Observe that BH is a clique in

H since hfhl ∈ E(G) and that B \M ⊆ BH . Now, we modify σH by ordering the true twins in H
according to their neighborhood in M : if x and y are true twins in H, are consecutive in σH , verify
x <σH

y <σH
hf and NM (y) ⊂ NM (x), then we exchange x and y in σH . This process stops when

the considered true twins are ordered following the join between {u ∈ V (H) : u <σH
hf} and M .

We proceed similarly on the right of BH , i.e. for x and y consecutive twins with hl <σH
x <σH

y
and NM (x) ⊂ NM (y). The obtained order is clearly an umbrella ordering too (in fact, we just
re-labeled some vertices in σH), and we abusively still denote it by σH .

Claim 2.7. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪ M is a
clique of G.

9



Proof. Let u be any vertex of BH . We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So assume u /∈ B. Recall that BH is a clique in H. It follows that
u is adjacent to every vertex of B \ M in H. Since BL and BR both contain k + 1 vertices, we
have NG(u) ∩ BL 6= ∅ and NG(u) ∩ BR 6= ∅. Hence, u belongs to L ∪ N ∪ R and um ∈ E(G) by
Observation 2.6. ⋄

Claim 2.8. Let m be any vertex of M and σ′
H be the ordering obtained from σH by removing BH

and inserting m to the position of BH . The ordering σ′
H respects the umbrella property.

Proof. Assume that σ′
H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)

two vertices u and v of H \ BH such that either (1) u <σ′
H
v <σ′

H
m, um ∈ E(H) and uv /∈ E(H)

or (2) u <σ′
H

m <σ′
H

v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′
H

v <σ′
H

m, um ∈ E(H) and
vm /∈ E(H). First, assume that (1) holds. Since uv /∈ E(H) and σH is an umbrella ordering,
uw /∈ E(H) for any w ∈ BH , and hence uw /∈ E(G). This means that BL ∩ NG(u) = ∅ and
BR ∩ NG(u) = ∅, which is impossible since um ∈ E(G). Then, assume that (2) holds. Since
uv ∈ E(H) and σH is an umbrella ordering, BH ⊆ NH(u), and in particular BL and BR are
included in NH(u). As |BL| = |BR| = k + 1, we know that NG(u) ∩ BL 6= ∅ and NG(u) ∩ BR 6= ∅,
but then, Observation 2.6 implies that um ∈ E(G). So, (3) holds, and we choose the first u
satisfying this property according to the order given by σ′

H . So we have wm /∈ E(G) for any
w <σ′

H
u. Similarly, we choose v to be the first vertex after u satisfying vm /∈ E(G). Since

um ∈ E(G), we know that u belongs to L ∪ N ∪ R. Moreover, since vm /∈ E(G), v ∈ C ∪ L ∪ R.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that uhl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vhl ∈ E(H) and BH ⊆ NH(v). Since
|BL| = |BR| = k + 1, we know that NG(v) ∩ BL 6= ∅ and NG(v) ∩ BR 6= ∅. But, then
Observation 2.6 implies that vm ∈ E(G).

(ii) u ∈ R, v /∈ R: since um ∈ E(G), BR ⊆ NG(u). Let b ∈ BR be the vertex such that
BR ⊆ {w ∈ V : u <σH

w ≤σH
b}. Since ub ∈ E(G), this means that BR ⊆ NH(v). Now,

since |BR| = k + 1, it follows that NG(v) ∩ BR 6= ∅. Observation 2.6 allows us to conclude
that vm ∈ E(G).

(iii) u, v ∈ R: in this case, uv ∈ E(G) by Claim 2.7 but u and v are not true twins in H (otherwise
v would be placed before u in σH due to the modification we have applied to σH). This means
that there exists a vertex w ∈ V (H) that distinguishes u from v in H.
Assume first that w <σH

u and uw ∈ E(H), vw /∈ E(H). We choose the first w satisfying this
according to the order given by σH . There are two cases to consider. First, if uw ∈ E(G), then
since wm /∈ E(G) for any w <σH

u by the choice of u, {u, v, w,m} is a claw in G containing a
vertex of B (see Figure 6 (a) ignoring the vertex u′), which cannot be. So assume uw ∈ F . By
Observation 1.3, uw is not an extremal edge of σH . By the choice of w and since vw /∈ E(H),
there exists u′ with u <σH

u′ <σH
v such that wu′ is an extremal edge of σH (and hence

belongs to E(G), see Figure 6 (a)). Now, by the choice of v we have u′m ∈ E(G) and hence
u′ ∈ N ∪ R ∪ L. Observe that u′v /∈ E(G): otherwise {u′, v, w,m} would form a claw in G.
Since R is a clique of G, it follows that u′ ∈ L∪N . Moreover, since u′m ∈ E(G), BL ⊆ NG(u

′).
We conclude like in configuration (ii) that v should be adjacent to a vertex of BL and hence
to m.
Hence we can assume that all the vertices that distinguish u and v are after u in σH and that
uw′′ ∈ E(H) implies vw′′ ∈ E(H) for any w′′ <σH

u. Now, suppose that there exists w ∈ H
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such that hl <σH
w and uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v).

Since |BL| = k+1 we have NG(v)∩BL 6= ∅, implying vm ∈ E(G) by Observation 2.6. Assume
now that there exists a vertex w which distinguishes u and v with v <σH

w <σH
hf . In this

case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅, which cannot be
since u ∈ R. Finally, assume that there is w ∈ BH with wu /∈ E(H) and wv ∈ E(H). Recall
that wm ∈ E(G) as BH ∪ {m} is a clique by Claim 2.7. We choose w in BH distinguishing u
and v to be the last according to the order given by σH (i.e. vw′ /∈ E(H) for any w <σH

w′,
see Figure 6 (b), ignoring the vertex u′).

(a)

m

u vu′

(b)

w′w ∈ BH

m

u′u vw

Figure 6: (a) u and v are distinguished by some vertex w <σH
u; (b) u and v are distinguished by

a vertex w ∈ BH .

If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which cannot be.
Hence vw ∈ F and by the choice of w, there exists u′ ∈ V (H) such that u <σH

u′ <σH
v

and u′w is an extremal edge of σH (and then belongs to E(G)). By the choice of v we know
that u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in
H (if a vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would
distinguishes u and v, not between u and w because it would be adjacent to u′ and v, and not
after w, by choice of w). This leads to a contradiction since we assumed that NM (x) ⊆ NM (y)
for any true twins x and y with x <σH

y <σH
hf .

The cases where u ∈ L are similar, what concludes the proof of Claim 2.8 ⋄

Now, we will insert vertices of M into the graph H while preserving an umbrella ordering. For
simplicity, once one vertex of M is inserted into H, we still denote the obtained graph by H and
consider the new vertex as a vertex of H, for the next add. We then prove the following.

Claim 2.9. Let m be a vertex of M . Then m can be added to the graph H while preserving an
umbrella ordering.

Proof. Let m be a vertex of M and hi (resp. hj) be the vertex with minimal (resp. maximal)
index in σH such that him ∈ E(G) (resp. hjm ∈ E(G)). By definition, we have hi−1m /∈ E(G),
hj+1m /∈ E(G) and through Claim 2.8, we know that NH(m) = {w ∈ V (H) : hi ≤σH

w ≤σH
hj}.

Moreover, since BH ∪ M is a clique by Claim 2.7, it follows that hi−1 <σH
hf and hl <σH

hj+1.
Hence, by Claim 2.8, we know that hi−1hj+1 /∈ E(G), otherwise the ordering σ′

H defined in Claim 2.8
would not be an umbrella ordering. The situation is depicted in Figure 7 (a). For any vertex
v ∈ NH(m), letN−(v) (resp. N+(v)) denote the set of vertices {w ∈ V (H) : w ≤σH

hi−1 and wv ∈
E(H)} (resp. {w ∈ V (H) : w ≥σH

hj+1 and wv ∈ E(H)}). Observe that for any vertex

11



v ∈ NH(m), if there exist two vertices x ∈ N−(v) and y ∈ N+(v) such that xv ∈ E(G) and
yv ∈ E(G), then the set {v, x, y,m} defines a claw containing m in G, which cannot be. We now
consider chi−1

the neighbor of hi−1 with maximal index in σH . Similarly we let chj+1
be the neighbor

of hj+1 with minimal index in σH . Since hi−1hj+1 /∈ E(G), we have chi−1
, chj+1

∈ NH(m). We
study the behavior of chi−1

and chj+1
in order to conclude.

Assume first that chj+1
≤σH

chi−1
. Let X be the set of vertices {w ∈ V (H) : chj+1

≤σH

w ≤σH
chi−1

}. Remark that we have chi−1
≤σH

hl and hf ≤σH
chj+1

, otherwise for instance, if we
have chi−1

>σH
hl, then BH ⊆ NH(hi−1) implying, as usual, that hi−1m ∈ E(G) which is not. So,

we know that X ⊆ BH . Then, let X1 ⊆ X be the set of vertices x ∈ X such that there exists
w ∈ N+(x) with xw ∈ E(G) and X2 = X \X1. Let x ∈ X1: observe that by construction xw′ ∈ F
for any w′ ∈ N−(x). Similarly, given x ∈ X2, xw

′′ ∈ F for any w′′ ∈ N+(x). Now, we reorder the
vertices of X as follows: we first put the vertices from X2 and then the vertices from X1, preserving
the order induced by σH for both sets. Moreover, we remove from E(H) all edges between X1 and
N−(X1) and between X2 and N+(X2). Recall that such edges have to belong to F . We claim that
inserting m between X2 and X1 yields an umbrella ordering (see Figure 7 b). Indeed, by Claim 2.8,
we know that the umbrella ordering is preserved between m and the vertices of H \BH .

X2 X1

m

hi−1hi chj+1
chi−1

hj hj+1

(b)(a)

mhi−1hi hj hj+1

Figure 7: Illustration of the reordering applied to σH . The thin edges stand for edges of G. On the
left, the gray vertices represent vertices of X1 while the white vertex is a vertex of X2.

Now, remark that there is no edge between X1 and {w ∈ V (H) : w ≤σH
hi−1}, that there is

no edge between X2 and {w ∈ V (H) : w ≥σH
hj+1}), that there are still all the edges between

NH(m) and X1∪X2 and that the edges between X1 and {w ∈ V (H) : w ≥σH
hj+1} and the edges

between X2 and {w ∈ V (H) : w ≤σH
hi−1} are unchanged. So, it follows that the new ordering

respects the umbrella property, and we are done.
Next, assume that chi−1

<σH
chj+1

. We let chi
(resp. chj

) be the neighbor of hi (resp. hj)
with maximal (resp. minimal) index in NH(m). Notice that chi−1

≤σH
chi

and chj
≤σH

chj+1
(see

Figure 8). Two cases may occur:

(i) First, assume that chi
<σH

chj
, case depicted in Figure 8 (a). In particular, this means that

hihj /∈ E(G). If chi
and chj

are consecutive in σH , then inserting m between chi
and chj

yields
an umbrella ordering (since chj

(resp. chi
) does not have any neighbor before (resp. after) hi

(resp. hj) in σH). Now, if there exists w ∈ V (H) such that chi
<σH

w <σH
chj

, then one can
see that the set {m,hi, w, hj} forms a claw containing m in G, which is impossible.

(ii) The second case to consider is when chj
≤σH

chi
. In such a case, one can see that m and
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the vertices of {w ∈ V (H) : chj
≤σH

w ≤σH
chi

} are true twins in H ∪ {m}, because their
common neighborhood is exactly {w ∈ V (H) : hi ≤σH

w ≤σH
hj}. Hence, inserting m just

before chi
(or anywhere between chi

and chj
or just after chj

) yields an umbrella ordering.

chj+1
chj

hj+1hjhi−1hi chi−1
wchi

chj+1
bhi

hj+1hjhi−1hi chi−1
wchj

m

(b)(a)

m

Figure 8: The possible cases for chi−1
<σH

chj+1
.

⋄

As explained before, since the proof of Claim 2.9 does not use the fact that the vertices of H
do not belong to M , it follows that we can iteratively insert the vertices of M into σH , preserving
an umbrella ordering at each step. This concludes the proof of Lemma 2.4.

The complexity needed to compute Rule 2.4 will be discussed in the next section. The following
observation results from the application of Rule 2.4 and from Section 2.1.2.

Observation 2.10. Let G = (V,E) be a positive instance of Proper Interval Completion

reduced under Rules 2.2 to 2.4. Any K-join of G contains at most 2k + 2 vertices which are not
contained in any 4-cycle or claw of G.

Proof. Let B be any K-join of G, and X be the set of vertices of B which are contained in a 4-cycle
or a claw of G. As any subgraph of a K-join is a K-join, B \X is a clean K-join of G. Then, after
having applied Rule 2.4, we have |B \X| ≤ 2k + 2.

2.1.4 Cutting the 1-branches

We now turn our attention to branches of a graph G = (V,E), proving how they can be reduced.

Lemma 2.11. Let G = (V,E) be a connected graph which is a positive instance of Proper

Interval Completion, and let B be a 1-branch of G associated with the umbrella ordering σB.
Assume that |BR| ≥ 2k + 1 and let BL be the 2k + 1 last vertices of BR according to σB. Then,
there exists a k-completion F of G into a proper interval graph and a vertex b ∈ BL such that the
umbrella ordering of G+F preserves the order induced by σB on the set Bb = {w ∈ V (B) : b1 ≤σB

w ≤σB
bf}, where f is the maximal index in σB such that bbf ∈ E(G). Moreover, the vertices of

Bb are the first in an umbrella ordering of G+ F .

Proof. Let F be any k-completion of G, H = G+ F and σH be the umbrella ordering of H. Since
|BL| = 2k + 1 and |F | ≤ k, there exists a vertex b ∈ BL not incident to any added edge of F . We
let Nb be the set of neighbors of b that are after b in σB, Bb = {w ∈ V (B) : b1 ≤σB

w ≤σB
bf},

where f is the maximal index in σB such that bbf ∈ E(G) (i.e. bf is the last vertex of Nb), and
C = V \ Bb (see Figure 9, which depicts the case where bf ∈ B1, but bf ∈ BL is possible too).
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︸ ︷︷ ︸

B V \B

B1

b ∈ BL

B
R

bf

Bb

︸ ︷︷ ︸

C

Figure 9: The different sets to cut a 1-branch (the set Nb, not shown in figure, is made by vertices
lying under the edge bbf , including bf , not b).

Remark that, by the definition of the attachment clique B1 (which is B1 = NB(b|B|)), we have
B1 * Bb (because b is not a neighbor of b|B|) and then B ∩ C 6= ∅.

Claim 2.12. We have:
- (i) G[C] is a connected graph and
- (ii) Either for every vertex u of C we have b <σH

u or for every vertex u of C we have u <σH
b.

Proof. The first point follows from the fact that by definition of a 1-branch, every vertex of
V \B which has a neighbor in B is a neighbor of b|B| (which belongs to C). So, as G is connected,
every connected component of G[V \ B] contains a neighbor of b|B|. As, C ∩ B is a subset of the
attachement clique B1 and then linked to bB, we conclude that G[C] is a connected graph.
To see the second point, assume that there exist u, v ∈ C such that w.l.o.g. u <σH

b <σH
v. Since

G[C] is a connected graph, there exists a path between u and v in G that avoids NG[b], which is
equal to NH [b] since b is not incident to any edge of F . Hence there exist u′, v′ ∈ C, consecutive
along this path, such that u′ <σH

b <σH
v′ and u′v′ ∈ E(G). Then, as the neighborhood of b is

the same in G than in H, we have u′b, v′b /∈ E(H), contradicting the fact that σH is an umbrella
ordering for H. ⋄

In the following, up to reversing the order σH , we assume that b <σH
u holds for any u ∈ C.

We will then find Bb at the beginning of σH . We now consider the following ordering σ of H: we
first put the set Bb according to the order of B and then put the remaining vertices C according
to σH (see Figure 10). We construct a coresponding completion F ′ of G from F as follows: we
remove from F the edges with both extremities in Bb, and remove all edges between Bb \Nb and
C. In other words, we set:

F ′ = F \ (F [Bb ×Bb] ∪ F [(Bb \Nb)× C])

Finally, we inductively remove from F ′ any extremal edge of σ that belongs to F ′, and abusively
still call F ′ the obtained edge set.

Claim 2.13. The set F ′ is a k-completion of G.

Proof. We prove that σ is an umbrella ordering ofH ′ = G+F ′. Since |F ′| ≤ |F | by construction,
the result will follow. Assume this is not the case. By definition of F ′, H ′[Bb] and H ′[C] induce
proper interval graphs. This means that there exists a set of vertices S = {u, v, w}, u <σ v <σ w,
intersecting both Bb and C and violating the umbrella property. We either have (1) uw ∈ E, uv /∈ E
or (2) uw ∈ E, vw /∈ E. Since neither F ′ nor G contain an edge between Bb \Nb and C, it follows
that S intersects Nb and C. We study the different cases:

14



︸ ︷︷ ︸

C

σB[Bb] σH [C]

︸ ︷︷ ︸

Nb{bi ∈ B : bi ≤B b}

b

Figure 10: The construction of the ordering σ and the set F ′ (possible cut edges are from F ).

(i) (1) holds and u ∈ Nb, v, w ∈ C: since the edge set between Nb and C is the same in H
and H ′, it follows that uv /∈ E(H). Since σH is an umbrella ordering of H, we either have
v <σH

u <σH
w or v <σH

w <σH
u (recall that C is in the same order in both σ and σH).

Now, recall that b <σH
{v, w} by assumption. In particular, since bu ∈ E(G), this implies in

both cases that σH is not an umbrella ordering, what leads to a contradiction.

(ii) (1) holds and u, v ∈ Nb, w ∈ C: this case cannot happen since Nb is a clique of H ′.

(iii) (2) holds and u ∈ Nb, v, w ∈ C: this case is similar to (i). Observe that we may assume
uv ∈ E(H) (otherwise (i) holds). By construction of F ′, we have vw /∈ E(H) and hence
v <σH

w <σH
u or v <σH

u <σH
w. The former case contradicts the fact that σH is an

umbrella ordering since wu ∈ E(H). In the latter case, since σH is an umbrella ordering this
means that bv ∈ E(H) (as bu ∈ E(H) and v <σH

u <σH
w). Since b is non affected vertex

and v ∈ C, we have bv /∈ E(G), which leads to a contradiction.

(iv) (2) holds and u, v ∈ Nb, w ∈ C: first, if uw ∈ E(G), then we have a contradiction since
NC(u) ⊆ NC(v). So, we have uw ∈ F ′. By construction of F ′, we know that uw is not an
extremal edge. Hence there exists an extremal edge (of G) above uw, which is either uw′

with w <σ w′ , u′w with u′ <σ u or u′w′ with u′ <σ u <σ w <σ w′. The three situation are
depicted in Figure 11. In the first case, vw′ ∈ E(G) (since NC(u) ⊆ NC(v) in G) and hence
we are in configuration (i) with vertex set {v, w,w′}. In the second case, u′w ∈ E(G) and
vw /∈ E(G) are in contradiction with NC(u

′) ⊆ NC(v) in G (since u′ ∈ Bb). Finally, in the
third case, vw′ ∈ E(G) (since NC(u

′) ⊆ NC(v) in G), and we are in configuration (i) with
vertex set {v, w,w′}.

(a) (c)(b)

w ∈ Cv ∈ Nbu ∈ Nb v ∈ Nb w ∈ C w
′
∈ Cw

′
∈ Cv ∈ Nb w ∈ Cu ∈ Nb u

′
∈ Bb u

′
∈ Bb u ∈ Nb

Figure 11: Illustration of the different cases of configuration (iv) (the bold edges belong to F ′).

⋄
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Altogether, we proved that there exists a k-completion ofG associated with an umbrella ordering
where the vertices of Bb are ordered in the same way than in the ordering of B and stand at the
beginning of this ordering, what concludes the proof.

Rule 2.5 (1-branches). Let B be a 1-branch such that |BR| > 2k + 1. Remove BR \ BL from G,
where BL denotes the 2k + 1 last vertices of BR.

Lemma 2.14. Rule 2.5 is safe.

Proof. Let G′ = G \ (BR \ BL) denote the reduced graph. Observe that any k-completion of G
is a k-completion of G′ since proper interval graphs are closed under induced subgraphs. So let
F be a k-completion of G′. We denote by H = G′ + F the resulting proper interval graph and
let σH be the corresponding umbrella ordering. Without loss of generality, we assume that the
connected component of H containing BL is the first according to σH . Remark that B1∪BL forms
a 1-branch of G′, which we denote by B′. The umbrella ordering associated with B′ is induced by
σB. So, as previously, for a vertex b of BL, we denote {wV (B′) : b1 ≤σB′ w ≤σB′ bf} by Bb. By
Lemma 2.11 we know that there exists a vertex b ∈ BL such that the order of Bb in σH is the same
than in σB′ and the vertices of Bb are the first of σH . Since NG(B

R \BL) ⊆ Bb, it follows that the
vertices of BR \BL can be inserted into σH while respecting the umbrella property. Hence, F is a
k-completion for G, implying the result.

Here again, the time complexity needed to compute Rule 2.5 will be discussed in the next
section. The following property of a reduced graph will be used to bound the size of our kernel.

Observation 2.15. Let G = (V,E) be a positive instance of Proper Interval Completion

reduced under Rules 2.2 to 2.5. Every 1-branch of G contains at most 4k+3 vertices which are not
contained in any 4-cycle or claw of G.

Proof. Let B be a 1-branch of a graph G = (V,E) reduced under Rules 2.2 to 2.5. As B has been
reduced under Rule 2.5, we know that B \ B1 contains at most 2k + 1 vertices. Furthermore B1

forms a K-join of G, and then, by Observation 2.10, contains at most 2k+2 vertices which are not
contained in any 4-cycle or claw of G.

2.1.5 Cutting the 2-branches

We now focus on 2-branches of the graph and explain how to reduce them. Let (G, k) be an instance
of Proper Interval Completion and B = {b1, . . . , b|B|} be a 2-branch of G associated with the
umbrella ordering σB. Recall that the attachment cliques of B are B1 = {b ∈ V (B) : b1 ≤σB

b ≤σB
bl′}, where bl′ is the neighbor of b1 with maximal index in σB, and B2 = {b ∈ V (B) : bl ≤σB

b ≤σB
b|B|}), where bl is the neighbor of b|B| with minimal index in σB. Now, we define the next

cliques in the 2-branch B (see Figure 12), namely B′
1 = {b ∈ V (B) : bl′+1 ≤σB

b ≤σB
b
l̃′
}, where

b
l̃′
is the neighbor of bl′+1 with maximal index in σB, and B′

2 = {b ∈ V (B) : b
l̃
≤σB

b ≤σB
bl−1}),

where b
l̃
is the neighbor of bl−1 with minimal index in σB. Finaly, we denote by BM the set

B \ (B1∪B′
1∪B′

2∪B2). Remark that by definition, we have BR = B′
1∪BM ∪B′

2. Remark also that
BM could be empty if B is made with four K-join or less. However, we are interested in 2-branches
B with BM large enough, to reduce it.

Rule 2.6 (2-branches). Let G be a connected instance of Proper Interval Completion and

B be a 2-branch such that G[V \ BR] is not connected. Assume that |BM | ≥ 4k + 2 and let Bf
M

be the set of the 2k + 1 vertices after B′
1 according to σB and Bl

M be the set of the 2k + 1 vertices
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Figure 12: Applying Rule 2.6.

before B′
2 according to σB. Remove BM \ (Bf

M ∪ Bl
M ) from G (see Figure 12) and delete all the

edges between B′
1 ∪Bf

M and Bl
M ∪B′

2, if exist.

Lemma 2.16. Rule 2.6 is safe.

Proof. We denote by G′ the reduced graph, and first remark that G′ is no more a connected graph.
Indeed, by assumption G \ BR is not connected and we denote by G1 and G2 its two connected
components containing respectively B1 and B2. As B is a 2-branch, all the neighbors of G1 in B
stand in B′

1 (that is why we need B′
1). Similarly, all the neighbors of G2 in B stand in B′

2. As,

in G′ we have removed all the edges between B′
1 ∪Bf

M and Bl
M ∪B′

2, G
′
1 = G[G1 ∪B′

1 ∪Bf
M ] and

G′
2 = [Bl

M ∪B′
2 ∪G2] form two connected components of G′.

Now, observe that any k-completion of G induces a k-completion of G′. Indeed, since proper interval
graphs are closed under induced subgraphs, any k-completion of G induces a k1-completion of G′

1

and a k2-completion of G′
2 with k1+k2 ≤ k and then a k1+k2-completion of G′. Conversely, let F ′

be a k-completion of G′. We denote by F ′
1 (resp. F ′

2) the edges of F ′ the extremities of which lie

in G′
1 (resp. G′

2). Then, remark that B1 ∪B′
1 ∪Bf

M forms a 1-branch of G′
1 (and then of G′) with

attachment clique B1 and with |B′
1∪Bf

M | ≥ 2k+1 (that is why we need Bf
M ). So, by Lemma 2.11,

there exist a k1-completion F ′
1 of G′

1 with k1 ≤ |F1| and a vertex b1 ∈ B′
1 ∪ Bf

M such that Bb1 ,

which is the set of vertices of B′
1 ∪ Bf

M which are neighbors of b1 or lie after b1 according to σB,
is in the same order in σB than in an umbrella ordering of G′

1 + F ′
1, and say, at the end of this

ordering. Similarly, there exist a k2-completion F ′
2 of G′

2 with k2 ≤ |F2| and a vertex b2 ∈ B′
2 ∪Bl

M

such that Bb2 , which is the set of vertices of B′
2 ∪ B2

M which are neighbors of b2 or lie before b2
according to σB, is in the same order in σB than in an umbrella ordering of G′

2 + F ′
2, and say, at

the beginning of this ordering. Now, we can insert back the vertices and edges removed from G to
obtain G′. Indeed, as B is 2-branch, the neighbors of BM \ (Bf

M ∪Bl
M ) in G′

1∪G′
2 are in Bb1 ∪Bb2 ,

and similarly the removed edge between B′
1∪Bf

M and Bl
M ∪B′

2 have their extremities in Bb1 ∪Bb2 .
So, as Bb1 and Bb2 lie as in σB, we can put back the removed edges and vertices in order to obtain
a k′1 + k′2-completion of G, with k′1 + k′2 ≤ k.

The following observation bounds the number of vertices in a 2-branch of a positive instance of
Proper Interval Completion.

Observation 2.17. Let G = (V,E) be a connected positive instance of Proper Interval Com-

pletion, reduced under Rules 2.2 to 2.6, and B be a 2-branch of G such that G[C \ BR] is not
connected, where C is the connected component of G containing B. Then B contains at most
12k + 10 vertices which are not contained in any 4-cycle or claw of G.

17



Proof. Let B be a 2-branch of G,reduced under Rules 2.2 to 2.6, and C be the connected component
containing B. The sets B1, B

′
1, B

′
2 and B2 form four K-joins of G, and then by Observation 2.10,

they contain in all at most 4.(2k + 2) = 8k + 8 vertices which are not contained in any 4-cycle
or claw of G. Furthermore, if G[C \ BR] is not connected, then, as G is reduced under Rule 2.6,
B \ (B1 ∪B′

1 ∪B′
2 ∪B2) contains at most 4k+2 vertices, what provides the announced bound.

2.2 Detecting the branches

We now turn our attention to the complexity needed to compute reduction rules 2.4 to 2.6. Mainly,
we indicate how to obtain the maximum branches in order to reduce them. The detection of a
branch is straightforward except for the attachment cliques, where several choices are possible.
So, first, we detect the maximum 1-branches of G. Remark that for every vertex x of G, the set {x}
is a 1-branch of G. The next lemma indicates how to compute a maximum 1-branch that contains
a fixed vertex x as first vertex.

Lemma 2.18. Let G = (V,E) be a graph and x a vertex of G. In time O(nm), it is possible to
detect a maximum 1-branch of G containing x as first vertex.

Proof. To detect such a 1-branch, we design an algorithm which has two parts. Roughly speaking,
we first try to detect the set BR of a 1-branch B containing x. We set BR

0 = {x} and σ0 = x. Once
BR

i−1 has been defined, we construct the set Ci of vertices ofG\(∪i−1

l=1
BR

l ) that are adjacent to at least
one vertex of BR

i−1. Two cases can appear. First, assume that Ci is a clique and that it is possible
to order the vertices of Ci such that for every 1 6 j < |Ci|, we have NBR

i−1
(cj+1) ⊆ NBR

i−1
(cj) and

(NG(cj) \ B
R
i−1) ⊆ (NG(cj+1) \ B

R
i−1). In this case, the vertices of Ci correspond to a new K-join

of the searched 1-branch (remark that, along this inductive construction, there is no edge between
Ci and ∪i−2

l=1
BR

l ). So, we let BR
i = Ci and σi be the concatenation of σi−1 and the ordering defined

on Ci. In the other case, such an ordering of Ci can not be found, meaning that while detecting a
1-branch B, we have already detected the vertices of BR and at least one (possibly more) vertex of
the attachment clique B1 with neighbors in BR. Assume that the process stops at step p and let
C be the set of vertices of G \ ∪p

l=1
BR

l which have neighbors in ∪p
l=1

BR
l and B′

1 ⊆ BR
p be the set of

vertices that are adjacent to all the vertices of C. Remark that B′
1 6= ∅, as B′

1 contains at least the
last vertex of σp. We denote by BR the set (∪p

l=1
BR

l ) \B
′
1 and we will construct the largest K-join

containing B′
1 in G \BR which is compatible with σp, in order to define the attachment clique B1

of the desired 1-branch. The vertices of C are the candidates to complete the attachment clique.
On C, we define the following oriented graph: there is an arc from u to v if: uv is an edge of G,
NBR(v) ⊆ NBR(u) and NG\BR [u] ⊆ NG\BR [v]. This graph can be computed in time O(nm). Now,
it is easy to check that the obtained oriented graph is a transitive graph, in which the equivalent
classes are made of true twins in G. A path in this oriented graph corresponds, by definition, to a
K-join containing B′

1 and compatible with σp. As it is possible to compute a longest path in linear
time in this oriented graph, we obtain a maximum 1-branch of G that contains x as first vertex.

So, we detect all the maximum 1-branches of G in time O(n2m).
Now, to detect the 2-branches, we first detect for all pairs of vertices a maximum K-join with these
vertices as ends. More precisely, if {x, y} are two vertices of G linked by an edge, then {x, y} is a
K-join of G, with N = NG(x)∩NG(y), L = NG(x) \NG[y] and R = NG(y) \NG[x]. So, there exist
K-joins with x and y as ends, and we will compute such a K-join with maximum cardinality.

Lemma 2.19. Let G = (V,E) be a graph and x and y two adjacent vertices of G. It is possible to
compute in O(nm) time a maximum (in cardinality) K-join that admits x and y as ends.
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Proof. We denote NG[x]∩NG[y] by N , NG(x)\NG[y] by L and NG(y)\NG[x] by R. Let us denote
by N ′ the set of vertices of N that contains N in their closed neighborhood. The vertices of N ′ are
the candidates to belong to the desired K-join, and we can identify them in time O(n2). Now, we
construct on N ′ an oriented graph D, putting, for every vertices u and v of N ′, an arc from u to
v if: NG(v) ∩ L ⊆ NG(u) ∩ L and NG(u) ∩ R ⊆ NG(v) ∩ R. Basically, it could take a O(n) time
to decide if there is an arc from u to v or not, and so the whole oriented graph could be computed
in time O(n.|N ′|2). As N ′ is a clique of G, we have |N ′|2 = O(m). Now, it is easy to check that
the obtained oriented graph is a transitive graph in which the equivalent classes are made of true
twins in G. In this oriented graph, it is possible to compute a longest path from x to y in linear
time. Such a path corresponds to a maximal K-join that admits x and y as ends. It follows that
the desired K-join can be identified in O(nm) time.

Now, for every edge xy of G, we compute a maximum K-join that contains x and y as ends and
a reference to all the vertices that this K-join contains. This computation takes a O(nm2) time
and gives, for every vertex, some maximum K-joins that contain this vertex. These K-joins will
be useful to compute the 2-branches of G, in particular through the next lemma.

Lemma 2.20. Let B be a 2-branch of G with BR 6= ∅, and x a vertex of BR. Then, for every
maximal (by inclusion) K-join B′ that contains x there exists an extremal edge uv of σB such that
B′ = {w ∈ B : u ≤σB

w ≤σB
v}.

Proof. As usually, we denote by L, R and C the partition of G \ B associated with B and by σB
the umbrella ordering associated with B. Let B′ be a maximal K-join that contains x and define
by bf (resp. bl) the first (resp. last) vertex of B′ according to σB. As there is no edge between
{u ∈ B : u <σB

bf} ∪ L ∪ C and bl and no edge between {u ∈ B : bl <σB
u} ∪R ∪ C and bf , we

have B′ ⊆ {u ∈ B : bf ≤σB
u ≤ bl}. Furthermore, as {u ∈ B : bf ≤σB

u ≤ bl} is a K-join and
B′ is maximal, we have B′ = {u ∈ B : bf ≤σB

u ≤ bl}. Now, if bfbl was not an extremal edge of
σB, it would be possible to extend B′, contradicting the maximality of B′.

Now, we can detect the 2-branches B with a set BR non empty.

Lemma 2.21. Let G = (V,E) be a graph, x a vertex of G and B′ a given maximal K-join that
contains x. There is a O(nm) time algorithm to decide if there exists a 2-branch B of G which
contains x as a vertex of BR, and if it exists, to find a maximum 2-branch with this property.

Proof. By Lemma 2.20, if there exists a 2-branch B of G which contains x as a vertex of BR, then
B′ corresponds to a set {u ∈ B : bf ≤σB

u ≤σB
bl} where bfbl is an extremal edge of B. We

denote by L′, R′ and C ′ the usual partition of G \B′ associated with B′, and by σB′ the umbrella
ordering of B′. In G, we remove the set of vertices {u ∈ B′ : u <σB′ x} and the edges between
L′ and {u ∈ B′ : x ≤σB′ u} and denote by H1 the resulting graph. From the definition of the
2-branch B, {u ∈ B : x ≤σB

u} is a 1-branch of H1 that contains x as first vertex. So, using
Lemma 2.18, we find a maximal 1-branch B1 that contains x as first vertex. Remark that B1 has
to contain {u ∈ B : x ≤σB

u} ∩BR at its beginning. Similarly, we define H2 from G by removing
the vertex set {u ∈ B′ : x <σB′ u} and the edges between R′ and {u ∈ B′ : u ≤σB′ x}. We detect
in H2 a maximum 1-branch B2 that contains x as last vertex, and as previously, B2 has to contain
{u ∈ B : u ≤σB

x} ∩ BR at its end. So, B1 ∪ B2 forms a maximum 2-branch of G containing
x.

We would like to mention that it could be possible to improve the execution time of our detecting
branches algorithm, using possibly more involved techniques (as for instance, inspired from [7]).
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However, this is not our main objective here.
Anyway, using the O(n2m) time algorithm explained in Lemma 2.1 to localize all the 4-cycles and
the claws, we obtain the following result.

Lemma 2.22. Given a graph G = (V,E), the reduction rules 2.4 to 2.6 can be carried out in
polynomial time, namely in time O(nm(n+m)).

2.3 Kernelization algorithm

We are now ready to the state the main result of this Section. The kernelization algorithm consists
of an exhaustive application of Rules 2.1 to 2.6.

Theorem 2.23. The Proper Interval Completion problem admits a kernel with O(k3) ver-
tices, computable in time O(nm(n+m)).

Proof. Let G = (V,E) be a positive instance of Proper Interval Completion reduced under
Rules 2.1 to 2.6. Let F be a k-completion of G, H = G + F and σH be the umbrella ordering of
H. Since |F | ≤ k, G contains at most 2k affected vertices (i.e. incident to an added edge). Let
A = {a1 <σH

. . . <σH
ai <σH

. . . <σH
ap} be the set of such vertices, with p ≤ 2k. The size of the

kernel is due to the following observations, which we admit without proof (see Figure 13).

1−branch 1−branch 1−branch2−branch1−branch

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸︷︷︸︸ ︷︷ ︸ ︸︷︷︸

K-join K-join K-joinK-join

a1 a2 a7a6a5a4a3

Figure 13: Illustration of the size of the kernel. The figure represents the graph H = G + F , the
ai’s are the affected vertices, and the bold edges are edges of F .

Between two consecutive affected vertices ai and ai+1, the interval of vertices of G, denoted by
I, forms:

• Either a K-join, if I lies under an edge of F . For instance, on Figure 13, it corresponds
to intervals of vertices between a1 and a2, or between a3 and a4, or between a4 and a5 or
between a6 and a7. So, by Observation 2.10, we know that such a I contains at most 2k + 2
vertices which are not contained in any claw or 4-cycle of G.

• Either a 1-branch or two disjoint 1-branch. If I lies at the beginning or at the end of σH ,
then I forms a 1-branch (for instance, on Figure 13, it corresponds to intervals of vertices
before a1 or after a7). If I lies between two vertices ai and ai+1 which are respectively the last
(according to σH) of a connected component of G and the first (according to σH) of another
connected component of G, then I forms two disjoint 1-branches (for instance, on Figure 13,
it corresponds to the interval of vertices between a2 and a3). So, by Observation 2.15, we
know that such a I contains at most 2.(4k + 3) = 8k + 6 vertices which are not contained in
any claw or 4-cycle of G.

• Or a 2-branch, if I lies between two vertices ai and ai+1 which belongs to the same connected
component C of G and such that there is no edge of F standing above I. In this case the
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2-branch B forms by the vertices of I is such that G[C \ BR] is not connected, and then by
Observation 2.17, we know that I contains at most 12k+10 vertices which are not contained
in any claw or 4-cycle of G.

Finaly, as there is at most 2k+1 such intervals I, the graph H (and hence G) contains at most
(2k+1).(12k+10) vertices different from the ai’s and which are not contained in any claw or 4-cycle
of G. Moreover, by Lemma 2.2, there is at most 4k3 + 15k2 + 16k vertices of G contained in any
claw or 4-cycle. Alltogether, G contains at most 4k3 +15k2 +16k+ (2k+1).(12k+10)+ 2k+1 =
4k3 + 39k2 + 50k + 11 vertices, which implies the claimed O(k3) bound. The complexity directly
follows from Lemma 2.22.

3 A special case: Bi-clique Chain Completion

Bipartite chain graphs are defined as bipartite graphs whose parts are connected by a join. Equiv-
alently, they are known to be the graphs that do not admit any {2K2, C5,K3} as an induced
subgraph [31] (see Figure 14). In [13], Guo proved that the so-called Bipartite Chain Deletion

With Fixed Bipartition problem, where one is given a bipartite graph G = (V,E) and seeks
a subset of E of size at most k whose deletion from E leads to a bipartite chain graph, admits a
kernel with O(k2) vertices. We define bi-clique chain graph to be the graphs formed by two disjoint
cliques linked by a join. They correspond to interval graphs that can be covered by two cliques.
Since the complement of a bipartite chain graph is a bi-clique chain graph, this result also holds for
the Bi-clique Chain Completion With Fixed Bi-clique Partition problem. Using similar
techniques than in Section 2, we prove that when the bipartition is not fixed, both problems admit
a quadratic-vertex kernel. For the sake of simplicity, we consider the completion version of the
problem, defined as follows.

Bi-clique Chain Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F ⊆ (V ×V )\E of size at most k such that the graph H = (V,E∪F ) is a bi-clique
chain graph.

It follows from definition that bi-clique chain graphs do not admit any {C4, C5, 3K1} as an
induced subgraph, where a 3K1 is an independent set of size 3 (see Figure 14). Observe in particular
that bi-clique chain graphs are proper interval graphs, and hence admit an umbrella ordering.

2K2 K3 C5 C4 3K1

Figure 14: The forbidden induced subgraphs for bipartite and bi-clique chain graphs.

We provide a kernelization algorithm for the Bi-clique Chain Completion problem which
follows the same lines that the one in Section 2.
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Rule 3.1 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of 3K1 having two vertices u, v in
common but distinct third vertex. Add uv to F and decrease k by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

The following result is similar to Lemma 2.2.

Lemma 3.1. Let G = (V,E) be a positive instance of Bi-clique Chain Completion on which
Rule 3.1 has been applied. There are at most k2+2k vertices of G contained in 3K1’s. Furthermore,
there at most 2k2 + 2k vertices of G that are vertices of a 4-cycle.

We say that a K-join is simple whenever L = ∅ or R = ∅. In other words, a simple K-join
consists in a clique connected to the rest of the graph by a join. We will see it as a 1-branch which
is a clique and use for it the classical notation devoted to the 1-branch. Moreover, we (re)define
a clean K-join as a K-join whose vertices do not belong to any 3K1 or 4-cycle. The following
reduction rule is similar to Rule 2.4, the main ideas are identical, only some technical arguments
change. Anyway, to be clear, we give the proof in all details.

Rule 3.2 (K-join). Let B be a simple clean K-join of size at least 2(k + 1) associated with an
umbrella ordering σB. Let BL (resp. BR) be the k + 1 first (resp. last) vertices of B according to
σB, and M = B \ (BL ∪BR). Remove the set of vertices M from G.

Lemma 3.2. Rule 3.2 is safe and can be computed in polynomial time.

Proof. Let G′ = G \M . Observe that any k-completion of G is a k-completion of G′ since bi-clique
chain graphs are closed under induced subgraphs. So, let F be a k-completion for G′. We denote
by H = G′ + F the resulting bi-clique chain graph and by σH an umbrella ordering of H. We
prove that we can always insert the vertices of M into σH and modify it if necessary, to obtain an
umbrella ordering of a bi-clique chain graph for G without adding any edge. This will imply that
F is a k-completion for G. To see this, we need the following structural property of G. As usual,
we denote by R the neighbors in G \B of the vertices of B, and by C the vertices of G \ (R ∪B).
For the sake of simplicity, we let N = ∩b∈BNG(b) \ B, and remove the vertices of N from R. We
abusively still denote by R the set R \N , see Figure 15.

M BR

B

N CRBL

Figure 15: The K-join decomposition for the Bi-clique Chain Completion problem.

Claim 3.3. The set R ∪ C is a clique of G.

Proof. Observe that no vertex of R is a neighbor of b1, since otherwise such a vertex must be
adjacent to all the vertices of B and then must stand in N . So, if R ∪C contains two vertices u, v
such that uv /∈ E, we form the 3K1 {b1, u, v}, contradicting the fact that B is clean. ⋄

The following observation comes from the definition of a simple K-join.

Observation 3.4. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r).
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We use these facts to prove that an umbrella ordering of a bi-clique chain graph can be ob-
tained for G by inserting the vertices of M into σH . Let bf , bl be the first and last vertex of B \M
appearing in σH , respectively. We let BH denote the set {u ∈ V (H) : bf <σH

u <σH
bl}. Now, we

modify σH by ordering the twins in H according to their neighborhood in M : if x and y are twins
in H, are consecutive in σH , verify x <σH

y <σH
bf and NM (y) ⊂ NM (x), then we exchange x

and y in σH . This process stops when the considered twins are ordered following the join between
{u ∈ V (H) : u <σH

bf} and M . We proceed similarly on the right of BH , i.e. for x and y
consecutive twins with bl <σH

x <σH
y and NM (x) ⊂ NM (y). The obtained order is clearly an

umbrella ordering of a bi-clique chain graph too (in fact, we just re-labeled some vertices in σH ,
and we abusively still denote it by σH).

Claim 3.5. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪ M is a
clique of G.

Proof. Let u be any vertex of BH .We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So, assume that u /∈ B. By definition of σH , BH is a clique in H since
bfbl ∈ E(G). It follows that u is incident to every vertex of B \H in H. Since BL contains k + 1
vertices, it follows that NG(u)∩BL 6= ∅. Hence, u belongs to N∪R and um ∈ E by Observation 2.6.
⋄

Claim 3.6. Let m be any vertex of M and σ′
H be the ordering obtained from σH by removing BH

and inserting m to the position of BH . The ordering σ′
H respects the umbrella property.

Proof. Assume that σ′
H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)

two vertices u, v ∈ H \BH such that either (1) u <σ′
H
v <σ′

H
m, um ∈ E(H) and uv /∈ E(H) or (2)

u <σ′
H
m <σ′

H
v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′

H
v <σ′

H
m, um ∈ E(H) and vm /∈ E(H).

First, assume that (1) holds. Since uv /∈ E and σH is an umbrella ordering, uw /∈ E(H) for
any w ∈ BH , and hence uw /∈ E(G). This means that BR ∩ NG(u) = ∅, which is impossible
since um ∈ E(G). If (2) holds, since uv ∈ E(H) and σH is an umbrella ordering of H, we have
BH ⊆ NH(u). In particular, BL ⊆ NH(u) holds, and as |BL| = k + 1, we have BL ∩ NG(u) 6= ∅
and um should be an edge of G, what contradicts the assumption um /∈ E(H). So, (3) holds,
and we choose the first u satisfying this property according to the order given by σ′

H . So we have
wm /∈ E(G) for any w <σ′

H
u. Similarly, we choose v to be the first vertex satisfying vm /∈ E(G).

Since um ∈ E(G), we know that u belongs to N ∪ R. Moreover, since vm /∈ E(G), v ∈ R ∪ C.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that ubl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vbl ∈ E(H) and that BL ⊆ NH(v). Since
|BL| = k+1 we know that NG(v)∩BL 6= ∅ and hence v ∈ R. It follows from Observation 2.6
that vm ∈ E(G).

(ii) u ∈ R, v ∈ R ∪C: in this case uv ∈ E(G), by Claim 3.3, but u and v are not true twins in H
(otherwise v would be placed before u in σH due to the modification we have applied to σH).
This means that there exists a vertex w ∈ V (H) that distinguishes u from v in H.

Assume first that w <σH
u and that uw ∈ E(H) and vw /∈ E(H). We choose the first w

satisfying this according to the order given by σ′
H . Since vm,wm, vw /∈ E(H), it follows that

{v, w,m} defines a 3K1 of G, which cannot be since B is clean. Hence we can assume that
for any w′′ <σH

u, uw′′ ∈ E(H) implies that vw′′ ∈ E(H). Now, suppose that bl <σH
w and

uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v). Since |BL| = k + 1
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we have NG(v) ∩ BL 6= ∅, implying vm ∈ E(G) (Observation 2.6). Assume now that v <σH

w <σH
bf . In this case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅,

which cannot be since u ∈ R. Finally, assume that w ∈ BH and choose the last vertex w
satisfying this according to the order given by σ′

H (i.e. vw′ /∈ E(H) for any w <σH
w′ and

w′ ∈ BH). If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which
cannot be (recall that BH ∪ {m} is a clique of G by Claim 2.7). Hence vw ∈ F and there
exists an extremal edge above vw. The only possibility is that this edge is some edge u′w for
some u′ with u′ ∈ V (H), u <σH

u′ <σH
v and u′w ∈ E(G). By the choice of v we know that

u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in H (if a
vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would distinguish
u and v, and not before w, by choice of w). This leads to a contradiction because v should
have been placed before u through the modification we have applied to σH . ⋄

Claim 3.7. Every vertex m ∈ M can be added to the graph H while preserving an umbrella ordering.

Proof. Letm be any vertex ofM . The graphH is a bi-clique chain graph. So, we know that in its
associated umbrella ordering σH = b1, . . . , b|H|, there exists a vertex bi such that H1 = {b1, . . . , bi}
and H2 = {bi+1, . . . , b|H|} are two cliques of H linked by a join. We study the behavior of BH

according to the partition (H1, H2).

(i) Assume first that BH ⊆ H1 (the case BH ⊆ H2 is similar). We claim that the set H1∪{m} is a
clique. Indeed, let v ∈ H1 \BH : since H1 is a clique, BH ⊆ NH(v) and hence NG(v)∩BL 6= ∅.
In particular, this means that vm ∈ E(G) by Observation 3.4. Since BH ∪ {m} is a clique
by Claim 3.5, the result follows. Now, let u be the neighbor of m with maximal index in σH ,
and bu the neighbor of u with minimal index in σH . Observe that we may assume u ∈ H2

since otherwise NH(m) ∩ H2 = ∅ and hence we insert m at the beginning of σH . First, if
bu ∈ H1, we prove that the order σm obtained by inserting m directly before bu in σH yields
an umbrella ordering of a bi-clique chain graph. Since H1 ∪ {m} is a clique, we only need to
show that NH2

(v) ⊆ NH2
(m) for any v ≤σm bu and NH2

(m) ⊆ NH2
(w) for any w ∈ H2 with

w ≥σm bu. Observe that by Claim 3.6 the set {w ∈ V : m ≤σm w ≤σm u} is a clique. Hence
the former case holds since vu′ /∈ E(G) for any v ≤σm bu and u′ ≥σm u. The latter case also
holds since NH(m) ⊆ NH(bu) by construction. Finally, if bu ∈ H2, then bu = b|H1|+1 since H2

is a clique. Hence, using similar arguments one can see that inserting m directly after b|H1| in
σH yields an umbrella ordering of a bi-clique chain graph.

(ii) Assume now that BH ∩H1 6= ∅ and BH ∩H2 6= ∅. In this case, we claim that H1 ∪ {m} or
H2∪{m} is a clique in H. Let u and u′ be the neighbors of m with minimal and maximal index
in σH , respectively. If u = b1 or u′ = b|H| then Claims 3.5 and 3.6 imply that H1 ∪ {m} or
H2∪{m} is a clique and we are done. So, none of these two conditions hold and mb1 /∈ E(H)
and mb|H| /∈ E(H) Then, by Claim 3.6, we know that b1b|H| and the set {b1, b|H|,m} defines
a 3K1 containing m in G, which cannot be. This means that we can assume w.l.o.g. that
H1 ∪ {m} is a clique, and we can conclude using similar arguments than in (i).

⋄

Since the proof of Claim 3.7 does not use the fact that the vertices of H do not belong to M , it
follows that we can iteratively insert the vertices of M into σH , preserving an umbrella ordering at
each step. To conclude, observe that the reduction rule can be computed in polynomial time using
Lemma 2.19.
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Observation 3.8. Let G = (V,E) be a positive instance of Bi-clique Chain Completion

reduced under Rule 3.2. Any simple K-join B of G has size at most 3k2 + 6k + 2.

Proof. Let B be any simple K-join of G, and assume |B| > 3k2 + 6k + 2. By Lemma 3.1 we know
that at most 3k2 +2k vertices of B are contained in a 3K1 or a 4-cycle. Hence B contains a set B′

of at least 2k+3 vertices not contained in any 3K1 or a 4-cycle. Now, since any subset of a K-join
is a K-join, it follows that B′ is a clean simple K-join. Since G is reduced under rule 3.2, we know
that |B′| ≤ 2(k + 1) what gives a contradiction.

Finally, we can prove that Rules 3.1 and 3.2 form a kernelization algorithm.

Theorem 3.9. The Bi-clique Chain Completion problem admits a kernel with O(k2) vertices.

Proof. Let G = (V,E) be a positive instance of Bi-clique Chain Completion reduced under
Rules 3.1 and 3.2, and F be a k-completion for G. We let H = G+F and H1, H2 be the two cliques
of H. Observe in particular that H1 and H2 both define simple K-joins. Let A be the set of affected
vertices of G. Since |F | ≤ k, observe that |A| ≤ 2k. Let A1 = A ∩H1, A2 = A ∩H2, A

′
1 = H1 \A1

and A′
2 = H2 \ A2 (see Figure 16). Observe that since H1 is a simple K-join in H, A′

1 ⊆ H1 is a
simple K-join of G (recall that the vertices of A′

1 are not affected). By Observation 3.8, it follows
that |A′

1| ≤ 3k2 + 6k + 2. The same holds for A′
2 and H contains at most 2(3k2 + 6k + 2) + 2k

vertices.

H1 H2

A′
1 A′

2

Figure 16: Illustration of the bi-clique chain graph H. The square vertices stand for affected
vertices, and the sets A′

1 = H1 \A1 and A′
2 = H2 \A2 are simple K-joins of G, respectively.

Corollary 3.10. The Bipartite Chain Deletion problem admits a kernel with O(k2) vertices.

4 Conclusion

In this paper we prove that the Proper Interval Completion problem admits a kernel with
O(k3) vertices. Two natural questions arise from our results: firstly, does the Interval Com-

pletion problem admit a polynomial kernel? Observe that this problem is known to be FPT
not for long [29]. The techniques we developed here intensively use the fact that there are few
claws in the graph, what help us to reconstruct parts of the umbrella ordering. Of course, these
considerations no more hold in general interval graphs. The second question is: does the Proper

Interval Edge-Deletion problem admit a polynomial kernel? Again, this problem admits a
fixed-parameter algorithm [27], and we believe that our techniques could be applied to this prob-
lem as well. Finally, we proved that the Bi-clique Chain Completion problem admits a kernel
with O(k2) vertices, which completes a result of Guo [13]. In all cases, a natural question is thus
whether these bounds can be improved?
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