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Sum-Max Graph Partitioning Problem?

R. Watrigant, M. Bougeret, R. Giroudeau, and J.-C. König

LIRMM-CNRS-UMR 5506-161, rue Ada 34090 Montpellier, France

Abstract. In this paper we consider the classical combinatorial opti-
mization graph partitioning problem, with Sum-Max as objective func-
tion. Given a weighted graph G = (V,E) and a integer k, our objective
is to find a k-partition (V1, . . . , Vk) of V that minimizes

∑k−1
i=1

∑k
j=i+1

maxu∈Vi,v∈Vj w(u, v), where w(u, v) denotes the weight of the edge
{u, v} ∈ E. We establish the NP-completeness of the problem and its
unweighted version, and the W [1]-hardness for the parameter k. Then,
we study the problem for small values of k, and show the membership in
P when k = 3, but the NP-hardness for all fixed k ≥ 4 if one vertex per
cluster is fixed. Lastly, we present a natural greedy algorithm with an
approximation ratio better than k

2
, and show that our analysis is tight.

1 Introduction

1.1 Description of the Problem

Graph partitioning problems are classical combinatorial optimization problems,
where the objective is to partition vertices of a given graph into k clusters, ac-
cording to one or several criteria. In this article we focus on minimizing the sum
of the heaviest edge between each pair of clusters. More formally, we study the
following optimization problem:

sum-max graph partitioning
Input: a connected graph G = (V,E), w : E → N, k ≤ |V |
Output: a k-partition (V1, ..., Vk) of V with Vi 6= ∅ ∀i = 1, ..., k

Goal: minimize
k∑

i,j=1
i>j

max
u∈Vi
v∈Vj

w(u, v)

We denote by U-sum-max graph partitioning the unweighted version of
the problem, where w(e) = 1 ∀e ∈ E. The threshold value for the associated
decision versions will be denoted by C.

All graphs studied here are supposed to be simple, non oriented and con-
nected, unless otherwise stated. For a graph G = (V,E), we define n = |V | and
m = |E|.
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1.2 Related Work

Graph partitioning problems are the heart of many practical issues, especially
for applications where some items must be grouped together, as in the design of
VLSI layouts [11], clustering of social and biological networks [12], or software
re-modularization [16]. Because of the wide range of applications, several con-
straints and objective functions are considered. For instance, one can fix some
vertices in clusters (like in the multicut problem), force equal-sized clusters
etc., while optimizing (minimizing or maximizing) the sum of all edge weights
between each pair of clusters (like in min-k-cut and max-k-cut), the sum of
the edge weights (or the heaviest one) inside each cluster [8], or optimizing the
cut ratio [12]. Some studies generalize many of these problems though one nat-
ural formalization: [7] gives computational lower bounds when the objective is
to maximize some function over the inner edges of the clusters, [10] designs an
O∗(2n) algorithm for a whole class of partition problems such as max-k-cut,
k-domatic partition or k-colouring, and [3] defines the M-partitioning
problem where the objective is to find a partition of the vertices respecting some
constraints defined by a matrix M .

From a practical point of view, several heuristics for solving graph parti-
tioning problems have been designed (some of them are surveyed in [14]) us-
ing many different techniques, as for example hierarchical algorithms, meta-
heuristics, spectral methods or modular decomposition.

Concerning complexity and approximation results, to the best of our knowl-
edge sum-max graph partitioning has still not been studied directly. Among
all of the previous problems, the two most relevant seem to be min-k-cut (for
sum-max graph partitioning) and M-partitioning (for U-sum-max graph
partitioning).

The only difference between sum-max graph partitioning and min-k-
cut is that the contribution of a pair of clusters is no longer the sum of all edge
weights, but the heaviest one between these two clusters. min-k-cut is NP-hard
when k is part of the input [5], but polynomial for every fixed k, with a O(nk

2

)
algorithm [6]. It is also W [1]-hard for the parameter k [1], and there are several
approximation algorithms, with ratios smaller than 2 [13]. Even if min-k-cut
and sum-max graph partitioning seem related, it is not straightforward to di-
rectly re-use exact or approximation algorithms for min-k-cut for our problem.
Indeed, optimal solutions may have very different structure, as the number of
edges between two clusters does not matter for sum-max graph partitioning.

On the other hand, U-sum-max graph partitioning is related to the prob-
lem of finding an homomorphism from a given graph G to a fixed pattern graph
H [9], or equivalently to the M-partitioning problem [3] (with 1’s on the diag-
onal of the matrix M , and 0’s and 1’s elsewhere using notations of [3]). Indeed,
given an input (G, k) of U-sum-max graph partitioning, the objective of our
problem is to find the smallest graph H (in terms of number of edges) with k ver-
tices such that G is homomorphic to H. However, as one could expect targeting
a fixed graph H with m∗ edges may be harder than constructing any k partition



of cost m∗. Thus, as discussed in details in Section 2.2, it will not be possible to
directly use graph homomorphism to solve U-sum-max graph partitioning.

1.3 Our Contributions

We show the following complexity results for sum-max graph partitioning:

– when k is part of the input, the problem and its unweighted variant are:
• NP-hard (and even k

k−1 non-approximable),
• W [1]-hard for the parameter k,

– for fixed k = 3, the problem is solvable in polynomial time,
– for fixed k ≥ 4, the problem is NP-hard if we fix one vertex per cluster in

the input.

Then, we consider a natural greedy algorithm and prove that its approxima-
tion ratio is better than k/2, and that the analysis is tight.

This article is organized as follows: the next section is devoted to the com-
putational complexity of the general and restricted cases (with small values of
k), while Section 3 is devoted to approximability.

2 Computational Complexity

In this section, we study the complexity of the problem and some variants. We
prove that when k is part of the input, the problem and its unweighted version
are NP-hard, and W [1]-hard for the parameter k. The reduction used also leads
to an non-approximability bound. Then, we investigate the complexity for small
values of k, and show that it is polynomial for k = 3, but NP-hard (even in the
unweighted case) for all fixed k ≥ 4 if we fix one vertex per cluster.

2.1 Hardness of sum-max graph partitioning

Theorem 1. U-sum-max graph partitioning is NP-hard, and cannot be
approximated within a factor ρ < k

k−1 (unless P = NP).

Proof. We reduce from the well-known NP-hard problem independent set.
Let G = (V,E) and k ≤ |V | be an instance of independent set. We construct
the following instance of U-sum-max graph partitioning: G′ = (V ′, E′) is a
copy of G plus a universal vertex α, (i.e. α is connected to each vertex of G).
We define the number of clusters k′ = k+1 and the cost of the desired partition
C ′ = k. This construction can clearly be computed in polynomial time.

• Let S = {s1, ..., sk} be an independent set of size k in G, with si ∈ V for all
i ∈ {1, ..., k}. We construct the following k′-partition of V ′:
• for all i ∈ {1, ..., k}, we define Vi = {si}
• Vk+1 = V ′\S



Since every pair of clusters in {V1, ..., Vk} is not adjacent, and since the set
Vk+1 contains the vertex α which is connected to every other vertices, we
have

∑k′
i,j=1
i>j

maxu∈Vi
v∈Vj

w(u, v) = k = C ′

• Suppose now that G does not contain an independent set of size at least
k and let (V1, ..., Vk+1) be any k′-partition of G′. W.l.o.g., suppose that
α ∈ Vk+1. Since α is a universal vertex, the contribution of Vk+1 is k.
Then, as the size of the maximum independent set is strictly lower than
k, at least one pair of clusters among (V1, ..., Vk) is adjacent. Thus, we have∑k′

i,j=1
i>j

maxu∈Vi
v∈Vj

w(u, v) ≥ k + 1,

which completes the NP-hardness proof. Moreover, notice that the previous
reduction is a gap introducing reduction, where the gap between YES and NO
instances is k

k−1 , leading to the non-approximability result.

Corollary 1. sum-max graph partitioning is NP-hard.

Moreover, notice that the polynomial-time transformation given in Theorem
1 is also an FPT reduction [4] from independent set parameterized by k
(which is a known W [1]-hard problem) to U-sum-max graph partitioning
parameterized by the number of clusters. Indeed, the output parameter is clearly
polynomial in the input parameter (k′ = k + 1), and the reduction can be
computed in polynomial time. Thus, we deduce the following proposition.

Proposition 1. sum-max graph partitioning (and its unweighted version)
parameterized by the number of clusters is W [1]-hard.

2.2 Analysis of the Problem for Small k Values

Enumerating Patterns Given the NP-hardness of the problem when k is part
of the input, it is natural to investigate the complexity of the problem for some
small values of k.

Theorem 2. sum-max graph partitioning is polynomial if k = 3.

Proof. Let G = (V,E) be a graph. The principle of the following algorithm is
to enumerate all pairs (or triplets) of edges in order to find the heaviest edges
between the clusters in an optimal solution (i.e. edges that will be taken into
account in the solution value). Thus, for each fixed pairs (or triplets) of edges
the algorithm tries to arrange all remaining vertices in clusters without changing
the solution value.

Let us now distinguish two cases: one where an optimal solution contains
only two edges between the clusters (the partition forms a path over the three
clusters), and one where any optimal solution contains three edges (the partition
forms a clique over the three clusters). Let (V1, V2, V3) be the partition we are
building, and (V ∗1 , V

∗
2 , V

∗
3 ) an optimal solution.



First case: one optimal solution contains only two edges Let us first assume
that we know the two edges e∗a and e∗b that are taken into account in the opti-
mal solution value (as depicted in Figure 1a). Let a be the weight of the edge
e∗a = {a1, a2} between V ∗1 and V ∗2 , and b be the weight of the edge e∗b = {b1, b2}
between V ∗2 and V ∗3 . Notice that four cases are possible, depending of the ori-
entation of e∗a and e∗b (for example a1 could be in V ∗1 or V ∗2 ). We assume that
ai ∈ V ∗i and bi ∈ V ∗i+1, and thus the algorithm will have to enumerate these
four cases. Without loss of generality, we suppose a ≤ b. In the first step, the
algorithm mimics the optimal solution and adds a1 to V1, a2 and b1 to V2, and
b2 to V3. Let S1 (resp. S3) be the set of all vertices reachable from V1 (resp.
V3) using edges of weight strictly greater than a (resp. b). As the cost of the
considered optimal solution is a + b, we know that (1) S1 ⊂ V ∗1 and S3 ⊂ V ∗3 ,
(2) S1 ∩S3 = ∅ and (3) there is no edge between S1 and S3. Thus, in the second
step the algorithm adds S1 to V1 and S3 to V3.

Finally, the algorithm assigns all remaining vertices to V2. It is easy to see
that this strategy will not create any forbidden edge (i.e. edge that increases the
weight of the maximum edge between two clusters), as the remaining vertices
were not adjacent to any vertex of V1 (resp. V3) using edges of weight strictly
greater than a (resp. b).

Second case: any optimal solution contains three edges Here again suppose that
we know the three edges e∗a, e∗b and e∗c that are taken into account in an optimal
solution value (as depicted in Figure 1b). As before, we assume a fixed orientation
of the guessed edges, to the price of the enumeration of a fixed number of cases.
Let a be the value of the edge e∗a = {a1, a2} between V ∗1 and V ∗3 (where a1 ∈ V ∗1 ,
a2 ∈ V ∗3 ), b be the value of the edge e∗b = {b1, b2} between V ∗1 and V ∗2 (where
bi ∈ V ∗i ), and c be the value of the edge e∗c = {c1, c2} between V ∗2 and V ∗3 (where
ci ∈ V ∗i+1). Without loss of generality, we suppose a ≤ b ≤ c.

Again, in the first step, the algorithm mimics the optimal solution and adds
a1 and b1 to V1, b2 and c1 to V2, and a2 and c2 to V3. Let S1 (resp. S3) be the
set of vertices reachable from V1 (resp. V3) using edges of weight strictly greater
than b (resp. c). Using the same kind of arguments, we know that (1) Si ⊂ V ∗i
(for i ∈ {1, 3}), (2) S1 ∩ S3 = ∅ and (3) there is no edge between S1 and S3 of
weight strictly larger than a. Thus, we add Si to Vi.

Finally, the algorithm assigns all remaining vertices to V2. As before, it is
straightforward to see that this will not create any forbidden edge.

Overall complexity The overall algorithm consists in re-executing the previous
routine for any pair and any triplet of edges, taking the best execution. Thus,
the overall complexity is clearly polynomial, with a main factor in O(m3) due
to the enumeration.

A natural way to solve the problem would be to extend the previous algo-
rithm by enumerating all edges between clusters (or all k-uplets of vertices),
and then arranging the remaining vertices using the same kind of "dominating
rules". Moreover, the corresponding complexity (in Ω(nf(k))) would be satisfy-
ing, as the problem is W [1]-hard. Here we show that this strategy is hopeless
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a = {a1, a2} between V ∗
1 and V ∗

3 (where
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1 , a2 ∈ V ∗
3 ), b be the value of the edge e∗

b = {b1, b2} between V ∗
1 and V ∗

2 (where bi ∈ V ∗
i ),

and c be the value of the edge e∗
c = {c1, c2} between V ∗

2 and V ∗
3 (where ci ∈ V ∗

i+1). Without loss of
generality, we suppose a ≤ b ≤ c.
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Fig. 1: Illustration of the polynomial algorithm for k = 3. Bold arrows represent
assignments to clusters. (1a): One optimal solution contains 2 edges (1b): Any
optimal solution contains 3 edges

(even for the unweighted case), because of the NP-hardness of the following
problem (the proof is available in [15]):

sum-max graph partitioning with fixed vertices
Input: a graph G = (V,E), w : E → N, k ≤ |V |, C ∈ N, a set {v1, ..., vk} ⊆ V
Question: Is there a k-partition (V1, ..., Vk) of V such that

∑k
i,j=1
i>j

maxu∈Vi
v∈Vj

w(u, v) ≤ C and vi ∈ Vi ∀i ∈ {1, ..., k}?

Proposition 2. sum-max graph partitioning with fixed vertices (and
its unweighted version) is NP-hard for all fixed k ≥ 4.

Link with Graph Homomorphisms As said before, U-sum-max graph
partitioning is related to the problem of finding an homomorphism between a
graph G (our input) and a fixed graph H that has k vertices1.

Indeed, the existence of a k-partition of cost C for a given graph G implies
that there exists an homomorphism from G to some graph with k vertices and
C edges. Conversely, an homomorphism from G to a graph H with k vertices
and C edges implies that there exists a k-partition of cost at most C.

Let us now recall the list-graph homomorphism to H (L-HOMH) prob-
lem [2], given a fixed pattern graph H = (VH , EH):

list-graph homomorphism to H
Input: a graph G = (VG, EG) and for all v ∈ VG, a list L(v) ⊆ VH
Question: Is there a graph homomorphism h : VG → VH such that for all v ∈ VG
h(v) ⊆ L(v) ?

1 recall that G = (VG, EG) is homomorphic to H = (VH , EH) iff there is a function
h : VG → VH such that for all {u, v} ∈ EG, {f(u), f(v)} ∈ EH



Thus, U-sum-max graph partitioning is related to a special case of L-
HOMH, where all lists are equal to VH .

In [2], the authors study a variant of L-HOMH, called one or all list
homomorphism to H (OAL-HOMH), where for all v ∈ VG, L(v) is either a
singleton or VH . Thus, U-sum-max graph partitioning with fixed ver-
tices consists in finding the minimum k vertices graph H (in terms of number
of edges) such that G is homomorphic to H, with singletons for vertices that are
fixed, and VH for others.

It is clear that a polynomial algorithm for OAL-HOMH would imply a
O(nf(k)) algorithm for U-sum-max graph partitioning (by enumerating all
possible patterns for any possible value of the optimal). Unfortunately, the au-
thors show that depending on the shape of H, OAL-HOMH (and thus HOMH)
can be NP-hard. More formally, they show that OAL-HOMH is NP-hard if
H contains a chord-less cycle of size k ≥ 4 as an induced sub-graph, and is
polynomial otherwise. Actually, it appears that the reduction presented in [2] is
very close to our proof of Proposition 2.

3 A Polynomial-Time Approximation Algorithm

In this section we consider a simple greedy algorithm for sum-max graph par-
titioning and prove that its approximation ratio is better than k/2. Moreover,
we show that our analysis is tight.

3.1 Presentation of the Greedy Algorithm

It is clear that a feasible solution can be obtained by removing edges, until the
number of connected components (which will represent clusters) reaches k. As
the cost of such a solution depends on the weight of removed edges, it is natural
to consider them in non decreasing order of weights. Thus, we consider the
greedy algorithm given by Algorithm 1, whose running time is clearly bounded
by O(|E| log |E|). Actually, this algorithm corresponds to the split algorithm of
[13], which gives a (2− 2/k)-approximation algorithm for min-k-cut.

Algorithm 1 a greedy algorithm for sum-max graph partitioning
Sort E in non decreasing order of weights (ties are broken arbitrarily)
j ← 0
for i = 1 to k − 1 do

while G has i connected components do
G← G\{ej}
j ← j + 1

end while
// we denote by wi the weight of the last removed edge

end for
return connected components of G



3.2 Analysis of the Algorithm

Notations Let I = (G, k) be an instance of sum-max graph partitioning.
We define Ωk = k(k−1)

2 , and θ = max{ w(e)
w(e′) : e, e

′ ∈ E, e 6= e′, w(e′) ≥ w(e)}. For
a solution S = {S1, ..., Sk} of the problem, we associate the set CS = {c1, ..., cps}
of edges of maximum weight between each pair of clusters, with pS ≤ Ωk. The
value of the solution is then defined by val(S) =

∑pS

i=1 w(ci).
Let A = {A1, ..., Ak} be the solution returned by Algorithm 1, and {iA1, ...,

iAi} the partial solution at the beginning of step i. The while loop consists in
separating a cluster iAt (for some t ∈ {1, ..., i}) into two clusters iA1

t and iA2
t .

Thus, when separating iAt, we add to CA the edge of maximum weight between
iA1

t and iA2
t , and at most (i − 1) edges (called the unexpected edges) between

iA1
t or iA2

t and the other clusters (cf Figure 2). We thereby add to the solution
value one term wi (between iA1

t and iA2
t ) and (i − 1) terms (αj

i )j=1..(i−1). For
j ∈ {1, ..., (i− 1)}, if the edge of maximum weight between iAt and iAj has one
endpoint in iA1

t (resp. iA2
t ), then αj

i is equal to the edge of maximum weight
between iA2

t (resp. iA1
t ) and iAj , or 0 if the two clusters are not adjacent. By

definition, we have val(A) =
k−1∑

i=1

(wi +

i−1∑

j=1

αj
i ) .

iA1
t

iA2
t

iAt

i− 1

iA1
iAi

iAt−1
iAt+1

wi

Figure2: Dashed lines represent edges of maximum weight between iAt and other clusters, already
in CA, solid lines represent the at most (i − 1) new edges added to CA.

Preliminaries
Let us now state several properties of the algorithm that will be the base of the approximation

result (Theorem 3).

Remark 1. It is clear by construction that w1 ≤ w2 ≤ . . . ≤ wk−1

Lemma 1. Let us consider the beginning of step i, and the corresponding i partition {iA1, ...,
iAi}.

Then, for any t ∈ {1, . . . , i} we can upper bound the total weights of the heaviest edges outcoming
from iAt in the following way

i∑

j=1
j "=t

w(et,j) ≤
i−1∑

j=1

wj ,

where et,j denotes the edge of maximum weight between iAt and iAj .

Proof. We prove it by induction over i. Statement is clearly true for the first steps (case i = 1 is
meaningless since we have only 1 cluster, and case i = 2 is true since there is only two clusters,
and thus only one edge of maximum weight between them). We are at the beginning of Step i + 1:
during Step i, iAt has been separated into iA1

t and iA2
t , thus incurring an additional weight of wi.

For j0 $= t, notice that edge ej0,t (edge between iAj0 and iAt, before the split) is now replaced by
two edges ej0,t1 and ej0,t2 , with max(w(ej0,t1), w(ej0,t2)) = w(ej0,t). Let us now bound the weight
of edges out-coming from iAj0 . W.l.o.g., suppose that w(ej0,t1) = w(ej0,t), and let iSj0 be the sum
of all heaviest edges linking iAj0 to each one of the other clusters (including iA1

t and iA2
t . Thus, we

have

Fig. 2: Dashed lines represent edges of maximum weight between iAt and other
clusters, already in CA, solid lines represent the at most (i−1) new edges added
to CA.

Preliminaries Let us now state several properties of the algorithm that will be
the base of the approximation result (Theorem 3). First, It is clear by construc-
tion that w1 ≤ w2 ≤ . . . ≤ wk−1. Then, we have the following result:

Lemma 1. Let us consider the beginning of step i, and the corresponding i
partition {iA1, ...,

iAi}. Then, for any t ∈ {1, . . . , i} we have
∑i

j=1
j 6=t

w(et,j) ≤
∑i−1

j=1 wj, where et,j denotes the edge of maximum weight between iAt and iAj.



Proof. We prove it by induction over i. Statement is clearly true for the first
steps (case i = 1 is meaningless since we have only 1 cluster, and case i = 2 is
true since there is only two clusters, and thus only one edge of maximum weight
between them). We are at the beginning of Step i + 1: during Step i, iAt has
been separated into iA1

t and iA2
t , thus incurring an additional weight of wi.

For j0 6= t, notice that edge ej0,t (edge between iAj0 and iAt, before the split)
is now replaced by two edges ej0,t1 and ej0,t2 , with max(w(ej0,t1), w(ej0,t2)) =
w(ej0,t). Let us now bound the weight of edges out-coming from iAj0 . W.l.o.g.,
suppose that w(ej0,t1) = w(ej0,t), and let iSj0 be the sum of all heaviest edges
linking iAj0 to each one of the other clusters (including iA1

t and iA2
t ). Thus, we

have iSj0 =
∑i

j=1
j 6=j0,j 6=t

w(ej0,j)+w(ej0,t1)︸ ︷︷ ︸
w(ej0,t)

+w(ej0,t2)︸ ︷︷ ︸
≤wi

≤∑i−1
j=1 wj +wi (using the

induction hypothesis).

Same arguments hold for sets iA1
t and iA2

t , which completes the proof.

Corollary 2. Let us consider the beginning of step i, and the corresponding i
partition {iA1, ...,

iAi}. When splitting iAt, the total weight of the unexpected
edges is upper bounded as follows:

∑i−1
j=1 α

j
i ≤ θ

∑i−1
j=1 wj.

Proof. We re-use notation ej,t of Lemma 1. Let ẽj,t (with j 6= t) be the unex-
pected edge between iAj and iAt. For example, if ej,t was in fact an edge between
iAj and iA1

t , ẽj,t is the edge between iAj and iA2
t . By definition of θ, we have

w(ẽj,t) ≤ θw(ej,t), and thus
i−1∑

j=1

αj
i =

i∑

j=1,j 6=t

w(ẽj,t) ≤ θ
i−1∑

j=1

wj (by Lemma 1).

Let us now prove the following lower bound on the optimal value.

Lemma 2. Let S be any (i + 1)-partition, with CS = {c1, ..., cpS
}. We have:∑pS

j=1 w(cj) ≥
∑i

j=1 wj

Proof. We prove it by induction over i. The statement is clearly true for the first
step, since Algorithm 1 gives an optimal 2-partition. Consider now an (i + 1)-
partition S, with CS = {c1, ..., cpS

}. Let wM = max
j=1...pS

w(cj), and let (Si1 , Si2)

be the two sets in S containing both endpoints of an edge of weight wM . Con-
sidering the i-partition created when merging Si1 and Si2 in S, and using the
induction hypothesis, we have:

∑pS

j=1 w(cj)−wM ≥
∑i−1

j=1 wj . Finally, notice that
by construction any (i + 1)-partition must have an edge of weight at least wi,
since after removing all edges of weight strictly smaller than wi in our algorithm,
we still not have an (i+ 1)-partition. This leads to wM ≥ wi and to the desired
inequality.

Proof of the Approximation Ratio We now turn to our main theorem, and
prove that Algorithm 1 has an approximation ratio better than k

2 .

Theorem 3. Algorithm 1 is a (1 + (k2 − 1)θ)-approximation algorithm.



Proof. Using Lemma 2 with an optimal solution, it is sufficient to show that
val(A) ≤ (1+(k2 −1)θ)

∑k−1
i=1 wi. Let us prove it by induction over k. Statement

is clear for k = 2. Suppose now that the result is true for all k = 1, 2, ..., t and
let us show that it remains true for k = t + 1. By the induction hypothesis, we
have:

val(A) ≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +

t−1∑

j=1

αj
t

= (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2

t−1∑

j=1

αj
t +

1

2

t−1∑

j=1

αj
t

≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2
θ
t−1∑

j=1

wj +
1

2

t−1∑

j=1

αj
t using Lemma 1

≤ (1 + (
t

2
− 1)θ)

t−1∑

i=1

wi + wt +
1

2
θ

t−1∑

j=1

wj +
1

2
(t− 1)θwt as αj

t ≤ θwt

≤ (1 + (
t+ 1

2
− 1)θ)

t−1∑

i=1

wi + wt + (
t+ 1

2
− 1)θwt

Which gives the desired inequality.

Thus, Algorithm 1 becomes arbitrarily good as θ tends to 0, i.e. when the
gap on the weight of any pair of edges becomes arbitrarily large. This is not
surprising, as Algorithm 1 only focuses on edge weights, rather than the structure
of the graph. Moreover, notice that sum-max graph partitioning remains
NP-hard even if all edge weights are different (and thus even when θ tends to
0). Indeed, the reduction presented in the proof of Theorem 1 can be adapted
using classical scaling arguments (assigning weight 1 + iε to edge i).

It appears from the previous proof that the k
2 factor is mainly due to the

excessive number of edges in the solution given by Algorithm 1. Indeed, in the
worst case (of the unweighted problem) this solution forms a clique of size k over
the clusters, while the optimal forms a tree, resulting in a k(k−1)

2 /(k − 1) = k
2

ratio on the number of edges. This insight is the key point of the following tight-
ness result, where the instance is designed such that the lower bound (

∑
(wj))

becomes tight.

Proposition 3. Approximation ratio of Algorithm 1 is tight.

Proof. Let k ∈ N. We define the instance Ik, composed of a split graph G =
(C ∪ S,E,w) (with C as an induced clique and S as an induced stable set)
with as many edges as possible. We define C = {c1, ..., ck} and S = {s1, ..., sk}.
Finally, w(e) = 1 for all e ∈ E. Let us now define three categories of edges:

– first category: X = {{ci, sj} such that i 6= j or j = 1},



– second category: Y = {{ci, cj} such that i 6= j},
– third category: Z = {{ci, sj} such that i = j and j 6= 1}.

An example of such a graph is presented in Figure 3.

Proof. Let k ∈ N. We define the instance Ik, composed of a split graph G = (C ∪ S, E, w) (with
C as an induced clique and S as an induced stable set) with as many edges as possible. We define
C = {c1, ..., ck} and S = {s1, ..., sk}. Finally, w(e) = 1 for all e ∈ E. Let us now define three
categories of edges:

– first category: X = {{ci, sj} such that i #= j or j = 1},
– second category: Y = {{ci, cj} such that i #= j},
– third category: Z = {{ci, sj} such that i = j and j #= 1}.

An example of such a graph is presented in Figure 3.
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Figure3: (3a): Example of a graph that reaches the ratio. First category of edges is represented with
dashed lines, second category with solid lines, third category with bold lines (3b): Solution given
by Algorithm 1 (3c): Optimal solution

Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it starts by removing
edges from X , then those from Y . At this point, it is easy to see that a (k + 1)-partition is created.
Then, since each pair of clusters is adjacent, the value of this solution is (k+1)k

2 . On the contrary,
consider the following (k + 1)-partition (V1, ..., Vk):

– for all j ∈ {1, ..., k}, Vj = {sj}
– Vk+1 = C

The value of this solution is k, (it is thus an optimal one).

Then, notice that θ = max{ w(e)
w(e′) : e, e′ ∈ E, e #= e′, w(e′) ≥ w(e)} = 1. Let A(Ik) and OPT (Ik)

denote respectively the value of the solution given by Algorithm 1 and the value of an optimal
solution for Ik. We have:

A(Ik)

OPT (Ik)
=

k + 1

2

Which proves the result (we are looking for a (k + 1)-partition).
%&

Fig. 3: (a): Example of a graph that reaches the ratio. First category of edges is
represented with dashed lines, second category with solid lines, third category
with bold lines (b): Solution given by Algorithm 1 (c): Optimal solution

Since Algorithm 1 sort edges of equal weight arbitrarily, suppose that it starts
by removing edges from X, then those from Y . At this point, it is easy to see that
a (k + 1)-partition is created. Then, since each pair of clusters is adjacent, the
value of this solution is (k+1)k

2 . On the contrary, consider the following (k + 1)-
partition (V1, ..., Vk): for all j ∈ {1, ..., k}, Vj = {sj}, and Vk+1 = C. The value of
this solution is k, (it is thus an optimal one). Then, notice that θ = max{ w(e)

w(e′) :

e, e′ ∈ E, e 6= e′, w(e′) ≥ w(e)} = 1. Let A(Ik) and OPT (Ik) denote respectively
the value of the solution given by Algorithm 1 and the value of an optimal
solution for Ik. We have A(Ik)

OPT (Ik)
= k+1

2 , which proves the result (we are looking
for a (k+1)-partition). Notice that it is possible to obtain the same result without
using the fact that edges of equal weight are sorted arbitrarily in Algorithm 1,
by assigning different edge weights that will respect the order of removed edges
presented above, and are large enough compared with |E|.

4 Conclusion

In this paper we investigated the complexity and approximability of a variant
of the classical graph partitioning problem with sum-max as objective function.
Concerning exact solving, we showed that the pattern enumeration strategy leads
to a polynomial algorithm for k = 3 but becomes hopeless for k ≥ 4, since the
problem becomes NP-hard when fixing one vertex per cluster. Thus, it remains
now to close the complexity study of the problem for fixed k by either providing
a O(nf(k)) algorithm (like for min-k-cut [6]), or getting an NP-hardness result.
From the point of view of approximability, we showed that the greedy algorithm



presented in this paper behaves correctly regarding to the weights but neglects
somehow the structure of the graph, which should encourage other investigations
in this sense.
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